Computing the k-binomial complexity of the Thue-Morse word

LIĖGE université

January 17, 2019
Marie Lejeune (FNRS grantee)

Plan
(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{t}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Plan

(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{t}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Definition

A morphism on the alphabet A is an application

$$
\sigma: A^{*} \rightarrow A^{*}
$$

such that, for every word $u=u_{1} \cdots u_{n} \in A^{*}$,

$$
\sigma(u)=\sigma\left(u_{1}\right) \cdots \sigma\left(u_{n}\right)
$$

Definition

A morphism on the alphabet A is an application

$$
\sigma: A^{*} \rightarrow A^{*}
$$

such that, for every word $u=u_{1} \cdots u_{n} \in A^{*}$,

$$
\sigma(u)=\sigma\left(u_{1}\right) \cdots \sigma\left(u_{n}\right)
$$

If there exists a letter $a \in A$ such that $\sigma(a)$ begins by a, and if $\lim _{n \rightarrow+\infty}\left|\sigma^{n}(a)\right|=+\infty$, then one can define

$$
\sigma^{\omega}(a)=\lim _{n \rightarrow+\infty} \sigma^{n}(a)
$$

This word is called a fixed point of the morphism σ.

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01=0 \overline{0} \\
1 \mapsto 10=1 \overline{1}
\end{array}\right.
$$

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01=0 \overline{0} ; \\
1 \mapsto 10=1 \overline{1} .
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01 \\
\varphi^{2}(0) & =0110 \\
\varphi^{3}(0) & =01101001
\end{aligned}
$$

Example (Thue-Morse)

Let us define the Thue-Morse morphism

$$
\varphi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}:\left\{\begin{array}{l}
0 \mapsto 01=0 \overline{0} \\
1 \mapsto 10=1 \overline{1}
\end{array}\right.
$$

We have

$$
\begin{aligned}
\varphi(0) & =01 \\
\varphi^{2}(0) & =0110 \\
\varphi^{3}(0) & =01101001
\end{aligned}
$$

We can thus define the Thue-Morse word as one of the fixed points of the morphism φ :

$$
\mathbf{t}:=\varphi^{\omega}(0)=0110100110010110 \cdots
$$

Remark

Since \mathbf{t} is a fixed point of φ, we have

$$
\mathbf{t}=\varphi(\mathbf{t})=\varphi^{2}(\mathbf{t})=\varphi^{3}(\mathbf{t})=\cdots
$$

Hence, every factor of \mathbf{t} can be written as

$$
p \varphi^{k}(z) s,
$$

where $k \geq 1, p$ (resp., s) is a proper suffix (resp., prefix) of one of the words in $\left\{\varphi^{k}(0), \varphi^{k}(1)\right\}$, and z is also a factor of \mathbf{t}.

Plan

(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{t}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Let w be an infinite word. A complexity function of w is an application linking every nonnegative integer n with length- n factors of w.

Let w be an infinite word. A complexity function of w is an application linking every nonnegative integer n with length $-n$ factors of w.

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Let w be an infinite word. A complexity function of w is an application linking every nonnegative integer n with length $-n$ factors of w.

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example

Let $u=0102010$.
The word 021 is a subword of u, but it is not a factor of u.

Let w be an infinite word. A complexity function of w is an application linking every nonnegative integer n with length- n factors of w.

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example

Let $u=0102010$.
The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.

Let w be an infinite word. A complexity function of w is an application linking every nonnegative integer n with length- n factors of w.

Definition

Let $u=u_{1} \cdots u_{m} \in A^{m}$ be a word ($m \in \mathbb{N}^{+} \cup\{\infty\}$).
A (scattered) subword of u is a finite subsequence of the sequence $\left(u_{j}\right)_{j=1}^{m}$.
A factor of u is a subword made with consecutive letters.
Otherwise stated, every (non empty) factor of u is of the form $u_{i} u_{i+1} \cdots u_{i+\ell}$, with $1 \leq i \leq m, 0 \leq \ell \leq m-i$.

Example
 Let $u=0102010$.

The word 021 is a subword of u, but it is not a factor of u.
The word 0201 is a factor of u, thus also a subword of u.
Let $\binom{u}{x}$ denote the number of times x appears as a subword in u and $|u|_{x}$ the number of times it appears as a factor in u.

The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.
Definition
The factor complexity of the word w is the function

$$
p_{w}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \# \operatorname{Fac}_{w}(n) .
$$

The simplest complexity function is the following. Here, $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

The factor complexity of the word w is the function

$$
p_{w}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{w}(n) / \sim_{=}\right),
$$

where $u \sim=v \Leftrightarrow u=v$.

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have $\mathbf{t}=0110100110010110 \cdots$

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1				

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2			

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2	4		

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2	4	6	

Example

Let us compute the first values of the Thue-Morse's factor complexity. We have

$$
\mathbf{t}=0110100110010110 \cdots
$$

and

n	0	1	2	3	\cdots
$p_{\mathbf{t}}(n)$	1	2	4	6	\cdots

Then, for every $n \geq 3$, it is known that

$$
p_{\mathbf{t}}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4, & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m} \\ 2 n+4 \cdot 2^{m}-2, & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m}\end{cases}
$$

Different equivalence relations from $\sim=$ can be considered :

- Abelian equivalence : $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$

Different equivalence relations from $\sim_{=}$can be considered : If $k \in \mathbb{N}^{+}$,

- Abelian equivalence : $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence : $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$

Different equivalence relations from $\sim_{=}$can be considered : If $k \in \mathbb{N}^{+}$,

- Abelian equivalence : $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence : $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence : $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

Different equivalence relations from $\sim_{=}$can be considered :
If $k \in \mathbb{N}^{+}$,

- Abelian equivalence : $u \sim_{a b, 1} v \Leftrightarrow|u|_{a}=|v|_{a} \forall a \in A$
- k-abelian equivalence : $u \sim_{a b, k} v \Leftrightarrow|u|_{x}=|v|_{x} \forall x \in A^{\leq k}$
- k-binomial equivalence : $u \sim_{k} v \Leftrightarrow\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k}$

We will most of the time deal with the last one.

Plan

(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{t}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=?
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=$ aababa,

$$
\binom{u}{a b}=1 .
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=2 .
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=3 .
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=4
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=5 .
$$

Definition (Reminder)

Let u and x be two words. The binomial coefficient $\binom{u}{x}$ is the number of times that x appears as a subword in u.

Example

If $u=a a b a b a$,

$$
\binom{u}{a b}=5 .
$$

Definition (Reminder)
Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=1=\binom{v}{a} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a} \text {. }
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=1=\binom{v}{b} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=2=\binom{v}{b} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=3=\binom{v}{b} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a} .
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=1=\binom{v}{a b} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=2=\binom{v}{a b} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=3=\binom{v}{a b} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
& \binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
& \binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
&\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
&\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=1=\binom{v}{b a} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=2=\binom{v}{b a} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=3=\binom{v}{b a} .
\end{aligned}
$$

Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x} \forall x \in A^{\leq k} .
$$

Example

The words $u=b b a a b b$ and $v=b a b b a b$ are 2-binomially equivalent. Indeed,

$$
\begin{aligned}
\binom{u}{a}=2=\binom{v}{a},\binom{u}{b}=4=\binom{v}{b},\binom{u}{a a}=1=\binom{v}{a a}, \\
\binom{u}{b b}=6=\binom{v}{b b},\binom{u}{a b}=4=\binom{v}{a b},\binom{u}{b a}=4=\binom{v}{b a} .
\end{aligned}
$$

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Proposition

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Proposition

For all words u, v and for every nonnegative integer k,

$$
u \sim_{k+1} v \Rightarrow u \sim_{k} v
$$

Proposition

For all words u, v,

$$
u \sim_{1} v \Leftrightarrow u \sim_{a b, 1} v .
$$

Definition (Reminder)

The words u and v are 1-abelian equivalent if

$$
\binom{u}{a}=|u|_{a}=|v|_{a}=\binom{v}{a} \forall a \in A .
$$

Definition

If w is an infinite word, we can define the function

$$
\mathbf{b}_{w}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{w}(n) / \sim_{k}\right),
$$

which is called the k-binomial complexity of w.

Definition

If w is an infinite word, we can define the function

$$
\mathbf{b}_{w}^{(k)}: \mathbb{N} \rightarrow \mathbb{N}: n \mapsto \#\left(\operatorname{Fac}_{w}(n) / \sim_{k}\right)
$$

which is called the k-binomial complexity of w.

Example

For the Thue-Morse word \mathbf{t}, we have $\mathbf{b}_{\mathbf{t}}^{(1)}(0)=1$ and, for every $n \geq 1$,

$$
\mathbf{b}_{\mathbf{t}}^{(1)}(n)= \begin{cases}3, & \text { if } n \equiv 0 \quad(\bmod 2) \\ 2, & \text { otherwise }\end{cases}
$$

Example (proof)

- If $n=2 \ell$, every factor of \mathbf{t} is of the form $\varphi(z)$ (with $z \in \operatorname{Fac}_{\mathbf{t}}(\ell)$) or of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{\mathbf{t}}(\ell-1)$:

$$
0 \varphi\left(z^{\prime}\right) 0,0 \varphi\left(z^{\prime}\right) 1,1 \varphi\left(z^{\prime}\right) 0,1 \varphi\left(z^{\prime}\right) 1
$$

Example (proof)

- If $n=2 \ell$, every factor of \mathbf{t} is of the form $\varphi(z)$ (with $z \in \operatorname{Fac}_{\mathbf{t}}(\ell)$) or of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{\mathbf{t}}(\ell-1)$:

$$
0 \varphi\left(z^{\prime}\right) 0,0 \varphi\left(z^{\prime}\right) 1,1 \varphi\left(z^{\prime}\right) 0,1 \varphi\left(z^{\prime}\right) 1
$$

We have

$$
\begin{aligned}
& \binom{\varphi(z)}{0}=\binom{0 \varphi\left(z^{\prime}\right) 1}{0}=\binom{1 \varphi\left(z^{\prime}\right) 0}{0}=\ell \\
& \binom{0 \varphi\left(z^{\prime}\right) 0}{0}=\ell+1 \quad \text { and } \quad\binom{1 \varphi\left(z^{\prime}\right) 1}{0}=\ell-1
\end{aligned}
$$

Example (proof)

- If $n=2 \ell$, every factor of \mathbf{t} is of the form $\varphi(z)$ (with $z \in \operatorname{Fac}_{\mathbf{t}}(\ell)$) or of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{\mathbf{t}}(\ell-1)$:

$$
0 \varphi\left(z^{\prime}\right) 0,0 \varphi\left(z^{\prime}\right) 1,1 \varphi\left(z^{\prime}\right) 0,1 \varphi\left(z^{\prime}\right) 1
$$

We have

$$
\begin{aligned}
& \binom{\varphi(z)}{0}=\binom{0 \varphi\left(z^{\prime}\right) 1}{0}=\binom{1 \varphi\left(z^{\prime}\right) 0}{0}=\ell \\
& \binom{0 \varphi\left(z^{\prime}\right) 0}{0}=\ell+1 \quad \text { and } \quad\binom{1 \varphi\left(z^{\prime}\right) 1}{0}=\ell-1
\end{aligned}
$$

hence $\mathbf{b}_{\mathbf{t}}^{(1)}(n)=3$.

Example (proof)

- If $n=2 \ell-1$, every factor of \mathbf{t} is of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{t}(\ell-1):$

$$
0 \varphi\left(z^{\prime}\right), 1 \varphi\left(z^{\prime}\right), \varphi\left(z^{\prime}\right) 0, \varphi\left(z^{\prime}\right) 1
$$

Example (proof)

- If $n=2 \ell-1$, every factor of \mathbf{t} is of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{t}(\ell-1):$

$$
0 \varphi\left(z^{\prime}\right), 1 \varphi\left(z^{\prime}\right), \varphi\left(z^{\prime}\right) 0, \varphi\left(z^{\prime}\right) 1
$$

We have

$$
\begin{aligned}
& \binom{0 \varphi\left(z^{\prime}\right)}{0}=\binom{\varphi\left(z^{\prime}\right) 0}{0}=\ell \\
& \binom{1 \varphi\left(z^{\prime}\right)}{0}=\binom{\varphi\left(z^{\prime}\right) 1}{0}=\ell-1
\end{aligned}
$$

Example (proof)

- If $n=2 \ell-1$, every factor of \mathbf{t} is of one of the following forms, where $z^{\prime} \in \operatorname{Fac}_{t}(\ell-1):$

$$
0 \varphi\left(z^{\prime}\right), 1 \varphi\left(z^{\prime}\right), \varphi\left(z^{\prime}\right) 0, \varphi\left(z^{\prime}\right) 1
$$

We have

$$
\begin{aligned}
& \binom{0 \varphi\left(z^{\prime}\right)}{0}=\binom{\varphi\left(z^{\prime}\right) 0}{0}=\ell \\
& \binom{1 \varphi\left(z^{\prime}\right)}{0}=\binom{\varphi\left(z^{\prime}\right) 1}{0}=\ell-1
\end{aligned}
$$

hence $\mathbf{b}_{\mathbf{t}}^{(1)}(n)=2$.

Plan
(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{t}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

We have an order relation between the different complexity functions.

Proposition

$$
\rho_{w}^{a b}(n) \leq \mathbf{b}_{w}^{(k)}(n) \leq \mathbf{b}_{w}^{(k+1)}(n) \leq p_{w}(n) \quad \forall n \in \mathbb{N}, k \in \mathbb{N}^{+}
$$

where $\rho_{w}^{a b}$ is the abelian complexity function of the word w.

We have an order relation between the different complexity functions.

Proposition

$$
\rho_{w}^{a b}(n) \leq \mathbf{b}_{w}^{(k)}(n) \leq \mathbf{b}_{w}^{(k+1)}(n) \leq p_{w}(n) \quad \forall n \in \mathbb{N}, k \in \mathbb{N}^{+}
$$

where $\rho_{w}^{a b}$ is the abelian complexity function of the word w.
Moreover, a lot of properties about the factor complexity are known.

Theorem (Morse-Hedlund)

Let w be an infinite word on an ℓ-letter alphabet. The three following assertions are equivalent.
(1) The word w is ultimately periodic : there exist finite words u and v such that $w=u \cdot v^{\omega}$.
(2) There exists $n \in \mathbb{N}$ such that $p_{w}(n)<n+\ell-1$.
(3) The function p_{w} is bounded by a constant.

One natural application of the previous theorem is to define aperiodic words with the minimal factor complexity.

Definition

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

One natural application of the previous theorem is to define aperiodic words with the minimal factor complexity.

Definition

A Sturmian word is an infinite word having, as factor complexity, $p(n)=n+1$ for all $n \in \mathbb{N}$.

Let w be a Sturmian word. We have, for every $n \geq 2$,

$$
n<p_{w}(n)<p_{\mathbf{t}}(n) .
$$

However, results are quite different when regarding the k-binomial complexity function.

Theorem (M. Rigo, P. Salimov)

Let w be a Sturmian word. We have $\mathbf{b}_{w}^{(2)}(n)=p_{w}(n)=n+1$.
Thus, since $\mathbf{b}_{w}^{(k)}(n) \leq \mathbf{b}_{w}^{(k+1)}(n) \leq p_{w}(n)$, we obtain

$$
\mathbf{b}_{w}^{(k)}(n)=p_{w}(n)
$$

for every $k \geq 2$ and for every $n \in \mathbb{N}$.

Theorem (M. Rigo, P. Salimov)

Let w be a Sturmian word. We have $\mathbf{b}_{w}^{(2)}(n)=p_{w}(n)=n+1$.
Thus, since $\mathbf{b}_{w}^{(k)}(n) \leq \mathbf{b}_{w}^{(k+1)}(n) \leq p_{w}(n)$, we obtain

$$
\mathbf{b}_{w}^{(k)}(n)=p_{w}(n)
$$

for every $k \geq 2$ and for every $n \in \mathbb{N}$.
This is not the case for the Thue-Morse word.
Theorem (M. Rigo, P. Salimov)
For every $k \geq 1$, there exists a constant $C_{k}>0$ such that, for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n) \leq C_{k}
$$

This result holds for every infinite word which is a fixed point of a Parikh-constant morphism.

This result holds for every infinite word which is a fixed point of a Parikh-constant morphism.

Definition

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is Parikh-constant if, for all $a, b, c \in A$, $|\sigma(a)|_{c}=|\sigma(b)|_{c}$. Otherwise stated, images of the different letters have to be equal up to a permutation.

This result holds for every infinite word which is a fixed point of a Parikh-constant morphism.

Definition

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is Parikh-constant if, for all $a, b, c \in A$, $|\sigma(a)|_{c}=|\sigma(b)|_{c}$. Otherwise stated, images of the different letters have to be equal up to a permutation.

Example

The morphism

$$
\sigma:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}:\left\{\begin{array}{rll}
0 & \mapsto & 0112 \\
1 & \mapsto & 1201 \\
2 & \mapsto & 1120
\end{array}\right.
$$

is Parikh-constant.

Theorem (M. L., J. Leroy, M. Rigo)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Theorem (M. L., J. Leroy, M. Rigo)
Let k be a positive integer. For every $n \leq 2^{k}-1$, we have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)
$$

while for every $n \geq 2^{k}$,

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)= \begin{cases}3 \cdot 2^{k}-3, & \text { if } n \equiv 0 \quad\left(\bmod 2^{k}\right) \\ 3 \cdot 2^{k}-4, & \text { otherwise }\end{cases}
$$

Cases where $k=1$ or $k=2$ can be computed by hand. We will thus assume that $k \geq 3$.

Plan
(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Plan

(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

All our reasonings need to compute certain binomial coefficients explicitely. We thus need some tools.

All our reasonings need to compute certain binomial coefficients explicitely. We thus need some tools.

Proposition

Let u, v be some finite words over A and let a, b be letters of A. We have

$$
\binom{u a}{v b}=\binom{u}{v b}+\delta_{a, b}\binom{u}{v},
$$

where $\delta_{a, b}$ equals 1 if $a=b, 0$ otherwise.

All our reasonings need to compute certain binomial coefficients explicitely. We thus need some tools.

Proposition

Let u, v be some finite words over A and let a, b be letters of A. We have

$$
\binom{u a}{v b}=\binom{u}{v b}+\delta_{a, b}\binom{u}{v}
$$

where $\delta_{a, b}$ equals 1 if $a=b, 0$ otherwise.

Proposition

Let u, u^{\prime} be some finite words over A, and let $v=v_{1} \cdots v_{m}$ be a word in A^{*}. We have

$$
\binom{u u^{\prime}}{v}=\sum_{j=0}^{m}\binom{u}{v_{1} \cdots v_{j}}\binom{u^{\prime}}{v_{j+1} \cdots v_{m}}
$$

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=
$$

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1
$$

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1+\binom{\varphi^{3}(011)}{1}
$$

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1+\binom{\varphi^{3}(011)}{1}+\binom{\varphi^{3}(011)}{0}
$$

Example

Let us first illustrate the computation of a coefficient $\binom{\rho \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1+\binom{\varphi^{3}(011)}{1}+\binom{\varphi^{3}(011)}{0}+\binom{\varphi^{3}(011)}{01} .
$$

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1+\binom{\varphi^{3}(011)}{1}+\binom{\varphi^{3}(011)}{0}+\binom{\varphi^{3}(011)}{01}
$$

How could we compute coefficients of the form $\binom{\varphi(u)}{v}$ and, more generally, $\binom{\varphi^{\ell}(u)}{v}$?

Example

Let us first illustrate the computation of a coefficient $\binom{p \varphi^{k}(z) s}{v}$ on an example.

$$
\binom{0 \varphi^{3}(011) 1}{01}=1+\binom{\varphi^{3}(011)}{1}+\binom{\varphi^{3}(011)}{0}+\binom{\varphi^{3}(011)}{01} .
$$

How could we compute coefficients of the form $\binom{\varphi(u)}{v}$ and, more generally, $\binom{\varphi^{e}(u)}{v}$?
Each time a factor 01 or 10 occurs in v, either we can see it appearing in $\varphi(u)$ as the image of a unique letter of u, or we can see it appearing as a subword of the image of two different letters of u.
We will thus study the different factorizations of v.

Definition : φ-factorization

Let v be a finite word over $A=\{0,1\}$. If v contains at least one factor in $\{01,10\}$, it can be factorized as follows:

$$
\begin{aligned}
v & =w_{0} a_{1} \overline{a_{1}} w_{1} \cdots w_{\ell-1} a_{\ell} \overline{a_{\ell}} w_{\ell} \\
& =w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}
\end{aligned}
$$

where $\ell \geq 1, a_{1}, \ldots, a_{\ell} \in A$ and $w_{0}, \ldots w_{\ell} \in A^{*}$.

Definition : φ-factorization

Let v be a finite word over $A=\{0,1\}$. If v contains at least one factor in $\{01,10\}$, it can be factorized as follows :

$$
\begin{aligned}
v & =w_{0} a_{1} \overline{\bar{a}_{1}} w_{1} \cdots w_{\ell-1} a_{\ell} \overline{\bar{a}_{\ell}} w_{\ell} \\
& =w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}
\end{aligned}
$$

where $\ell \geq 1, a_{1}, \ldots, a_{\ell} \in A$ and $w_{0}, \ldots w_{\ell} \in A^{*}$.
This factorization is called a φ-factorization of v and is coded by the tuple

$$
\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots,\left|w_{0} \varphi\left(a_{1}\right) w_{1} \ldots \varphi\left(a_{\ell-1}\right) w_{\ell-1}\right|\right) .
$$

The set of all tuples coding φ-factorizations of v is denoted by φ - $\operatorname{Fac}(v)$.

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following. 01101

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following.

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following.

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following.

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following.

Example

Let $v=01101$. The tree of all φ-factorizations of v is the following.

Let us illustrate the computation of $\binom{\varphi(u)}{v}$ on an example. Let us compute $\binom{\varphi(01101001)}{01101}$.

Let us illustrate the computation of $\binom{\varphi(u)}{v}$ on an example. Let us compute $\binom{\varphi(01101001)}{01101}$.

$$
\binom{\varphi(01101001)}{01101}=\binom{|u|}{5}
$$

- The 5 letters of v come from 5 different letters of u. This case could correspond to the trivial factorization $\kappa=()$.

Let us illustrate the computation of $\binom{\varphi(u)}{v}$ on an example. Let us compute $\binom{\varphi(01101001)}{01101}$.

$$
\binom{\varphi(01101001)}{(01) 101}=\binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}
$$

- The 5 letters of v come from 5 different letters of u. This case could correspond to the trivial factorization $\kappa=()$.
- The two first letters of v come from the image (by φ) of a letter 0 in u, while the three last ones come from three different letters of u. This case corresponds to $\kappa=(0)$.

Let us illustrate the computation of $\binom{\varphi(u)}{v}$ on an example. Let us compute $\binom{\varphi(01101001)}{01101}$.

$$
\binom{\varphi(01101001)}{01(10) 1}=\binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}}
$$

- The 5 letters of v come from 5 different letters of u. This case could correspond to the trivial factorization $\kappa=()$.
- The two first letters of v come from the image (by φ) of a letter 0 in u, while the three last ones come from three different letters of u. This case corresponds to $\kappa=(0)$.
- Letters v_{3} and v_{4} come from a block $\varphi(1)$ while the three other ones come from different letters of u. The associated factorization is $\kappa=(2)$.

$$
\begin{aligned}
\binom{\varphi(01101001)}{011(01)}= & \binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}
\end{aligned}
$$

- Letters v_{4} and v_{5} come from a block $\varphi(0)$ in u, which corresponds to the factorization $\kappa=(3)$.

$$
\begin{aligned}
\binom{\varphi(01101001)}{(01)(10) 1}= & \binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}
\end{aligned}
$$

- Letters v_{4} and v_{5} come from a block $\varphi(0)$ in u, which corresponds to the factorization $\kappa=(3)$.
- Letters v_{1} and v_{2} come from a block $\varphi(0)$ while v_{3} and v_{4} come from $\varphi(1)$. The associated factorization is $\kappa=(0,2)$.

$$
\begin{aligned}
\binom{\varphi(01101001)}{(01) 1(01)}= & \binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0}
\end{aligned}
$$

- Letters v_{4} and v_{5} come from a block $\varphi(0)$ in u, which corresponds to the factorization $\kappa=(3)$.
- Letters v_{1} and v_{2} come from a block $\varphi(0)$ while v_{3} and v_{4} come from $\varphi(1)$. The associated factorization is $\kappa=(0,2)$.
- Letters v_{1} and v_{2} come from a block $\varphi(0)$, exactly like v_{4} and v_{5}. The associated factorization is $\kappa=(0,3)$.

We will associate to every φ-factorization $\kappa \in \varphi-\operatorname{Fac}(v)$ of the form

$$
w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}
$$

the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \cdots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|},
$$

in such a way that $v=w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ (factorized in this way) can be seen in any $\varphi(z)$, where $z \in \mathcal{L}(v, \kappa)$.

We will associate to every φ-factorization $\kappa \in \varphi-\operatorname{Fac}(v)$ of the form

$$
w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}
$$

the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \cdots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|},
$$

in such a way that $v=w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ (factorized in this way) can be seen in any $\varphi(z)$, where $z \in \mathcal{L}(v, \kappa)$.

We then define

$$
f(v)=\biguplus_{\kappa \in \varphi-\operatorname{Fac}(v)} \mathcal{L}(v, \kappa)
$$

if φ-Fac(v) contains at least one (non trivial) factorization. Otherwise, $f(v)=\emptyset$.
The union \biguplus has to be considered as a multiset union, where the multiplicities of an element are summed up.

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
f(01101)=\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) .
$$

Reminder

To every φ-factorization of the form $w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ coded by $\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots\right)$, we associate the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \ldots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|} .
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f((01) 101) & =\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
& =0 A^{3}
\end{aligned}
$$

Reminder

To every φ-factorization of the form $w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ coded by $\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots\right)$, we associate the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \ldots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|} .
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f(01(10) 1) & =\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
& =0 A^{3} \uplus A^{2} 1 A
\end{aligned}
$$

Reminder

To every φ-factorization of the form $w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ coded by $\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots\right)$, we associate the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \ldots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|} .
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f(011(01)) & =\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
& =0 A^{3} \uplus A^{2} 1 A \uplus A^{3} 0
\end{aligned}
$$

Reminder

To every φ-factorization of the form $w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ coded by $\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots\right)$, we associate the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \ldots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|} .
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f((01)(10) 1) & =\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
& =0 A^{3} \uplus A^{2} 1 A \uplus A^{3} 0 \uplus 01 A
\end{aligned}
$$

Reminder

To every φ-factorization of the form $w_{0} \varphi\left(a_{1}\right) w_{1} \cdots w_{\ell-1} \varphi\left(a_{\ell}\right) w_{\ell}$ coded by $\kappa=\left(\left|w_{0}\right|,\left|w_{0} \varphi\left(a_{1}\right) w_{1}\right|, \ldots\right)$, we associate the language

$$
\mathcal{L}(v, \kappa):=A^{\left|w_{0}\right|} a_{1} A^{\left|w_{1}\right|} \ldots A^{\left|w_{\ell-1}\right|} a_{\ell} A^{\left|w_{\ell}\right|} .
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f((01) 1(01)) & =\mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
& =0 A^{3} \uplus A^{2} 1 A \uplus A^{3} 0 \uplus 01 A \uplus 0 A 0 .
\end{aligned}
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f(01101)= & \mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
= & 0 A^{3} \uplus A^{2} 1 A \uplus A^{3} 0 \uplus 01 A \uplus 0 A 0 \\
= & \left\{0000_{2}, 0001_{1}, 0010_{3}, 0011_{2}, 0100_{2}, 0101_{1}, 0110_{3}, 0111_{2},\right. \\
& \left.1010_{2}, 1011_{1}, 1110_{2}, 1111_{1}, 1000_{2}, 1100_{2}, 010_{2}, 011_{1}, 000_{1}\right\} .
\end{aligned}
$$

Example (continuing)

Let $v=01101$; we had

$$
\varphi-\operatorname{Fac}(v)=\{(0),(2),(3),(0,2),(0,3)\}
$$

and we thus obtain

$$
\begin{aligned}
f(01101)= & \mathcal{L}(v,(0)) \uplus \mathcal{L}(v,(2)) \uplus \mathcal{L}(v,(3)) \uplus \mathcal{L}(v,(0,2)) \uplus \mathcal{L}(v,(0,3)) \\
= & 0 A^{3} \uplus A^{2} 1 A \uplus A^{3} 0 \uplus 01 A \uplus 0 A 0 \\
= & \left\{0000_{2}, 0001_{1}, 0010_{3}, 0011_{2}, 0100_{2}, 0101_{1}, 0110_{3}, 0111_{2},\right. \\
& \left.1010_{2}, 1011_{1}, 1110_{2}, 1111_{1}, 1000_{2}, 1100_{2}, 010_{2}, 011_{1}, 000_{1}\right\} .
\end{aligned}
$$

We can now state the formal proposition.

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y} .
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

We computed

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0}
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{z \in A^{3}}\binom{u}{0 z}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in 0 A^{3}}\binom{u}{y}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{z \in A^{2}, z^{\prime} \in A}\binom{u}{z 1 z^{\prime}} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{u \mid}{ 5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in A^{2} 1 A}\binom{u}{y} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{u \mid}{ 5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{u \mid}{ 5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{z \in A^{3}}\binom{u}{z 0}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have
$\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y}$.

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{u \mid}{ 5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in A^{30}}\binom{u}{y}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{z \in A}\binom{u}{01 z}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{y \in 01 A}\binom{u}{y}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(0,2))}\binom{u}{y}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(0,2))}\binom{u}{y}+\sum_{z \in A}\binom{u}{0 z 0} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\begin{aligned}
\binom{\varphi(01101001)}{01101}= & \binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y} \\
& +\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(0,2))}\binom{u}{y}+\sum_{y \in 0 A 0}\binom{u}{y} .
\end{aligned}
$$

Proposition

For all finite words u and v, we have

$$
\binom{\varphi(u)}{v}=\binom{|u|}{|v|}+\sum_{\kappa \in \varphi-\operatorname{Fac}(v)} \sum_{y \in \mathcal{L}(v, \kappa)}\binom{u}{y}=\binom{|u|}{|v|}+\sum_{y \in f(v)} m_{f(v)}(y)\binom{u}{y} .
$$

Example (continuing)

$$
\binom{\varphi(01101001)}{01101}=\binom{|u|}{5}+\sum_{y \in \mathcal{L}(v,(0))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(2))}\binom{u}{y}
$$

$$
+\sum_{y \in \mathcal{L}(v,(3))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(0,2))}\binom{u}{y}+\sum_{y \in \mathcal{L}(v,(0,3))}\binom{u}{y} .
$$

Applying several times the previous proposition, we can obtain a formula allowing us to compute coefficients of the form $\binom{\varphi^{\ell}(u)}{v}$.

Proposition

For all finite words u, v and for all $\ell \geq 1$, we have

$$
\binom{\varphi^{\ell}(u)}{v}=\sum_{i=0}^{\ell-1} \sum_{y \in f^{i}(v)} m_{f^{i}(v)}(y)\binom{\left|\varphi^{\ell-i-1}(u)\right|}{|v|}+\sum_{y \in f^{\ell}(v)} m_{f^{\ell}(v)}(y)\binom{u}{y} .
$$

Applying several times the previous proposition, we can obtain a formula allowing us to compute coefficients of the form $\binom{\varphi^{\ell}(u)}{v}$.

Proposition

For all finite words u, v and for all $\ell \geq 1$, we have

$$
\binom{\varphi^{\ell}(u)}{v}=\sum_{i=0}^{\ell-1} \sum_{y \in f^{i}(v)} m_{f^{i}(v)}(y)\binom{\left|\varphi^{\ell-i-1}(u)\right|}{|v|}+\sum_{y \in f^{\ell}(v)} m_{f^{\ell}(v)}(y)\binom{u}{y} .
$$

Corollary

If u and u^{\prime} are two finite words of the same length, then, for every finite word v, we have

$$
\binom{\varphi^{\ell}(u)}{v}-\binom{\varphi^{\ell}\left(u^{\prime}\right)}{v}=\sum_{y \in f^{\ell}(v)} m_{f^{\ell}(v)}(y)\left[\binom{u}{y}-\binom{u^{\prime}}{y}\right] .
$$

Plan

（1）Preliminary definitions

－Morphisms and the Thue－Morse word
－Complexity functions
－k－binomial complexity
（2）Why to compute $\mathbf{b}_{t}^{(k)}$ ？
（3）Computing the function $\mathbf{b}_{\mathbf{t}}^{(k)}$
－Binomial coefficients of（iterated）images
－Factorizations of order k
－Types of order k

How could we compute $\mathbf{b}_{\mathbf{t}}^{(k)}(n)$? We have to look, for each pair of words $u, v \in \operatorname{Fac}_{n}(\mathbf{t})$, if $u \sim_{k} v$ or not. Recall that every factor u of t can be written as

$$
p \varphi^{k}(z) s
$$

How could we compute $\mathbf{b}_{\mathbf{t}}^{(k)}(n)$? We have to look, for each pair of words $u, v \in \operatorname{Fac}_{n}(\mathbf{t})$, if $u \sim_{k} v$ or not.
Recall that every factor u of t can be written as

$$
p \varphi^{k}(z) s
$$

Definition : factorization of order k

Let $u \in \operatorname{Fac}(\mathbf{t})$. If there exist $(p, s) \in A^{<2^{k}} \times A^{<2^{k}}, a, b \in A$ and $z \in \operatorname{Fac}(\mathbf{t})$ such that

- $u=p \varphi^{k}(z) s$;
- p is a proper suffix of $\varphi^{k}(a)$;
- s is a proper prefix of $\varphi^{k}(b)$;
then (p, s) is called a factorization of order k of u while the triple (a, z, b) is called a desubstitution of order k of u.

Is this writing unique?

Is this writing unique?
No : the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Is this writing unique?
No : the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Proposition

Let u be a factor of t of length at least $2^{k}-1$. The word u has exactly two different factorizations of order k if and only if it is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$.

Is this writing unique?
No : the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Proposition

Let u be a factor of t of length at least $2^{k}-1$. The word u has exactly two different factorizations of order k if and only if it is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$. Otherwise, it has a unique factorization of order k.

Is this writing unique?
No : the word 010 appears as a factor of \mathbf{t} several times; it can be factorized as $0 \varphi(1)$ or as $\varphi(0) 0$.

$$
\mathbf{t}=01 \cdot 10 \cdot 10 \cdot 01 \cdot 10 \cdot 01 \cdot 01 \cdot 10 \cdots
$$

Proposition

Let u be a factor of t of length at least $2^{k}-1$. The word u has exactly two different factorizations of order k if and only if it is a factor of $\varphi^{k-1}(010)$ or $\varphi^{k-1}(101)$. Otherwise, it has a unique factorization of order k. Moreover, if u has two factorizations (p, s) and $\left(p^{\prime}, s^{\prime}\right)$, we have $\left||p|-\left|p^{\prime}\right|\right|=\left||s|-\left|s^{\prime}\right|\right|=2^{k-1}$.

Because we will use this result, we will only consider words of length at least $2^{k}-1$.

Exemple

Let us consider the factor $u=01001011$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 . \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Exemple

Let us consider the factor $u=01001011$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 . \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two factorizations of order 3 of u.

Exemple

Let us consider the factor $u=01001011$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two factorizations of order 3 of u. Their associated desubstitutions are $(1, \varepsilon, 1)$ and $(0, \varepsilon, 0)$.

Exemple

Let us consider the factor $u=01001011$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two factorizations of order 3 of u. Their associated desubstitutions are $(1, \varepsilon, 1)$ and $(0, \varepsilon, 0)$.
Observe that

$$
(0,1001011)=\left(0, \varphi^{2}(1) 011\right)
$$

and

$$
(01001,011)=\left(0 \varphi^{2}(1), 011\right)
$$

Exemple

Let us consider the factor $u=01001011$.

$$
\begin{aligned}
\mathbf{t}=\varphi^{3}(\mathbf{t})= & 01101001 \cdot 10010110 \cdot 10010110 \cdot 01101001 \\
& 10010110 \cdot 01101001 \cdot 01101001 \cdots
\end{aligned}
$$

Hence, $(0,1001011)$ and $(01001,011)$ are the two factorizations of order 3 of u. Their associated desubstitutions are $(1, \varepsilon, 1)$ and $(0, \varepsilon, 0)$.
Observe that

$$
(0,1001011)=\left(0, \varphi^{2}(1) 011\right)
$$

and

$$
(01001,011)=\left(0 \varphi^{2}(1), 011\right)
$$

How can we deal with factors having two factorizations? We will define an equivalence relation on factorizations, in such a way that if a word has two factorizations, these two are equivalent.

Plan
(1) Preliminary definitions

- Morphisms and the Thue-Morse word
- Complexity functions
- k-binomial complexity
(2) Why to compute $\mathbf{b}_{t}^{(k)}$?
(3) Computing the function $\mathbf{b}_{\mathbf{t}}^{(k)}$
- Binomial coefficients of (iterated) images
- Factorizations of order k
- Types of order k

Definition : equivalence \equiv_{k}

Let (p_{1}, s_{1}) and (p_{2}, s_{2}) be couples of $A^{<2^{k}} \times A^{<2^{k}}$. These two are equivalent for \equiv_{k} if there exist $a \in A, x, y \in A^{*}$ such that one of these cases occurs :
(1) $\left|p_{1}\right|+\left|s_{1}\right|=\left|p_{2}\right|+\left|s_{2}\right|$ and

- $\left(p_{1}, s_{1}\right)=\left(p_{2}, s_{2}\right)$;
(3) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x, \varphi^{k-1}(a) y\right)$;
- $\left(p_{1}, s_{1}\right)=\left(x, \varphi^{k-1}(a) y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), y\right)$;
- $\left(p_{1}, s_{1}\right)=\left(\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})\right)$ and $\left(p_{2}, s_{2}\right)=\left(\varphi^{k-1}(\bar{a}), \varphi^{k-1}(a)\right)$;
(2) $\left|\left(\left|p_{1}\right|+\left|s_{1}\right|\right)-\left(\left|p_{2}\right|+\left|s_{2}\right|\right)\right|=2^{k}$ and
- $\left(p_{1}, s_{1}\right)=(x, y)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$;
© $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$ and $\left(p_{2}, s_{2}\right)=(x, y)$.

Definition : equivalence \equiv_{k}

Let $\left(p_{1}, s_{1}\right)$ and $\left(p_{2}, s_{2}\right)$ be couples of $A^{<2^{k}} \times A^{<2^{k}}$. These two are equivalent for \equiv_{k} if there exist $a \in A, x, y \in A^{*}$ such that one of these cases occurs :
(1) $\left|p_{1}\right|+\left|s_{1}\right|=\left|p_{2}\right|+\left|s_{2}\right|$ and
(1) $\left(p_{1}, s_{1}\right)=\left(p_{2}, s_{2}\right)$;
(2) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), y\right)$ and $\left(p_{2}, s_{2}\right)=\left(x, \varphi^{k-1}(a) y\right)$;
(3) $\left(p_{1}, s_{1}\right)=\left(x, \varphi^{k-1}(a) y\right)$ and ($\left.p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), y\right)$;
(0) $\left(p_{1}, s_{1}\right)=\left(\varphi^{k-1}(a), \varphi^{k-1}(\bar{a})\right)$ and $\left(p_{2}, s_{2}\right)=\left(\varphi^{k-1}(\bar{a}), \varphi^{k-1}(a)\right)$;
(2) $\left|\left(\left|p_{1}\right|+\left|s_{1}\right|\right)-\left(\left|p_{2}\right|+\left|s_{2}\right|\right)\right|=2^{k}$ and
(1) $\left(p_{1}, s_{1}\right)=(x, y)$ and $\left(p_{2}, s_{2}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$;
(3) $\left(p_{1}, s_{1}\right)=\left(x \varphi^{k-1}(a), \varphi^{k-1}(\bar{a}) y\right)$ and $\left(p_{2}, s_{2}\right)=(x, y)$.

Example (continuing)

The word $u=01001011$ has the two factorizations $\left(0, \varphi^{2}(1) 011\right)$ and $\left(0 \varphi^{2}(1), 011\right)$. This corresponds to case (1.3), where $x=0, y=011$.

Proposition

If a word $u \in A^{\geq^{k}-1}$ has two factorizations $\left(p_{1}, s_{1}\right)$ and $\left(p_{2}, s_{2}\right)$, then these two are equivalent for \equiv_{k}.

Let $u \in A^{\geq 2^{k}-1}$. We can thus define the type of u of order k as the equivalence class of its factorizations. We denote by $\left(p_{u}, s_{u}\right)$ the type of order k of u, with $\left|p_{u}\right|$ minimal.

Proposition

If a word $u \in A^{2^{k}-1}$ has two factorizations $\left(p_{1}, s_{1}\right)$ and $\left(p_{2}, s_{2}\right)$, then these two are equivalent for \equiv_{k}.

Let $u \in A^{\geq 2^{k}-1}$. We can thus define the type of u of order k as the equivalence class of its factorizations. We denote by $\left(p_{u}, s_{u}\right)$ the type of order k of u, with $\left|p_{u}\right|$ minimal.

We can also have two different words having equivalent factorizations. In this case, the two words they come from are k-binomially equivalent. This result is even stronger.

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv_{k}\left(p_{v}, s_{v}\right) .
$$

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv_{k}\left(p_{v}, s_{v}\right) .
$$

The reasoning used in the proof can be adapted to show that for all factors $u, v \in \operatorname{Fac}(\mathbf{t})$ of length at most $2^{k}-1$, we have $u \not \chi_{k} v$. Hence, for all $n \leq 2^{k}-1$, for all $k \geq 3$, we have $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$.

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv_{k}\left(p_{v}, s_{v}\right) .
$$

The reasoning used in the proof can be adapted to show that for all factors $u, v \in \operatorname{Fac}(\mathbf{t})$ of length at most $2^{k}-1$, we have $u \not \chi_{k} v$. Hence, for all $n \leq 2^{k}-1$, for all $k \geq 3$, we have $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$.

Corollary

Let $k \geq 3$ and $n \geq 2^{k}$. We have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=\#\left(\operatorname{Fac}_{n}(\mathbf{t}) / \sim_{k}\right)=\#\left(\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\} / \equiv_{k}\right)
$$

Theorem

Let u and v be two factors of t of length $n \geq 2^{k}-1$. We have

$$
u \sim_{k} v \Leftrightarrow\left(p_{u}, s_{u}\right) \equiv_{k}\left(p_{v}, s_{v}\right) .
$$

The reasoning used in the proof can be adapted to show that for all factors $u, v \in \operatorname{Fac}(\mathbf{t})$ of length at most $2^{k}-1$, we have $u \not \chi_{k} v$. Hence, for all $n \leq 2^{k}-1$, for all $k \geq 3$, we have $\mathbf{b}_{\mathbf{t}}^{(k)}(n)=p_{\mathbf{t}}(n)$.

Corollary

Let $k \geq 3$ and $n \geq 2^{k}$. We have

$$
\mathbf{b}_{\mathbf{t}}^{(k)}(n)=\#\left(\operatorname{Fac}_{n}(\mathbf{t}) / \sim_{k}\right)=\#\left(\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\} / \equiv_{k}\right)
$$

The last part of the reasoning consists in computing this quantity. Fix $n \in \mathbb{N}_{0}$.

For all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\} .
$$

Hence,

$$
\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\}=\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell} \quad \text { and } \quad \mathbf{b}_{\mathbf{t}}^{(k)}(n)=\sum_{\ell=0}^{2^{k-1}-1} \#\left(P_{\ell} / \equiv_{k}\right)
$$

For all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\}
$$

Hence,

$$
\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\}=\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell} \quad \text { and } \quad \mathbf{b}_{\mathbf{t}}^{(k)}(n)=\sum_{\ell=0}^{2^{k-1}-1} \#\left(P_{\ell} / \equiv_{k}\right)
$$

There exists ℓ_{0} such that

$$
P_{\ell_{0}}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|s_{u}\right|=0 \text { or }\left|s_{u}\right|=2^{k-1}\right\} .
$$

For all $\ell \in\left\{0, \ldots, 2^{k-1}-1\right\}$, define

$$
P_{\ell}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|p_{u}\right|=\ell \text { or }\left|p_{u}\right|=2^{k-1}+\ell\right\} .
$$

Hence,

$$
\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\}=\bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell} \quad \text { and } \quad \mathbf{b}_{\mathbf{t}}^{(k)}(n)=\sum_{\ell=0}^{2^{k-1}-1} \#\left(P_{\ell} / \equiv_{k}\right)
$$

There exists ℓ_{0} such that

$$
P_{\ell_{0}}=\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t}),\left|s_{u}\right|=0 \text { or }\left|s_{u}\right|=2^{k-1}\right\}
$$

Denote by λ the quantity $n \bmod 2^{k}$. We have

$$
\#\left\{0, \ldots, 2^{k-1}-1\right\} \backslash\left\{0, \ell_{0}\right\}= \begin{cases}2^{k-1}-1, & \text { if } \lambda=0 \text { or } \lambda=2^{k-1} ; \\ 2^{k-1}-2, & \text { otherwise } .\end{cases}
$$

Moreover, we can show that

$$
\#\left(\left(P_{0} \cup P_{\ell_{0}}\right) / \equiv_{k}\right)= \begin{cases}3, & \text { if } \lambda=0 ; \\ 2, & \text { if } \lambda=2^{k-1} ; \\ 8, & \text { otherwise }\end{cases}
$$

Moreover, we can show that

$$
\#\left(\left(P_{0} \cup P_{\ell_{0}}\right) / \equiv_{k}\right)= \begin{cases}3, & \text { if } \lambda=0 ; \\ 2, & \text { if } \lambda=2^{k-1} \\ 8, & \text { otherwise }\end{cases}
$$

and that, for all $\ell \notin\left\{0, \ell_{0}\right\}$,

$$
\#\left(P_{\ell} / \equiv_{k}\right)=6 .
$$

Hence, putting all the information together,

$$
\begin{aligned}
& \#\left(\left\{\left(p_{u}, s_{u}\right): u \in \operatorname{Fac}_{n}(\mathbf{t})\right\} / \equiv_{k}\right)=\# \bigcup_{\ell=0}^{2^{k-1}-1} P_{\ell} \\
& = \begin{cases}6\left(2^{k-1}-1\right)+3, & \text { if } \lambda=0 ; \\
6\left(2^{k-1}-1\right)+2, & \text { if } \lambda=2^{k-1} ; \\
6\left(2^{k-1}-2\right)+8, & \text { otherwise, }\end{cases} \\
& = \begin{cases}3 \cdot 2^{k}-3, & \text { if } \lambda=0 ; \\
3 \cdot 2^{k}-4, & \text { otherwise, }\end{cases}
\end{aligned}
$$

which leads to the result that was announced in the beginning of the talk.

Is there a possible generalisation of our results?

Is there a possible generalisation of our results?
The formula used to compute $\binom{\varphi(u)}{v}$ was generalized to an arbitrary non-erasing morphism.

Proposition

Let $\Psi: A^{*} \rightarrow B^{*}$ be a non-erasing morphism and $u \in A^{+}, v \in B^{+}$be two words.

$$
\binom{\Psi(u)}{v}=\sum_{k=1}^{|v|} \sum_{\substack{v_{1}, \ldots, v_{k} \in B^{+} \\ v=v_{1} \cdots v_{k}}} \sum_{a_{1}, \ldots, a_{k} \in A}\binom{\Psi\left(a_{1}\right)}{v_{1}} \cdots\binom{\Psi\left(a_{k}\right)}{v_{k}}\binom{u}{a_{1} \cdots a_{k}} .
$$

Definition

Let \mathbf{t}_{ℓ} be the fixed point $\varphi_{\ell}^{\infty}(0)$ on the alphabet $B:=\{0,1, \ldots, \ell-1\}$, where

$$
\varphi_{\ell}: B^{*} \rightarrow B^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \cdots(\ell-1) \\
\cdots \\
i \mapsto i(i+1) \cdots(\ell-1) 01 \cdots(i-1) \\
\cdots \\
\ell-1 \mapsto(\ell-1) 01 \cdots(\ell-2)
\end{array}\right.
$$

is the generalized Thue-Morse morphism on an ℓ-letter alphabet.

Definition

Let \mathbf{t}_{ℓ} be the fixed point $\varphi_{\ell}^{\infty}(0)$ on the alphabet $B:=\{0,1, \ldots, \ell-1\}$, where

$$
\varphi_{\ell}: B^{*} \rightarrow B^{*}:\left\{\begin{array}{l}
0 \mapsto 01 \cdots(\ell-1) ; \\
\cdots \\
i \mapsto i(i+1) \cdots(\ell-1) 01 \cdots(i-1) ; \\
\cdots \\
\ell-1 \mapsto(\ell-1) 01 \cdots(\ell-2) .
\end{array}\right.
$$

is the generalized Thue-Morse morphism on an ℓ-letter alphabet.

Conjecture

Let $k \in \mathbb{N}_{0}$. We have, for all $n<3^{k}, \mathbf{b}_{\mathbf{t}_{3}}^{(k)}(n)=p_{\mathbf{t}_{3}}(n)$ and, for all $n \geq 3^{k}$,

$$
\mathbf{b}_{\mathbf{t}_{3}}^{(k)}(n)= \begin{cases}7 \cdot 3^{k}-14, & \text { if } n \equiv 0\left(\bmod 3^{k}\right) ; \\ 7 \cdot 3^{k}-15, & \text { if } n \equiv 3^{k-1} \text { or } 2 \cdot 3^{k-1} \quad\left(\bmod 3^{k}\right) ; \\ 7 \cdot 3^{k}-19 & \text { otherwise. }\end{cases}
$$

