fn＇s

State complexity of the multiples of the Thue－Morse set

Célia Cisternino
Joint work with Émilie Charlier and Adeline Massuir

January 24， 2019

Basics

- Alphabet A, letter $a \in A$, word w
- $\varepsilon,|w|,|w|_{a}$
- Language

Moreover,

- Automaton (DFA) \mathcal{A}
- The language accepted from a state q is denoted by $L(q)$.
- Regular language
- Reduced, accessible, coaccessible

Definition

A DFA is minimal iff it is reduced and accessible.

- Trim minimal

Definition

The state complexity of a regular language is equal to the number of states of its minimal automaton.

Definition

A DFA has disjoint states if, for distinct states p and q, we have $L(p) \cap L(q)=\emptyset$.

Remark

Any coaccessible DFA having disjoint states is reduced.

Let $b \in \mathbb{N}_{\geq 2}, n \in \mathbb{N}$. The Greedy b-representation $\operatorname{rep}_{b}(n)$ of n :

$$
c_{\ell-1} \cdots c_{0}
$$

$c_{i} \in A_{b}:=\{0, \ldots, b-1\}$ such that

$$
n=\sum_{i=0}^{\ell-1} c_{i} b^{i}, \quad c_{\ell-1} \neq 0
$$

- $\operatorname{val}_{b}\left(c_{\ell-1} \cdots c_{0}\right)=n$
- $\operatorname{rep}_{b}(0)=\varepsilon, \operatorname{val}_{b}(\varepsilon)=0$
- $u=u_{1} \cdots u_{n} \in A^{*}, v=v_{1} \cdots v_{n} \in B^{*}$

$$
(u, v)=\left(u_{1}, v_{1}\right) \cdots\left(u_{n}, v_{n}\right) \in(A \times B)^{*}
$$

- Denote $\ell=\max \left\{\left|\operatorname{rep}_{b}\left(n_{1}\right)\right|,\left|\operatorname{rep}_{b}\left(n_{2}\right)\right|\right\}$,

$$
\operatorname{rep}_{b}\left(n_{1}, n_{2}\right)=\left(0^{\ell-\left|\operatorname{rep}_{b}\left(n_{1}\right)\right|} \operatorname{rep}_{b}\left(n_{1}\right), 0^{\ell-\left|\operatorname{rep}_{b}\left(n_{2}\right)\right|} \operatorname{rep}_{b}\left(n_{2}\right)\right) .
$$

Definition

For a base b, a subset X of \mathbb{N} is said to be b-recognizable if the language $\operatorname{rep}_{b}(X)$ is regular.

Definition

For a base b, a subset X of \mathbb{N} is said to be b-recognizable if the language $0^{*} \operatorname{rep}_{b}(X)$ is regular.

Proposition

Let $b \in \mathbb{N}_{>2}$ and $m \in \mathbb{N}$. If X is b-recognizable, then so is $m X$.

Multiplicatively independent integers:

$$
\left(p^{a}=q^{b}\right) \Rightarrow(a=b=0)
$$

Theorem (CobHAM, 1969)

- Let b, b^{\prime} be two multiplicatively independent bases. Then a subset of \mathbb{N} is both b-recognizable and b^{\prime}-reconnaissable if and only if it is a finite union of arithmetic progressions.
- Let b, b^{\prime} be two multiplicatively dependent bases. Then a subset of \mathbb{N} is b-recognizable if and only if it is b^{\prime}-recognizable.

Thue-Morse set

The Thue-Morse set :

$$
\mathcal{T}=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \in 2 \mathbb{N}\right\}
$$

Proposition

The set \mathcal{T} is 2^{p}-recognizable for all $p \in \mathbb{N}_{\geq 1}$ and is not b-recognizable for any other base b.

Proposition

The set \mathcal{T} is 2^{p}-recognizable for all $p \in \mathbb{N}_{\geq 1}$ and is not b-recognizable for any other base b.

Proposition

The set \mathcal{T} is 2^{p}-recognizable for all $p \in \mathbb{N}_{\geq 1}$ and is not b-recognizable for any other base b.

For each $p \in \mathbb{N}_{\geq 1}$, the language $0^{*} \operatorname{rep}_{2^{p}}(\mathcal{T})$ is accepted by the DFA

$$
\left(\{H, B\}, H, H, A_{2^{p}}, \delta\right)
$$

where for all $X \in\{H, B\}$ and all $a \in A_{2^{p}}$,

$$
\delta(X, a):=X_{a}= \begin{cases}X & \text { if } a \in \mathcal{T} \\ \bar{X} & \text { otherwise }\end{cases}
$$

where $\bar{H}=B$ and $\bar{B}=H$.

For each $p \in \mathbb{N}_{\geq 1}$, the language $0^{*} \operatorname{rep}_{2^{p}}(\mathcal{T})$ is accepted by the DFA

$$
\left(\{H, B\}, H, H, A_{2^{p}}, \delta\right)
$$

where for all $X \in\{H, B\}$ and all $a \in A_{2^{p}}$,

$$
\delta(X, a):=X_{a}= \begin{cases}X & \text { if } a \in \mathcal{T} \\ \bar{X} & \text { otherwise }\end{cases}
$$

where $\bar{H}=B$ and $\bar{B}=H$.

For each $p \in \mathbb{N}_{\geq 1}$, the language $0^{*} \operatorname{rep}_{2^{p}}(\mathcal{T})$ is accepted by the DFA

$$
\left(\{H, B\}, H, H, A_{2^{p}}, \delta\right)
$$

where for all $X \in\{H, B\}$ and all $a \in A_{2^{p}}$,

$$
\delta(X, a):=X_{a}= \begin{cases}X & \text { if } a \in \mathcal{T} \\ \bar{X} & \text { otherwise }\end{cases}
$$

where $\bar{H}=B$ and $\bar{B}=H$.

Main Theorem

Lemma

For any $m \in \mathbb{N}$ and $p \in \mathbb{N}_{\geq 1}$, the set $m \mathcal{T}$ is 2^{p}-recognizable.

Theorem

Let $m \in \mathbb{N}$ and $p \in \mathbb{N} \geq 1$. Then the state complexity of the language $0^{*} \operatorname{rep}_{2^{p}}(m \mathcal{T})$ is equal to

$$
2 k+\left\lceil\frac{z}{p}\right\rceil
$$

if $m=k 2^{z}$ with k odd.

Method

- Let $\mathcal{A}_{\mathcal{T}, 2^{p}}$ the DFA accepting

$$
(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, n): t \in \mathcal{T}, n \in \mathbb{N}\right\}
$$

- Let $\mathcal{A}_{m, 2^{p}}$ the DFA accepting

$$
(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(n, m n): n \in \mathbb{N}\right\} .
$$

Consequently, the DFA $A_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}$ accepts

$$
(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, m t): t \in \mathcal{T}\right\}
$$

and $\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)$ accepts

$$
0^{*}\left\{\operatorname{rep}_{2^{p}}(m t): t \in \mathcal{T}\right\}
$$

The state complexity of the multiples of the Thue-Morse set in base 2^{p} is the number of states of the DFA obtained after the minimisation of $\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)$.

The automaton $\mathcal{A}_{\mathcal{T}, 2^{p}}$

Formally, we have

$$
\mathcal{A}_{\mathcal{T}, 2^{p}}=\left(\{H, B\}, H, H, A_{2^{p}} \times A_{2^{p}}, \delta_{\mathcal{T}, 2^{p}}\right)
$$

where, for all $X \in\{H, B\}$ and all $d, e \in A_{2^{p}}$, we have

$$
\delta_{\mathcal{T}, 2^{p}}(X,(d, e)):=X_{d} .
$$

$(0,0),(0,1),(0,2),(0,3)$

 0,3

$(0,0),(0,1),(0,2),(0,3)$
 $(3,0),(3,1),(3,2),(3,3)$

0,3

$(0,0),(0,1),(0,2),(0,3)$ $(3,0),(3,1),(3,2),(3,3)$
 $(1,0),(1,1),(1,2),(1,3)$ 2

 0,3

$(1,0),(1,1),(1,2),(1,3) \quad(1,0),(1,1),(1,2),(1,3)$
$(2,0),(2,1),(2,2),(2,3)(2,0),(2,1),(2,2),(2,3)$
$(0,0),(0,1),(0,2),(0,3)$
$(3,0),(3,1),(3,2),(3,3)$

Lemma

For all $X, Y \in\{H, B\}$ and $(u, v) \in\left(A_{2^{p}} \times A_{2^{p}}\right)^{*}$, we have

$$
\delta_{\mathcal{T}, 2^{p}}(X,(u, v))=Y \quad \Longleftrightarrow \quad Y=X_{\operatorname{val}_{2^{p}}(u)} .
$$

Lemma

The automaton $\mathcal{A}_{\mathcal{T}, 2^{p}}$

- accepts $(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, n): t \in \mathcal{T}, n \in \mathbb{N}\right\}$
- is accessible
- is coaccessible
- has disjoint states
- is trim minimal
- is complete

The automaton $\mathcal{A}_{m, b}$

Formally, we have

$$
\mathcal{A}_{m, b}=\left(\{0, \ldots, m-1\}, 0,0, A_{b} \times A_{b}, \delta_{m, b}\right)
$$

where, for each $i, j \in\{0, \ldots, m-1\}$ and each $d, e \in A_{b}$,

$$
\delta_{m, b}(i,(d, e))=j \quad \Longleftrightarrow \quad b i+e=m d+j .
$$

Lemma

For $i, j \in\{0, \ldots, m-1\}$ and $(u, v) \in\left(A_{b} \times A_{b}\right)^{*}$, we have

$$
\delta_{m, b}(i,(u, v))=j \Longleftrightarrow b^{|(u, v)|} i+\operatorname{val}_{b}(v)=m \operatorname{val}_{b}(u)+j .
$$

For instance, we have

$$
\delta_{6,4}(3,(202,100))=4
$$

because

$$
\begin{aligned}
4^{3} .3+\operatorname{val}_{4}(100) & =208 \\
& =6 \cdot 34+4 \\
& =6 \cdot \operatorname{val}_{4}(202)+4
\end{aligned}
$$

Lemma

The automaton $\mathcal{A}_{m, b}$

- accepts $(0,0)^{*}\left\{\operatorname{rep}_{b}(n, m n): n \in \mathbb{N}\right\}$
- is accessible
- is coaccessible
- has disjoint states
- is trim minimal

Remark: The automaton $\mathcal{A}_{m, b}$ is not complete.

The product automaton $\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}$

$(0,0),(0,1),(0,2),(0,3)$
$(3,0),(3,1),(3,2),(3,3)$

$(1,0),(1,1)$,	$(1,0),(1,1)$,
$(1,2),(1,3)$	$(1,2),(1,3)$
$(2,0),(2,1)$,	$(2,0),(2,1)$,
$(2,2),(2,3)$	$(2,2),(2,3)$

Let

$$
Q=\{(0, H), \ldots,(m-1, H),(0, B), \ldots,(m-1, B)\} .
$$

We have

$$
\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}=\left(Q,(0, H),(0, H), A_{2^{p}} \times A_{2^{p}}, \delta_{\times}\right)
$$

where, for each $i, j \in\{0, \ldots, m-1\}, X, Y \in\{H, B\}$ and each $d, e \in A_{2^{p}}$,

$$
\begin{gathered}
\delta_{\times}((i, X),(d, e))=(j, Y) \\
\Longleftrightarrow \\
2^{p} i+e=m d+j \text { and } Y=X_{d} .
\end{gathered}
$$

Lemma

For $i, j \in\{0, \ldots, m-1\}, X, Y \in\{H, B\}$ and
$(u, v) \in\left(A_{2^{p}} \times A_{2^{p}}\right)^{*}$, we have

$$
\begin{aligned}
& \delta_{\times}((i, X),(u, v))=(j, Y) \\
& \Longleftrightarrow \\
& 2^{p|(u, v)|} i+\operatorname{val}_{2^{p}}(v)=m \operatorname{val}_{2^{p}}(u)+j \text { and } Y=X_{\operatorname{val}_{2^{p}(u)}} .
\end{aligned}
$$

Lemma

The automaton $\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}$

- accepts $(0,0)^{*}\left\{\operatorname{rep}_{2^{p}}(t, m t): t \in \mathcal{T}\right\}$
- is accessible
- is coaccessible
- has disjoint states
- is trim minimal

Remark: The automaton $\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}$ is not complete.

Projection of $\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}$

Let

$$
Q=\{(0, H), \ldots,(m-1, H),(0, B), \ldots,(m-1, B)\}
$$

We have

$$
\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)=\left(Q,(0, H),(0, H), A_{2^{p}}, \delta_{\Pi}\right)
$$

where, for each $i, j \in\{0, \ldots, m-1\}, X, Y \in\{H, B\}$ and each $e \in A_{2^{p}}$,

$$
\delta_{\Pi}((i, X), e)=(j, Y)
$$

$$
\exists d \in A_{2^{p}} \quad: \quad 2^{p} i+e=m d+j \quad \text { and } \quad Y=X_{d} .
$$

Lemma

The automaton $\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)$

- accepts $0^{*}\left\{\operatorname{rep}_{2^{p}}(m t): t \in \mathcal{T}\right\}$
- is deterministic
- is accessible
- is coaccessible
- has disjoint states if m is odd
- is trim minimal if m is odd

Corollary

The state complexity of $m \mathcal{T}$ in base 2^{p} is $2 m$ if m is odd.
In that case,

$$
m=k \quad \text { and } z=0
$$

so

$$
2 m=2 k+\left\lceil\frac{z}{p}\right\rceil .
$$

The question will be solved for even m 's after the minimisation of the DFA $\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)$.

Minimisation of $\Pi_{2}\left(\mathcal{A}_{m, 2^{p}} \times \mathcal{A}_{\mathcal{T}, 2^{p}}\right)$

000000000000000000000000 000000000000000000000000

000000000000000000000000 000000000000000000000000

०००००००००००००००००००००००० ○00000000000000000000000

000000000000000000000000 000000000000000000000000

000000000000000000000000 000000000000000000000000

000000000000000000000000 000000000000000000000000

०००००००००००००००००००००००० ००००००००००००००००००००००००

०००००००००००००००००००००००० ००००००००००००००००००००००००

Description of the classes

Let $m=k .2^{z}$ where $k, z \in \mathbb{N}$ with k odd.
For $(j, X) \in(\{1, \ldots, k-1\} \times\{H, B\}) \cup\{(0, B)\}$, the classe of (j, X) is

$$
[(j, X)]=\left\{\left(j+k \ell, X_{\ell}\right): 0 \leq \ell \leq 2^{z}-1\right\} .
$$

Moreover, the classe of $(0, H)$ is

$$
[(0, H)]=\{(0, H)\} .
$$

For $\alpha \in\{0, \ldots, z-1\}$, we define a pre-classe C_{α} of size 2^{α} :
$C_{\alpha}:=\left[\left(k 2^{z-\alpha-1}, B\right)\right]=\left\{\left(k 2^{z-\alpha-1}+k 2^{z-\alpha} \ell, B_{\ell}\right): 0 \leq \ell \leq 2^{\alpha}-1\right\}$
Then, for all $\beta \in\left\{0, \ldots,\left\lceil\frac{z}{p}\right\rceil-2\right\}$, we define a classe Γ_{β} as follows:

$$
\Gamma_{\beta}:=\bigcup_{\alpha \in\{\beta p, \ldots,(\beta+1) p-1\}} C_{\alpha}
$$

and we set

$$
\Gamma_{\left\lceil\frac{z}{p}\right\rceil-1}:=\bigcup_{\alpha \in\left\{\left(\left\lceil\frac{z}{p}\right\rceil-1\right) p, \ldots, z-1\right\}} C_{\alpha}
$$

000000000000000000000000 000000000000000000000000

In this example $m=3.2^{3}$ and $b=4$.
So, $k=3, z=3, p=2$, and $\left\lceil\frac{z}{p}\right\rceil=2$. We obtain

$$
\begin{aligned}
& C_{0}=\{(12, B)\} \\
& C_{1}=\{(6, B),(18, H)\} \\
& C_{2}=\{(3, B),(9, H),(15, H),(21, B)\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Gamma_{1}=C_{0} \cup C_{1}=\{(6, B),(12, B),(18, H)\} \\
& \Gamma_{2}=C_{2}=\{(3, B),(9, H),(15, H),(21, B)\}
\end{aligned}
$$

Proof:

(1) The classes consist in indistinguishable states
(2) States belonging to different classes are distinguishable

Counting and Conclusion

Classes	Number of such classes
$[(j, X)]$ for $(j, X) \in(\{1, \ldots, k-1\} \times\{H, B\})$	$2(k-1)$
$[(0, B)]$	1
$[(0, H)]$	1
β for $\beta \in\left\{0, \ldots,\left\lceil\frac{z}{p}\right\rceil-2\right\}$	$\left.\left\lvert\, \frac{z}{p}\right.\right\rceil-1$
$\Gamma_{\left\lceil\frac{z}{p}\right\rceil-1}$	1

Theorem

Let $m \in \mathbb{N}$ and $p \in \mathbb{N} \geq 1$. Then the state complexity of the language $0^{*} \operatorname{rep}_{2^{p}}(m \mathcal{T})$ is equal to

$$
2 k+\left\lceil\frac{z}{p}\right\rceil
$$

if $m=k 2^{z}$ with k odd.

The state complexity of $6 \mathcal{T}$ in base 4 is equal to

$$
2.3+\left\lceil\frac{1}{2}\right\rceil .
$$

Thank you!

