In vitro maturation affects chromosome segregation, spindle morphology and acetylation of lysine 16 on histone H4 in horse oocytes

AReproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, via Celoria, 10, Milan, 20133, Italy.
BINRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, F-37380, France.
CCNRS, UMR7247, Nouzilly, F-37380, France.
DUniversité François Rabelais, 60 Rue du Plat d’Étain, Tours, F-37000, France.
EIFCE, Nouzilly, F-37380, France.
FINRA, UEPAO, Nouzilly, F-37380, France.
GUniversité de Liège, Clinique des Animaux de Compagnie et des Équidés, Place du 20 Août 7, Liège, 4000, Belgium.
HUniversity of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, Cluj-Napoca 400372, Romania.
ICorresponding author. Email: federica.franciosi1@unimi.it

Abstract. Implantation failure and genetic developmental disabilities in mammals are caused by errors in chromosome segregation originating mainly in the oocyte during meiosis I. Some conditions, like maternal ageing or in vitro maturation (IVM), increase the incidence of oocyte aneuploidy. Here oocytes from adult mares were used to investigate oocyte maturation in a monovulatory species. Experiments were conducted to compare: (1) the incidence of aneuploidy, (2) the morphology of the spindle, (3) the acetylation of lysine 16 on histone H4 (H4K16) and (4) the relative amount of histone acetyltransferase 1 (HAT1), K(lysine) acetyltransferase 8 (KAT8, also known as MYST1), histone deacetylase 1 (HDAC1) and NAD-dependent protein deacetylase sirtuin 1 (SIRT1) mRNA in metaphase II stage oocytes that were in vitro matured or collected from peri-ovulatory follicles. The frequency of aneuploidy and anomalies in spindle morphology was increased following IVM, along with a decrease in H4K16 acetylation that was in agreement with our previous observations. However, differences in the amount of the transcripts investigated were not detected. These results suggest that the degradation of transcripts encoding for histone deacetylases and acetyltransferases is not involved in the changes of H4K16 acetylation observed following IVM, while translational or post-translational mechanisms might have a role. Our study also suggests that epigenetic instabilities introduced by IVM may affect the oocyte and embryo genetic stability.

Additional keywords: aneuploidy, histone acetyl-transferases, histone deacetylases, meiosis.

Received 28 August 2015, accepted 12 November 2015, published online 14 December 2015

Introduction

Implantation failure, miscarriages and genetic developmental disabilities in mammals are caused by errors in chromosome segregation originating mainly in the oocyte during meiosis I (Hassold and Hunt 2001). Despite efforts to unravel the underlying molecular basis of chromosomal mis-segregation, a defined mechanism has not been identified. Several genetic, epigenetic and biochemical mechanisms have been proposed from different research groups, including defective spindle assembly checkpoint (Jones and Lane 2013; Yun et al. 2014), weakened centromere cohesion (Chiang et al. 2010; Eichenlaub-Ritter 2012; Tsutsumi et al. 2014), alterations in the pattern of histone covalent modifications (Akiyama et al. 2006; Yang et al. 2012; Luo et al. 2013;
Ma and Schultz 2013), altered microtubule–kinetochore interactions (Shomper et al. 2014), sites and level of recombination (Cheng et al. 2009; Shin et al. 2010; Li et al. 2011), cell cycle regulation defects (Homer et al. 2005; Nabti et al. 2014) and mitochondrial dysfunction (Bartmann et al. 2004; Eichenlaub-Ritter et al. 2004). While this intricate scenario likely indicates that the origin of aneuploidy is multifactorial and aneuploidy arises from different mechanisms, some conditions in the mother, such as age (te Velde and Pearson 2002) or obesity (Luzzo et al. 2012), are known to increase the occurrence of chromosomal mis-segregation. However, a higher incidence of aneuploidy has also been described following in vitro maturation (IVM; Nogueira et al. 2000; Emery et al. 2005; Roberts et al. 2005; Nichols et al. 2010), indicating that events that take place in a short time period (hours) can be sufficient to induce errors in chromosome segregation.

Using an adult, naturally cycling, monovulatory animal model (the horse), we recently observed that in oocytes that were in vitro matured the global acetylation pattern of histone H4 at the residue lysine (K) 16 was altered following IVM compared with in vivo-matured oocytes. Remarkably, other H4 N-terminal K residues such as K8 and K12 were not affected (Franciosi et al. 2012). In the present study we investigated whether, in the same animal model, IVM can also affect the ability to form a regular spindle and normal chromosome segregation. Global acetylation at H4K16 is thought to be one of the key epigenetic regulators in somatic and germ cells, especially for chromatin remodelling and chromosome condensation (Ma and Schultz 2013). Therefore, even though its function during meiosis is not clear, it is likely that the alteration of H4K16 acetylation affects chromosomal alignment during meiosis I.

In somatic cells histone acetylation is generally associated with active gene transcription (as reviewed in Clayton et al. 2006; Turner 2014; Zentner and Henikoff 2014). However, a transcriptionally inactive state is established during the last phase of oocyte growth and maturation. The regulation of gene expression at this time, and until the embryonic genome is activated, relies on post-transcriptional events of previously stored maternal mRNAs (Chen et al. 2011). One of the described post-transcriptional regulatory mechanisms consists in the selective degradation of specific maternal mRNAs (Chen et al. 2011; Ma et al. 2013).

The interplay between several classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) is responsible for acetylation at specific histone residues (Lombardi et al. 2011; Marmorstein and Zhou 2014). Therefore, in the present study we investigated the total mRNA amount of four histone acetylation-related enzymes – HAT1, Klysine acetyltransferase 8 (KAT8, also known as MYST1), HDAC1 and NAD-dependent protein deacetylase sirtuin 1 (SIRT1) – in horse oocytes that were matured in vivo or in vitro. With this study we started to investigate the molecular mechanism that might interfere with the acetylation state of H4K16 during IVM.

Compared with rodent animal models, the horse does not allow genetic manipulations, is less easy to manipulate and its maintenance is more expensive. However, because of the similarity in the ovarian follicular waves and ovulation of one dominant follicle to human ovarian physiology, the horse model is gaining considerable interest for the study of oocyte maturation (Ginthier et al. 2004; Carnevale 2008; Donadeu and Pedersen 2008; Ginthier 2012), oocyte quality (Cox et al. 2015) and as a model of reproductive aging (Campos-Chillon et al. 2015; Hendriks et al. 2015; Ruggeri et al. 2015).

Materials and methods

All the procedures were approved by the Animal Care and Use Committee CEEA Val de Loire Number 19 and performed in accordance with the Guiding Principles for the Care and Use of Laboratory Animals.

All chemicals were purchased from Sigma-Aldrich (St. Quentin Fallavier, France or Milan, Italy) unless otherwise indicated.

Oocyte collection and in vitro maturation

Oocytes were collected by transvaginal ultrasound-guided aspiration from 32 adult cyclic pony mares (3–12 years old) housed at the facilities of INRA, Nouzilly. Based on mare reproductive physiology, standard breeding and veterinary practice and previous studies (Carnevale 2008; Rambags et al. 2014; Campos-Chillon et al. 2015; Ruggeri et al. 2015) mares 3–12 years old were used because they are considered to be young but already mature in terms of reproductive performance. Collection procedures were conducted as previously described (Luciano et al. 2006; Franciosi et al. 2012). Briefly, the ovaries were daily assessed by ultrasound scanning and at the emergence of a follicle ≥33 mm the mares were injected i.v. with 1500 IU human chorionic gonadotrophin (hCG; Chorulon; Intervet, Beaucouzé, France). The in vivo-matured oocyte (one per mare) were collected by transvaginal ultrasound-guided aspiration of the pre-ovulatory follicle 35 h after hCG injection. Only oocytes with a well-extruded polar body (28/32: 88% maturation rate) were considered to be mature and further used in downstream procedures (16 for immunofluorescence and 12 for reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively); the others were discarded.

Fifty-eight germinal vesicle (GV)-stage oocytes were collected from follicles ≥5 and ≤25 mm in diameter. Attempts to retrieve GV-stage oocytes from follicles ≥33 mm of mares not treated with hCG were not successful because of the limited number of follicles at this stage of development. Fourteen of those collected were used for mRNA extraction, while the remaining 44 were matured in vitro as previously described (Franciosi et al. 2012) and used in downstream procedures (25 for immunofluorescence and 12 for RT-qPCR, respectively). Briefly, IVM procedures consisted of culture in TCM199 supplemented with 20% fetal calf serum (FCS; Gibco by Life Technologies, Carlsbad, CA, USA), 0.68 mM L-glutamine, 25 mM NaHCO3, 0.2 mM sodium pyruvate and 50 ng mL−1 epidermal growth factor in humidified air with 5% CO2 at 38.5°C for 28 h. Only oocytes that after 28 h IVM showed a well-extruded polar body (37/44: 85% maturation rate) were considered to be mature and further used in downstream procedures; the others were discarded.
Chromosome counting

Chromosome-counting procedures were adapted from Duncan et al. (2009) and Chiang et al. (2010). After 28 h IVM or after collection from the pre-ovulatory follicle, the cumulus-enclosed oocytes were cultured for 1 h in the presence of 100 μM monastral. The cumulus cells were then removed by treatment in 0.5% hyaluronidase or by gentle pipetting and the zona pellucida was digested in 0.2% pronase. The oocytes were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 15 min at 38.5°C followed by a further 45 min at 4°C, extensively washed in PBS–polyvinyl alcohol (PVA) and permeabilised in 0.3% Triton X-100 for 10 min at room temperature. The oocytes were then incubated in a solution of rabbit anti-Aurora B phospho-Thr232 (633102; Biolegend, San Diego, CA, USA) supplemented with 20 μM YOPRO1 (Invitrogen by Life Technologies) and TRITC-conjugated donkey anti-rabbit IgG (1 : 100 in PBS with 1% BSA) for 1 h at room temperature. Non-specific binding was blocked by incubation in PBS with 1% bovine serum albumin (BSA) and 10% normal donkey serum for 30 min at room temperature. Oocytes were then incubated in a solution of rabbit anti-Aurora B phospho-Thr232 (636102; Biolegend, San Diego, CA, USA) in PBS with 1% BSA (dilution 1 : 50) at 4°C overnight. After extensive washing, the oocytes were incubated in a solution of tetra-methylrhodamine isothiocyanate (TRITC)-conjugated donkey anti-rabbit IgG (1 : 100 in PBS with 1% BSA) for 1 h at room temperature in the dark, then washed again and mounted on slides in the anti-fade medium VectaShield (Vector Laboratories Inc., Burlingame, CA, USA) supplemented with 20 μM YOPRO1 (Invitrogen by Life Technologies).

The samples were analysed on a laser-scanning confocal microscope (LSM 780; Zeiss, Oberkochen, Germany). Images were taken spanning the whole metaphasic plate on the z-axis at 0.29 μm thickness throughout the whole spindle. The z-series were then projected to obtain a three-dimensional image. Instrument settings for the red and blue channels (acH4K16 and DNA, respectively) were kept constant.

Image analysis was carried out using NIH ImageJ 1.4 Software. The spindle diameter and length were measured three times for each sample and the mean of the three measurements was considered for further analysis. The quantification of the relative fluorescence of acH4K16 was measured on digitised images and normalised to DAPI staining, representing total DNA.

RNA purification, reverse transcription and polymerase chain reaction

After cumulus cells removal, the oocytes were washed in PBS–PVA and collected singly in 1 μL at the bottom of a microtube. The granulosa cells from two to five 25–25-mm follicles were pooled and washed twice in cold PBS by centrifuging at 1060g for 2 min at room temperature. The samples were covered with 2 μL RNA Later (Ambion, Huntington, UK) and snap frozen at the end of each collection session. For the RNA extraction the oocytes were pooled two by two in the extraction buffer of the PicoPure RNA Isolation Kit (Arcturus by Life Technologies, Saint Aubin, France) and 2 pg of Luciferase RNA (Promega, Charbonnieres-les-bains, France) were added as an external standard. Six or seven pools of oocytes for each experimental group (GV, in vivo matured and in vitro matured) were processed. Total DNase-treated RNA was extracted from oocytes and granulosa cells following the manufacturer’s instructions.

The RNA was reverse transcribed in 10 μL with 0.25 μg random hexamers and mouse Moloney leukaemia virus reverse transcriptase (Invitrogen) for 1 h at 37°C. Real-time PCR was performed on a MyiQ Cycler apparatus (Bio-Rad, Marnes-la-Coquette, France). Reactions were performed in a total volume of 20 μL using cDNA equivalent to 0.05 oocytes as substrate, SYBR green Bio-Rad supermix and 0.3 μM of each specific primer (Table 1). A three-step protocol (95°C for 30 s, 60°C for 30 s, 72°C for 20 s) was repeated for 40 cycles, followed by acquisition of the melting curve. Serial dilutions of a known amount of cDNA, ranging from 50 to 0.01 ng, derived from the follicular granulosa cells, were used to calculate a standard curve and assess the starting quantity (SQ) of the specific mRNA in the oocyte samples, considering the median value of triplicate reactions. The expected amplicon sizes are shown in Table 1. The data are expressed as the ratio between the SQ of the gene of interest and the SQ of GAPDH, representing the housekeeping gene.
Statistical analysis

The aneuploidy rate between in vitro- and in vivo-matured oocytes was compared by Fisher’s exact test. Data on the spindle diameter, spindle length and the relative fluorescence of acH4K16 were analysed by unpaired \(t \)-test. The Pearson coefficient (\(r \)) was calculated to express the correlation between acH4K16 and spindle length, and between acH4K16 and spindle diameter. Real-time PCR data were analysed by one-way ANOVA. \(P \) values, 0.05 were considered to be statistically significant. Results are presented as mean \(\pm \) s.e.m. unless otherwise specified.

Results

The incidence of aneuploidy is increased in in vitro-matured oocytes

In order to study whether IVM can perturb the chromosome–spindle interaction during the first meiotic division, the number of chromosomes at the MII stage was counted, as it represents the result of chromosome segregation during meiosis I. Antibodies anti-CENPA (ab13939; Abcam, Cambridge, UK) and anti-AURKB (ab3609; Abcam) failed to localise to the centromeres in MII-stage horse oocytes (data not shown). In our hands, the anti-Aurora B phospho-Thr232 antibody was considered a good marker for the centromeric region in horse oocytes (Fig. 1a).

Table 1. List of primers

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Amplicon size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>ATCACCATCTTCACGGAGGCCAGA</td>
<td>GTCTTCTGGGTGCGACTGATGG</td>
<td>241 bp</td>
</tr>
<tr>
<td>HAT1</td>
<td>CTGATGGATGATGCTGAAAC</td>
<td>TAAAGCGTCGTAATCTCCC</td>
<td>219 bp</td>
</tr>
<tr>
<td>HDAC1</td>
<td>GAGCGGTCGCAAGAGA</td>
<td>TAAACCTGCCTCCTTTGA</td>
<td>186 bp</td>
</tr>
<tr>
<td>KAT8</td>
<td>ACTGTCTGTCGTCCTGCTG</td>
<td>GGCCCATTTGAGGTGTTCC</td>
<td>198 bp</td>
</tr>
<tr>
<td>Luciferase</td>
<td>TCACTCTGCACCACAAGCACCCTCCTG</td>
<td>AGCCCATACCTGTCGTATCCC</td>
<td>148 bp</td>
</tr>
<tr>
<td>SIRT1</td>
<td>GACCTCAGCAAGGAGCACATT</td>
<td>GGAAGCAGCATGGCACCACCT</td>
<td>169 bp</td>
</tr>
</tbody>
</table>

Fig. 1. Chromosome count in in vivo- and in vitro-matured oocytes. (a) Representative images showing aurora B phospho-Thr232 (red) and DNA (green) staining of a MII-stage horse oocyte treated with monastrol. The merge between the red and green staining has been used to count the chromosomes. An euploid oocyte (32 chromosomes) is shown. Scale bar = 5 \(\mu \)m. (b) The bar graph represents the distribution of euploid and aneuploid MII-stage oocytes in in vivo- \((n = 12) \) and in vitro- \((n = 11) \) matured oocytes. *Indicates significant difference in the aneuploidy rate (Fisher’s exact test, \(P < 0.05 \)).

In vitro-matured oocytes had a significantly higher percentage of aneuploidy (5/11) when compared with in vivo-matured oocytes (0/12; Fisher’s exact test, \(P < 0.05 \); Fig. 1b). Specifically, 4/5 of the aneuploid in vitro-matured oocytes were hyperploid, with a chromosomal count \(>32 \), while one oocyte was hypoploid, with a chromosomal count of 28. Examples of euploid and aneuploid chromosomal counts carried out on sequential confocal sessions are given in Fig. S1, available as Supplementary Material to this paper.

Spindle anomalies are increased in in vitro-matured oocytes and correlate with H4K16 deacetylation

Representative images of bipolar (normal) and irregular spindles are given in Fig. 2 (also see Supplemental Movie for an example of a monopolar spindle). Fifty per cent of the in vitro-matured oocytes showed evident morphological anomalies, like multipolar or monopolar spindles (4/14) and chromosomes scattered throughout the spindle structure (3/14), whereas all the in vivo-matured oocytes (4/4) showed bipolar spindles with chromosomes aligned on the metaphasic plate. The structure of the spindle looked more compact in in vivo-matured oocytes when compared with the in vitro-matured ones, which is in agreement with a previous report in mice (Sanfins et al. 2003).

In order to confirm this morphological observation, the diameter of the spindle was measured at the maximum width at the metaphasic plate level; the spindle length was considered
to be the maximal distance between the two poles (Fig. 3a). These measurements demonstrated that in vitro-matured oocytes have a significantly larger diameter \((17.28 \pm 0.81 \, \mu m)\) and pole-to-pole distance \((19.89 \pm 1.15 \, \mu m)\) compared with in vivo-matured oocytes \((13.56 \pm 0.91 \, \mu m)\) diameter and \(14.57 \pm 1.7 \, \mu m\) length; unpaired t-test, \(P \leq 0.05\). Even though not statistically significant \((P = 0.1286)\), the acetylation level of H4K16 was negatively correlated with the length of the spindle \((r = -0.42; \, \text{Fig. 3b})\). No correlation was observed between H4K16 acetylation and spindle diameter \((r = -0.12; \, \text{Fig. 3c}, \, P = 0.5902)\).

Overall, the global acetylation at H4K16 was significantly lower in IVM oocytes compared with their in vivo counterparts (Fig. 3a and Fig. S2), confirming our previous results.

Expression of transcripts encoding for histone acetyltransferases (HATs) and deacetylases (HDACs) during horse oocyte maturation

We investigated whether differences in histone H4 acetylation between in vitro- and in vivo-matured oocytes were associated with altered expression of four genes involved in this process: two HATs (HAT1 and KAT8) and two HDACs (HDAC1 and SIRT1). Relative mRNA expression was assessed by real-time PCR in seven pools of GV-stage, seven pools of in vivo-matured and six pools of in vitro-matured oocytes (Fig. 4). We did not observe any significant difference in the expression of HAT1, KAT8, HDAC1 or SIRT1 between the three classes of oocytes, independent of the meiotic stage or the maturation conditions.
Fig. 3. Measurement of spindle length and diameter and correlation with H4K16 acetylation. (a) Representative images showing tubulin (green), acetylated H4K16 (red) and DNA (blue) in MII oocytes after in vivo (n = 4) or in vitro maturation (n = 14). The tubulin images show the axes used for spindle length and diameter measurements. Scale bar = 5 μm. (b) The bar graph represents the measurement (mean ± s.e.m.) of the spindle length in MII-stage oocytes after in vivo (n = 4) or in vitro (n = 14) maturation. The line graph represents the correlation between spindle length and acetylation at H4K16 (r = −0.42). (c) The bar graph represents the measurement (mean ± s.e.m.) of the spindle diameter in MII-stage oocytes after in vivo (n = 4) or in vitro (n = 14) maturation. The line graph represents the correlation between spindle diameter and acetylation at H4K16 (r = −0.12). *Indicates significant difference between in vivo and in vitro maturation (unpaired t-test, P < 0.05).
Similar results were obtained by normalising the mRNA relative abundance against the spike-in mRNA Luciferase (Fig. S3).

Discussion

Oocyte *in vitro* maturation (IVM) represents a less drug-oriented, less expensive and more patient-friendly approach in assisted reproductive technology (ART) compared with ovarian hormonal stimulation. However, the use of IVM in human infertility treatment is still limited because it can increase the incidence of aneuploidy (Nogueira et al. 2000; Emery et al. 2005; Requena et al. 2009) with consequent risk of embryo–fetal loss and genetic diseases. A deeper knowledge of the molecular basis of chromosomal mis-segregation during IVM will increase the possibilities of developing safer IVM procedures. Here we propose the use of a monovulatory animal model, the mare, to investigate the process of oocyte maturation and to compare *in vivo* and *in vitro* conditions.

We first tested whether the occurrence of errors in chromosome segregation was increased in *in vitro*-matured horse oocytes, as happens in humans (Nogueira et al. 2000; Emery et al. 2005). A previous study, where the ploidy of horse embryos was investigated by fluorescent *in situ* hybridization (FISH), indicates that the nuclei of *in vitro*-produced embryos are more likely to be affected by chromosomal abnormalities than *in vivo*-produced embryos (Rambags et al. 2005). However, despite the fact that IVM has been performed in horses for more than 20 years (Choi et al. 1993; Hinrichs et al. 1993), whether the oocyte can be the origin of embryonic aneuploidy has never been tested. The reason can partially reside in the fact that the preparation of oocyte spreads for chromosome counting usually results in considerable sample loss. With this in mind, we adapted a technique recently described in mouse oocytes (Duncan et al. 2009; Chiang et al. 2010) where the kinesin-5 inhibitor monastrol was used to collapse the spindle and disperse the chromosomes. This treatment allowed us to count the chromosomes without preparation of chromosomal spreads.

Fig. 4. Expression of KAT8, SIRT1, HAT1 and HDAC1 in GV-stage, *in vivo*- and *in vitro*-matured oocytes. The bar graphs represent the relative mRNA expression of KAT8, SIRT1, HAT1 and HDAC1 expressed as the starting quantity (SQ) of the gene of interest compared with the SQ of GAPDH, used as a housekeeping gene. No statistical differences were observed between GV (n = 14), *in vivo* (n = 14) and *in vitro* (n = 12) matured oocytes (one-way ANOVA, P > 0.05).
We observed that in vitro-matured oocytes are significantly more prone to undergo defects in chromosome segregation during meiosis I compared with their in vivo counterparts. These results demonstrate that aneuploidies in horses can originate in the oocyte during meiosis I, similar to what has been described in humans (Hassold and Hunt 2001). Notably, the incidence of aneuploidy that we observed in IVM oocytes was higher than the one reported for in vitro-produced embryos (Rambags et al. 2005), possibly suggesting that severe aneuploidies are not compatible with early embryonic development. Overall our results indicate that horse oocytes could be a valid cellular model for studying human aneuploidy during IVM compared with mouse oocytes, which are only minimally affected by aneuploidy.

In a second set of experiments we analysed the morphology of the meiotic spindle in in vivo- and in vitro-matured oocytes. Some spindle anomalies, such as monopolar or multipolar spindles or chromosomes scattered throughout the spindle rather than aligned at the spindle equator, were observed in in vitro-matured oocytes, in agreement with previous studies (Goudet et al. 1997). In vivo-matured oocytes instead consistently showed a compact structure and bipolar morphology. Further morphometric analysis also demonstrated that bipolar, apparently normal, IVM spindles are significantly longer and wider compared with in vivo ones. Our observations on horse oocytes support the hypothesis that aneuploidies can arise from defective spindle formation during IVM, as already proposed by Sanfins et al. (2003), i.e. that altering the proper tension of microtubules can interfere with normal chromosome segregation.

In a recent study we observed that IVM also affects the acetylation pattern of H4K16, while residues K8 and K12 were not altered (Franciosi et al. 2012). Specifically H4K16 is acetylated at the GV stage. Upon maturation H4K16 remains acetylated in in vivo-matured oocytes, while it undergoes deacetylation following IVM.

In somatic cells, H4K16 deacetylation is generally thought to be necessary for chromatin condensation and silencing of gene expression (Shogren-Knaak et al. 2006). However, other studies have demonstrated that acetylated H4K16 can be found in association with repressor proteins (Robin et al. 2007) and whether acetylated H4K16 inhibits or promotes the chromatin-remodelling complex ATPase Imitation of SWI (ISWI), is still a matter of debate (Klinker et al. 2014).

In the case of the transcriptionally inactive MII-stage oocytes, the global H4K16 acetylation can hardly be related to active gene expression, while a role in chromatin condensation seems more likely. We hypothesise that acetylated H4K16 promotes the recruitment of factors necessary for proper chromosome aggregation and for the interactions with proteins of the meiotic apparatus. This hypothesis is partially supported by the observation that one of the spindle anomalies found in IVM horse oocytes correlates with the deacetylation of H4K16, but this still requires extensive testing.

Studies conducted in a mouse model null for histone deacet-tylase 2 (Hdac2−/−) showed that the hyperacetylation of H4K16 is associated with weakened kinetochore–microtubule attachment and increased chromosome segregation errors (Ma and Schultz 2013). These results are only apparently in conflict with our hypothesis. In fact, they demonstrate that perturbing the acetylation pattern of H4K16 leads to aneuploidies and alters chromosome–spindle interactions. Importantly, both studies agree that a normal acetylation state (in vivo-matured horse oocytes and wild-type mice) is associated with proper chromosome segregation and normal spindle assembly.

During oocyte maturation chromatin is transcriptionally inactive and the control of gene expression is exerted at the cytoplasmic level through the regulation of translation, storage and degradation of specific transcripts (Chen et al. 2011; Ma et al. 2013). In this view we reasoned that IVM could interfere with such regulatory mechanisms, for instance by promoting the degradation of mRNAs involved in histone acetylation or by inhibiting the degradation of deacetylase transcripts. To test this hypothesis we investigated the relative mRNA abundance of four transcripts, two encoding for HATs and two encoding for HDACs. For each class we analysed one enzyme known to have a broad activity on different H4 K-residues (HAT1 and HDAC1, for the acetyltransferases and deacetylases, respectively; Parthun 2007; Ma and Schultz 2008) and one more specific to K16 (KAT8-MYST1 and SIRT1 for the acetyltransferases and deacetylases, respectively; Peng et al. 2012; Marmorstein and Zhou 2014). We did not observe significant differences between in vivo and in vitro maturation in the expression of any of the genes considered. Our results demonstrate that impaired stability or degradation of HAT1, KAT8, HDAC1 and SIRT1 transcripts is not the mechanism responsible for the alteration of the pattern of histone acetylation during IVM. Even though we cannot exclude the involvement of other HATs or HDACs, it is more likely that control is achieved by regulating the amount or the enzymatic activity of HAT and HDAC proteins through post-transcriptional or post-translational mechanisms.

Finally, the relative mRNA abundance in MII oocytes (either in vivo- or in vitro-matured) was not significantly different from the GV stage, showing that these transcripts do not undergo degradation during meiosis I in horse oocytes. Similar profiles for HDAC1 and HAT1 mRNAs have been previously observed in bovine oocytes (McGraw et al. 2003). On the other hand, two studies described a decrease in HDAC1 mRNA during IVM in human oocytes (Wang et al. 2010; Huang et al. 2012). To the best of our knowledge, in these studies a mix of oligo-dT and random primers was used for reverse transcription, possibly introducing a bias for polyadenylated mRNA species rather than detecting a difference in the total mRNA abundance.

In the horse, IVM is applied to oocytes retrieved from antral follicles between 5 and 25 mm (10–25 mm in some laboratories). Larger follicles are not frequent and usually have a poor retrieval rate, therefore they cannot be consistently used. For this technical limitation we could not investigate whether IVM would equally affect GV oocytes collected from follicles ≥33 mm. In this vein, to the best of our knowledge, the diameter of the follicle of origin should be considered as one of the conditions inherent to IVM that, together with the other retrieval and culture procedures, might have contributed to the increased aneuploidy rate and altered epigenetic marks observed in our study.

To conclude, in the present study we characterised the phenotype and started to investigate the molecular events related
Aneuploidy and histone acetylation in oocytes

Reproduction, Fertility and Development 729

Ramhags, B. P., van Boxtel, D. C., Tharasanit, T., Lenstra, J. A., Colen-
brander, B., and Stout, T. A. (2014). Advancing maternal age predis-

GENEOLOGY.2014.01.020

PROD.104.032003

www.publish.csiro.au/journals/rfd