

State complexity of the multiples of the Thue-Morse set

Célia Cisternino Joint work with Émilie Charlier and Adeline Massuir

January 24, 2019

<□▶ < @▶ < 注▶ < 注▶ 注 の < ℃ 1/40

Basics ●000000	Thue-Morse set 0000	Method 00	Constructive Proof	Counting and Conclusion
Basics				

- Alphabet A, letter $a \in A$, word w
- ε , |w|, $|w|_a$
- Language

Moreover,

- Automaton (DFA) ${\cal A}$
- The language accepted from a state q is denoted by L(q).
- Regular language

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusio
000000				

• Reduced, accessible, coaccessible

Definition

A DFA is *minimal* iff it is *reduced* and *accessible*.

• Trim minimal

Definition

The *state complexity* of a regular language is equal to the number of states of its minimal automaton.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
000000				

Definition

A DFA has **disjoint states** if, for distinct states p and q, we have $L(p) \cap L(q) = \emptyset$.

<ロ > < 母 > < 臣 > < 臣 > 三 の Q @ 4/40

Remark

Any coaccessible DFA having disjoint states is reduced.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000				

Let $b \in \mathbb{N}_{>2}$, $n \in \mathbb{N}$. The **Greedy** b-representation rep_b(n) of n:

 $c_{\ell-1}\cdots c_0$

 $c_i \in A_b := \{0, \dots, b-1\}$ such that

$$n=\sum_{i=0}^{\ell-1}c_ib^i,\quad c_{\ell-1}\neq 0.$$

•
$$\operatorname{val}_b(c_{\ell-1}\cdots c_0) = n$$

•
$$\operatorname{rep}_b(0) = \varepsilon$$
, $\operatorname{val}_b(\varepsilon) = 0$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000				

•
$$u = u_1 \cdots u_n \in A^*$$
, $v = v_1 \cdots v_n \in B^*$

$$(u,v)=(u_1,v_1)\cdots(u_n,v_n)\in (A\times B)^*.$$

• Denote $\ell = \max\{|\operatorname{rep}_b(n_1)|, |\operatorname{rep}_b(n_2)|\}$,

$$\operatorname{rep}_b(n_1, n_2) = (0^{\ell - |\operatorname{rep}_b(n_1)|} \operatorname{rep}_b(n_1), 0^{\ell - |\operatorname{rep}_b(n_2)|} \operatorname{rep}_b(n_2)).$$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000				

Definition

For a base *b*, a subset *X* of \mathbb{N} is said to be *b*-*recognizable* if the language rep_{*b*}(*X*) is regular.

Basics 0000000	Thue-Morse set 0000	Method 00	Constructive Proof	Counting and Conclusion

Definition

For a base *b*, a subset *X* of \mathbb{N} is said to be *b*-*recognizable* if the language $0^* \operatorname{rep}_b(X)$ is regular.

Proposition

Let $b \in \mathbb{N}_{\geq 2}$ and $m \in \mathbb{N}$. If X is *b*-recognizable, then so is mX.

Basics T	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000				

Multiplicatively independent integers:

$$(p^a = q^b) \Rightarrow (a = b = 0)$$

Theorem (COBHAM, 1969)

- Let b, b' be two multiplicatively independent bases. Then a subset of N is both b-recognizable and b'-reconnaissable if and only if it is a finite union of arithmetic progressions.
- Let b, b' be two multiplicatively dependent bases. Then a subset of N is b-recognizable if and only if it is b'-recognizable.

Basics 0000000	Thue-Morse set ●000	Method 00	Constructive Proof	Counting and Conclusion
Thue-M	orse set			

The Thue-Morse set :

$$\mathcal{T} = \{n \in \mathbb{N} \colon |\mathrm{rep}_2(n)|_1 \in 2\mathbb{N}\}$$

0,3

 $egin{aligned} & A_4 \cap \mathcal{T} = \{0,3\} \ & A_4 \cap (\mathbb{N} \setminus \mathcal{T}) = \{1,2\} \end{aligned}$

0,3

 $A_4 \cap \mathcal{T} = \{\mathbf{0}, \mathbf{3}\}$ $A_4 \cap (\mathbb{N} \setminus \mathcal{T}) = \{1, 2\}$

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > 2000 10/40

 $A_4 \cap \mathcal{T} = \{0, 3\}$ $A_4 \cap (\mathbb{N} \setminus \mathcal{T}) = \{1, 2\}$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の へ C 11/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
	0000			

For each $p\in\mathbb{N}_{\geq1}$, the language $0^*\mathrm{rep}_{2^p}(\mathcal{T})$ is accepted by the DFA

 $(\{H,B\},H,H,A_{2^p},\delta)$

where for all $X \in \{H, B\}$ and all $a \in A_{2^p}$,

$$\delta(X, a) := X_a = \begin{cases} X & \text{if } a \in \mathcal{T} \\ \overline{X} & \text{otherwise} \end{cases}$$

<ロト < 母 ト < 主 ト < 主 ト 三 の へ C 12/40

where $\overline{H} = B$ and $\overline{B} = H$.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
	0000			

For each $p\in\mathbb{N}_{\geq1}$, the language $0^*\mathrm{rep}_{2^p}(\mathcal{T})$ is accepted by the DFA

 $(\{H,B\},H,H,A_{2^p},\delta)$

where for all $X \in \{H, B\}$ and all $a \in A_{2^p}$,

$$\delta(X, a) := X_a = \begin{cases} X & \text{if } a \in \mathcal{T} \\ \overline{X} & \text{otherwise} \end{cases}$$

<ロト < 母 ト < 主 ト < 主 ト 三 の へ C 12/40

where $\overline{H} = B$ and $\overline{B} = H$.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
	0000			

For each $p\in\mathbb{N}_{\geq1}$, the language $0^*\mathrm{rep}_{2^p}(\mathcal{T})$ is accepted by the DFA

 $(\{H,B\},H,H,A_{2^p},\delta)$

where for all $X \in \{H, B\}$ and all $a \in A_{2^p}$,

$$\delta(X, a) := X_a = \begin{cases} X & \text{if } a \in \mathcal{T} \\ \overline{X} & \text{otherwise} \end{cases}$$

<ロト < 母 ト < 主 ト < 主 ト 三 の へ C 12/40

where $\overline{H} = B$ and $\overline{B} = H$.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000	0000	00	000000000000000000000000000000000000000	000
Main T	hoorom			

Lemma

For any $m \in \mathbb{N}$ and $p \in \mathbb{N}_{>1}$, the set $m\mathcal{T}$ is 2^p -recognizable.

Theorem

Let $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$. Then the state complexity of the language $0^* \operatorname{rep}_{2^p}(m\mathcal{T})$ is equal to

$$2k + \left\lceil \frac{z}{p} \right\rceil$$

if $m = k2^z$ with k odd.

Basics 0000000	Thue-Morse set	Method ●0	Constructive Proof	Counting and Conclusion
Method				

- Let $\mathcal{A}_{\mathcal{T},2^p}$ the DFA accepting
 - $(0,0)^*$ {rep₂ $_p(t,n)$: $t \in \mathcal{T}, n \in \mathbb{N}$ }.
- Let $\mathcal{A}_{m,2^p}$ the DFA accepting

 $(0,0)^* \{ \operatorname{rep}_{2^p}(n,mn) \colon n \in \mathbb{N} \}.$

Consequently, the DFA $A_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p}$ accepts

 $(0,0)^* \{ \operatorname{rep}_{2^p}(t,mt) : t \in \mathcal{T} \}$

and $\Pi_2(\mathcal{A}_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p})$ accepts

 $0^{*}\left\{\operatorname{rep}_{2^{p}}\left(mt\right):t\in\mathcal{T}
ight\}.$

00	

The state complexity of the multiples of the Thue-Morse set in base 2^p is the number of states of the DFA obtained after the minimisation of $\Pi_2(\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p})$.

Basics 0000000	Thue-Morse set 0000	Method 00	Constructive Proof	Counting and Conclusion	
The automaton $A_{T 2^{\mu}}$					

Formally, we have

$$\mathcal{A}_{\mathcal{T},2^{p}} = (\{H,B\},H,H,A_{2^{p}} \times A_{2^{p}},\delta_{\mathcal{T},2^{p}})$$

where, for all $X \in \{H, B\}$ and all $d, e \in A_{2^p}$, we have

$$\delta_{\mathcal{T},2^p}(X,(d,e)):=X_d.$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の へ つ 16/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

<ロト < 昼 ト < 差 ト < 差 ト 差 の へ C 17/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
0000000	0000	00	000000000000000000000000000000000000000	000

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

<ロ > < 回 > < 巨 > < 三 > < 三 > う Q C 17/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

0000000 0000 00 00 0000 00000000000000	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
				000000000000000000000000000000000000000	

<ロト < 母 ト < 主 ト < 主 ト ラ キ の Q C 17/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

<ロト < 母 ト < 主 ト < 主 ト ミ の < 17/40

Basics 0000000	Thue-Morse set 0000	Method 00	Constructive Proof 00000000000000000000000000000000000	Counting and Conclusion

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ ○ Q ○ 17/40</p>

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
	0000		000000000000000000000000000000000000000	

	000000000000000000000000000000000000000	

Lemma

For all $X, Y \in \{H, B\}$ and $(u, v) \in (A_{2^p} \times A_{2^p})^*$, we have

$$\delta_{\mathcal{T},2^p}(X,(u,v)) = Y \quad \Longleftrightarrow \quad Y = X_{\operatorname{val}_{2^p}(u)}.$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の へ つ 18/40

	Constructive F1001	Counting and Conclusion
	000000000000000000000000000000000000000	

<ロト < 部 < 主 < 主 > 三 の Q @ 19/40

Lemma

- The automaton $\mathcal{A}_{\mathcal{T},2^p}$
 - accepts $(0,0)^* \{ \operatorname{rep}_{2^p}(t,n) \colon t \in \mathcal{T}, n \in \mathbb{N} \}$
 - is accessible
 - is coaccessible
 - has disjoint states
 - is trim minimal
 - is complete

Basics 0000000	Thue-Morse set 0000	Method 00	Constructive Proof	Counting and Conclusion
The aut	omaton \mathcal{A}_m	.Ь		

Formally, we have

$$\mathcal{A}_{m,b} = (\{0,\ldots,m-1\},0,0,A_b \times A_b,\delta_{m,b})$$

where, for each $i, j \in \{0, \dots, m-1\}$ and each $d, e \in A_b$,

 $\delta_{m,b}(i, (d, e)) = j \quad \Longleftrightarrow \quad bi + e = md + j.$

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の Q @ 20/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Lemma

For
$$i, j \in \{0, \dots, m-1\}$$
 and $(u, v) \in (A_b \times A_b)^*$, we have

$$\delta_{m,b}(i,(u,v)) = j \iff b^{|(u,v)|} i + \operatorname{val}_b(v) = m \operatorname{val}_b(u) + j.$$

For instance, we have

 $\delta_{6,4}(3,(202,100)) = 4$

because

$$\begin{aligned} 4^{3}.3 + \operatorname{val}_{4}(100) &= 208 \\ &= 6.34 + 4 \\ &= 6.\operatorname{val}_{4}(202) + 4. \end{aligned}$$

4 ロ ト 4 日 ト 4 王 ト モ の 4 で 22/40

Basics T	hue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Lemma

- The automaton $\mathcal{A}_{m,b}$
 - accepts $(0,0)^* \{ \operatorname{rep}_b(n,mn) \colon n \in \mathbb{N} \}$
 - is accessible
 - is coaccessible
 - has disjoint states
 - is trim minimal

Remark : The automaton $A_{m,b}$ is not complete.

Basics Thue-Morse set Method Constructive Proof Counting and Conclusion

The product automaton $\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p}$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Let

$$Q = \{(0, H), \dots, (m - 1, H), (0, B), \dots, (m - 1, B)\}.$$

We have

$$\mathcal{A}_{m,2^{p}} \times \mathcal{A}_{\mathcal{T},2^{p}} = (Q,(0,H),(0,H),A_{2^{p}} \times A_{2^{p}},\delta_{\times}),$$

where, for each $i, j \in \{0, \dots, m-1\}$, $X, Y \in \{H, B\}$ and each $d, e \in A_{2^p}$,

$$\delta_{\times}((i, X), (d, e)) = (j, Y)$$

$$\iff$$

$$2^{p}i + e = md + j \text{ and } Y = X_{d}$$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Lemma

For
$$i, j \in \{0, \dots, m-1\}$$
, $X, Y \in \{H, B\}$ and
 $(u, v) \in (A_{2^p} \times A_{2^p})^*$, we have
 $\delta_{\times}((i, X), (u, v)) = (j, Y)$
 \Leftrightarrow
 $2^{p \mid (u, v) \mid} i + \operatorname{val}_{2^p}(v) = m \operatorname{val}_{2^p}(u) + j \text{ and } Y = X_{\operatorname{val}_{2^p}(u)}.$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

Lemma

- The automaton $\mathcal{A}_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p}$
 - accepts $(0,0)^* \{ \operatorname{rep}_{2^p}(t,mt) : t \in \mathcal{T} \}$
 - is accessible
 - is coaccessible
 - has disjoint states
 - is trim minimal

Remark : The automaton $\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p}$ is not complete.

 $\begin{array}{c|c} \begin{array}{c} \text{Basics} & \text{Thue-Morse set} & \text{Method} \\ \hline \text{OOO} & \text{OO} & \text{Constructive Proof} & \text{Counting and Conclusion} \\ \hline \text{OOOOOOOOOOOOOOOOOOOO} \\ \hline \begin{array}{c} \text{Projection of } \mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p} \end{array}$

Let

$$Q = \{(0, H), \dots, (m - 1, H), (0, B), \dots, (m - 1, B)\}.$$

We have

$$\Pi_2(\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p}) = (Q, (0, H), (0, H), \mathcal{A}_{2^p}, \delta_{\Pi}),$$

where, for each $i, j \in \{0, \dots, m-1\}, X, Y \in \{H, B\}$ and each $e \in \mathcal{A}_{2^p}$,

$$\delta_{\Pi}((i, X), e) = (j, Y)$$

$$\iff$$

$$\exists d \in A_{2^{p}} : 2^{p}i + e = md + j \text{ and } Y = X_{d}.$$

<ロト < 母 ト < 主 ト < 主 ト 三 の へ C 28/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusio
			000000000000000000000000000000000000000	

<ロト < 母 > < E > < E > E の へ C 29/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

<ロト < 目 > < 目 > < 目 > < 目 > < 30/40

Lemma

The automaton $\Pi_2(\mathcal{A}_{m,2^p} imes \mathcal{A}_{\mathcal{T},2^p})$

- accepts $0^* \{ \operatorname{rep}_{2^p}(mt) : t \in \mathcal{T} \}$
- is deterministic
- is accessible
- is coaccessible
- has disjoint states if m is odd
- is trim minimal if m is odd

000000000000000000000000000000000000000	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusior
				000000000000000000000000000000000000000	

Corollary

The state complexity of $m\mathcal{T}$ in base 2^p is 2m if m is odd.

In that case,

$$m = k$$
 and $z = 0$

SO

$$2m=2k+\left\lceil \frac{z}{p}\right\rceil .$$

The question will be solved for even *m*'s after the minimisation of the DFA $\Pi_2(\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p})$.

asics Thue-Morse set Method Constructive Proof

Counting and Conclusion

Minimisation of $\Pi_2(\mathcal{A}_{m,2^p} \times \mathcal{A}_{\mathcal{T},2^p})$

<ロ > < 回 > < 回 > < 豆 > < 豆 > < 豆 > の へ ? 32/40

Basics	Thue-Morse	

Method 00

et

Constructive Proof

Counting and Conclusion $_{\rm OOO}$

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

<ロ > < 回 > < 巨 > < 三 > < 三 > の へ C 33/40

Basics	Thue-Morse set	Method	Constructive Proof
			000000000000000000000000000000000000000

Counting and Conclusion

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Con
			000000000000000000000000000000000000000	

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

lusion

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclu
			000000000000000000000000000000000000000	

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

©
 O
 O<

<ロ > < 回 > < 巨 > < 三 > < 三 > の へ C 33/40

0000000 0000 00 00 0000000000000000000	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusi
				000000000000000000000000000000000000000	

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

0000000 0000 00 00 0000000000000000000	Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusi
				000000000000000000000000000000000000000	

<ロト < 目 > < 目 > < 目 > < 目 > 20 (33/40

Basics 0000000	Thue-Morse set	Method 00	Constructive Proof	Counting and Conclusion
Descript	ion of the c	lasses		

Let $m = k.2^z$ where $k, z \in \mathbb{N}$ with k odd.

For $(j, X) \in (\{1, ..., k - 1\} \times \{H, B\}) \cup \{(0, B)\}$, the classe of (j, X) is

$$[(j,X)] = \{(j+k\ell,X_{\ell}) : 0 \le \ell \le 2^{z}-1\}.$$

Moreover, the classe of (0, H) is

 $[(0,H)] = \{(0,H)\}.$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 34/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
			000000000000000000000000000000000000000	

For
$$\alpha \in \{0, \ldots, z-1\}$$
, we define a *pre-classe* C_{α} of size 2^{α} :

$$C_{\alpha} := \left[\left(k 2^{z-\alpha-1}, B \right) \right] = \left\{ \left(k 2^{z-\alpha-1} + k 2^{z-\alpha} \ell, B_{\ell} \right) : 0 \le \ell \le 2^{\alpha} - 1 \right\}$$

Then, for all $\beta \in \{0, \dots, \left\lceil \frac{z}{p} \right\rceil - 2\}$, we define a *classe* Γ_{β} as follows:

$$\Gamma_{\beta} := \bigcup_{\alpha \in \{\beta p, \dots, (\beta+1)p-1\}} C_{\alpha}$$

and we set

$$\Gamma_{\left\lceil \frac{z}{p}\right\rceil-1} := \bigcup_{\alpha \in \left\{ \left(\left\lceil \frac{z}{p}\right\rceil - 1 \right) p, \dots, z-1 \right\}} C_{\alpha}$$

<ロト < @ ト < E ト < E ト ● E の へ ? 35/40

Basics	Thue-I

Morse set

Method 00 Constructive Proof

Counting and Conclusion

In this example $m = 3.2^3$ and b = 4. So, k = 3, z = 3, p = 2, and $\left\lfloor \frac{z}{p} \right\rfloor = 2$. We obtain

$$C_0 = \{(12, B)\}\$$

$$C_1 = \{(6, B), (18, H)\}\$$

$$C_2 = \{(3, B), (9, H), (15, H), (21, B)\}\$$

and

$$\Gamma_1 = C_0 \cup C_1 = \{(6, B), (12, B), (18, H)\}$$

$$\Gamma_2 = C_2 = \{(3, B), (9, H), (15, H), (21, B)\}$$

<ロト < 目 > < 目 > < 目 > < 目 > < 36/40

	constr		counting and conclusio
		000000000000000000000000000000000000000	

Proof:

- $\left(1\right)$ The classes consist in indistinguishable states
- (2) States belonging to different classes are distinguishable

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Cone
			000000000000000000000000000000000000000	

<ロト < 母 > < E > < E > E のへで 37/40

Basics	Thue-Morse set	Method	Constructive Proof	Counting and (
			000000000000000000000000000000000000000	

<ロト < 昼 ト < 差 ト < 差 ト 差 の へ C 37/40

 Basics
 Thue-Morse set
 Method
 Constructive Proof
 Counting and Conclusion

 0000000
 000
 000
 000
 000

Counting and Conclusion

Classes	Number of such classes
[(j,X)]	2(k-1)
for $(j, X) \in (\{1, \dots, k-1\} \times \{H, B\})$	
[(0, B)]	1
[(0, H)]	1
Γ_{eta}	$\left[\frac{z}{p}\right] - 1$
for $\beta \in \{0, \dots, \left\lceil \frac{z}{p} \right\rceil - 2\}$	
$\left\lceil \sum_{p} \right\rceil - 1$	1
	Total = $2k + \left[\frac{z}{p}\right]$

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
				000

Theorem

Let $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$. Then the state complexity of the language $0^* \operatorname{rep}_{2^p}(m\mathcal{T})$ is equal to

$$2k + \left\lceil \frac{z}{p} \right\rceil$$

if $m = k2^z$ with k odd.

Basics	Thue-Morse set	Method	Constructive Proof	Counting and Conclusion
				000

The state complexity of $6\mathcal{T}$ in base 4 is equal to

$$2.3 + \left\lceil \frac{1}{2} \right\rceil$$

Thank you!

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 40/40