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Definition
A morphism on the alphabet A is an application

o A = A*
such that, for every word u = vy - - - u, € A",

o(u)=0(w1)---o(up).
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Definition
A morphism on the alphabet A is an application

o: A" — A*
such that, for every word u = vy - - - u, € A",
o(u)=0(w1)---o(up).

If there exists a letter a € A such that o(a) begins by a, and if
limp— 100 |0"(a)] = +00, then one can define

o“(a) = nirroo o"(a).

This word is called a fixed point of the morphism o.
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Example (Thue—Morse)

Let us define the Thue—Morse morphism

. .. [ 0 01=00;
?:10,1)7 > 10,1} :{ 110 =11,
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Example (Thue—Morse)

Let us define the Thue—Morse morphism

N « | 0—=01l= 00;
We have
¢(0) = 01,
©%(0) = 0110,
% (O) = 01101001,
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Example (Thue—Morse)

Let us define the Thue—Morse morphism

P01 =101 { 1 10=1T.
We have
¢(0) = 01,
©?(0) = 0110,
©3(0) = 01101001,

We can thus define the Thue—Morse word as one of the fixed points of the
morphism ¢ :

t := ¢¥(0) = 0110100110010110 - - -
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Remark
Since t is a fixed point of ¢, we have

Hence, every factor of t can be written as
k
py(2)s,

where k > 1, p (resp., s) is a proper suffix (resp., prefix) of one of the
words in {%(0), 0¥(1)}, and z is also a factor of t.
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Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.
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Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition

Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)™;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

Uiljyy -+ Uityg, withl1<i<m0</{<m-—1I.
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Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition

Let u=uy - Uy € A™ be a word (m € NT U{co}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)[" ;.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form
Ujljy1 -« Ujyy, with1<i<m 0</<m—i.

Example

Let v = 0102010.
The word 021 is a subword of u, but it is not a factor of w.
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Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.
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Let u=uy - Uy € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;)™;.
A factor of u is a subword made with consecutive letters.
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Example

Let v = 0102010.
The word 021 is a subword of u, but it is not a factor of w.
The word 0201 is a factor of u, thus also a subword of wu.
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Let w be an infinite word. A complexity function of w is an application
linking every nonnegative integer n with length-n factors of w.

Definition

Let u=uy - Uy, € A™ be a word (m € NT U{oo}).

A (scattered) subword of u is a finite subsequence of the sequence (u;);.
A factor of u is a subword made with consecutive letters.

Otherwise stated, every (non empty) factor of u is of the form

Ujlijg1 * - Uitp, with1<i<m 0</<m—i.

Example

Let v = 0102010.
The word 021 is a subword of u, but it is not a factor of w.
The word 0201 is a factor of u, thus also a subword of wu.

Let (Y) denote the number of times x appears as a subword in v and |ul
the number of times it appears as a factor in u.
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The simplest complexity function is the following. Here, N = {0,1,2,...}.

Definition
The factor complexity of the word w is the function

pw : N — N: n— #Facy,(n).
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The simplest complexity function is the following. Here, N = {0,1,2,...}.

Definition
The factor complexity of the word w is the function

pw: N —= N:n— #(Facy,(n)/ ~=),

where u~— v & u=v.
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Example

Let us compute the first values of the Thue—Morse's factor complexity.
We have
t =0110100110010110- - -
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Example

Let us compute the first values of the Thue—-Morse's factor complexity.

We have
t =01101001100101101001011001101001 - - -

and
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Example

Let us compute the first values of the Thue—Morse's factor complexity.
We have
t =0110100110010110- - -

and

n‘O
1

3
pt(n) ‘ 6

1 2
2 4
Then, for every n > 3, it is known that

(= [ An—2:2m—4, if2.2m < n<3.0m
P = on44.2m 2, if3.2m < pn<4.2m
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Different equivalence relations from ~_ can be considered :

e Abelian equivalence : u~,p1 v & |uls=|v[s Vac A
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Different equivalence relations from ~_ can be considered :
If k e NT,

e Abelian equivalence : u~,p1 v & |uls=|v[s Vac A

e k-abelian equivalence : u ~apx v & |ulx = |v|, Vx € ASK
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Different equivalence relations from ~_ can be considered :
If k e NT,

e Abelian equivalence : u~,p1 v & |uls=|v[s Vac A
e k-abelian equivalence : u ~apx v & |ulx = |v|, Vx € ASK

e k-binomial equivalence : v~y v & (¥) = (V) Vx € ASK
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Different equivalence relations from ~_ can be considered :

If k e NT,
e Abelian equivalence : u~,p1 v & |uls=|v[s Vac A
e k-abelian equivalence : u ~apx v & |ulx = |v|, Vx € ASK
e k-binomial equivalence : u ~; v & ( ) = ( ) Vx € ASK

u v
X X

We will most of the time deal with the last one.
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Definition (Reminder)

Let v and x be two words. The binomial coefficient (5) is the number of
times that x appears as a subword in wu.
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Definition (Reminder)

Let u and x be two words. The binomial coefficient (%) is the number of
times that x appears as a subword in v.

u
X

Example
If u = aababa,
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Definition (Reminder)

Let u and x be two words. The binomial coefficient (%) is the number of
times that x appears as a subword in v.

Example
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
(2)=1=()
a a
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
(2)=2=()
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u\ _,_ (v 7 u) _ 1— v .
a a b b
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u 14 u 14
()-2-()(0)->-()
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
v\ ., (v u\ h— v
a) = \a)’\b) ~ \b)
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Definition (Reminder)

Let u and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v u v
(5)=2= () () =+= () () - ()
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () er

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,
u v u v u v
(2)=2= () (5) =+= (2)- () == (o)
u v
<bb> —0 <bb>'
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Let v and v be two finite words. They are k-binomially equivalent if

()= () er

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.
Indeed,

u\ (v u_4_v u_l_v

a) = \a)’\b)  \b)'\aa) = \aa/)’

u v u v

<bb> —0 <bb)’(ab> —0 <ab>‘
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.

000000
(o) == (o) () == () () == (&)

<

L
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example
The words u = bbaabb and v = babbab are 2-binomially equivalent.

000000
(o) == (o) () == () () =2 ()

<

L
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed,

L

(2)=2=(0):(0)=+=(0)- () == ()
(1) =5~ (on)* (o) =4= () (22) =2= (o)
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Definition (Reminder)

Let v and v be two finite words. They are k-binomially equivalent if

()= () e

Example

The words u = bbaabb and v = babbab are 2-binomially equivalent.

Indeed,

L

(2)=2=(0):(5)=+=(0)- () == ()
() =5~ (on)+ (o) =+= () (52) == (2n)

Marie Lejeune (Liége University) January 17, 2019
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Proposition

For all words u, v and for every nonnegative integer k,

U1 V= U~~gV.
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Proposition

For all words u, v and for every nonnegative integer k,

Urgp1 V= Un~~gV.

Proposition

For all words u, v,

Ul Vv<e Ungy V.
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Proposition

For all words u, v and for every nonnegative integer k,

U1 V= U~~gV.

Proposition

For all words u, v,
Ui VE Ungpy V.

Definition (Reminder)

The words u and v are 1-abelian equivalent if

(“) —|uls = |v],= <V> Va€e A
a a
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Definition

If w is an infinite word, we can define the function

b(k) . N — N : n—s #(Facy(n)/ ~),

which is called the k-binomial complexity of w.
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Definition

If w is an infinite word, we can define the function
b(k) . N = N: n s #(Facyw(n)/~x),
which is called the k-binomial complexity of w.

Example

For the Thue—Morse word t, we have bEl)(O) =1 and, for every n > 1,

@, [ 3 ifn=0 (mod?2)
21 _{ 2, otherwise.
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Example (proof)

o If n =2/, every factor of t is of the form ¢(z) (with z € Face(¢)) or of
one of the following forms, where z’ € Face(¢ — 1) :

0¢(2')0, 0p(2)1, 1¢(2')0, 1p(Z)1.
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Example (proof)

o If n =2/, every factor of t is of the form ¢(z) (with z € Face(¢)) or of

one of the following forms, where z’ € Face(¢ — 1) :

0¢(2')0, 0p(2)1, 1¢(2')0, 1p(Z)1.

We have

hence bgl)(n) = 3.
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Example (proof)

e If n=2¢ —1, every factor of t is of one of the following forms, where
7z € Facy (4 — 1) :

0p(2"), 1p(2'), ¥(2')0, p(2')1.
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We have an order relation between the different complexity functions.

Proposition
P (n) <b{I(n) <bUTV(n) < pu(n) VneN keNF

where p2° is the abelian complexity function of the word w.
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We have an order relation between the different complexity functions.

Proposition

P (n) <b{I(n) <bUTV(n) < pu(n) VneN keNF

where p2° is the abelian complexity function of the word w.

Moreover, a lot of properties about the factor complexity are known.

Theorem (Morse-Hedlund)

Let w be an infinite word on an /-letter alphabet. The three following
assertions are equivalent.

© The word w is ultimately periodic : there exist finite words v and v
such that w = u - v¥.

@ There exists n € N such that p,,(n) < n+¢— 1.
© The function p,, is bounded by a constant.
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One natural application of the previous theorem is to define aperiodic
words with the minimal factor complexity.

Definition
A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.
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One natural application of the previous theorem is to define aperiodic
words with the minimal factor complexity.

Definition

A Sturmian word is an infinite word having, as factor complexity,
p(n) =n+1forall neN.

Let w be a Sturmian word. We have, for every n > 2,

n < pw(n) < pe(n).

However, results are quite different when regarding the k-binomial
complexity function.
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Theorem (M. Rigo, P. Salimov)
Let w be a Sturmian word. We have b{®)(n) = p,,(n) = n+ 1.

Thus, since b{¥(n) < bl (n) < p,,(n), we obtain
biy)(n) = pu(n)

for every k > 2 and for every n € N.
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Theorem (M. Rigo, P. Salimov)
Let w be a Sturmian word. We have b{®)(n) = p,,(n) = n+ 1.

Thus, since b{¥(n) < bl (n) < p,,(n), we obtain

bl (n) = pu(n)
for every k > 2 and for every n € N.
This is not the case for the Thue—Morse word.

Theorem (M. Rigo, P. Salimov)
For every k > 1, there exists a constant C, > 0 such that, for every n € N,

b (n) < Cy.
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This result holds for every infinite word which is a fixed point of a
Parikh-constant morphism.
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This result holds for every infinite word which is a fixed point of a
Parikh-constant morphism.

Definition
A morphism o : A* — A* is Parikh-constant if, for all a, b, c € A,

|o(a)|c = |o(b)|c. Otherwise stated, images of the different letters have to
be equal up to a permutation.
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This result holds for every infinite word which is a fixed point of a
Parikh-constant morphism.

Definition
A morphism o : A* — A* is Parikh-constant if, for all a, b, c € A,

lo(a)|c = |o(b)|c. Otherwise stated, images of the different letters have to
be equal up to a permutation.

Example

The morphism

0 — 0112
o:{0,1,2}* - {0,1,2}* : { 1 ~— 1201;
2 — 1120;

is Parikh-constant.
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Theorem (M. L., J. Leroy, M. Rigo)

Let k be a positive integer. For every n < 2K — 1, we have
k
b (n) = pe(n).
while for every n > ok

|, [ 3:-26=3 ifn=0 (mod 2X);
by (n) = { 3.2k — 4, otherwise.
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Theorem (M. L., J. Leroy, M. Rigo)

Let k be a positive integer. For every n < 2K — 1, we have
k
b (n) = pe(n).
while for every n > ok

|, [ 3:-26=3 ifn=0 (mod 2X);
by (n) = { 3.2k — 4, otherwise.

Cases where k =1 or k = 2 can be computed by hand. We will thus
assume that k > 3.
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Plan

e Computing the function bEk)
@ Binomial coefficients of (iterated) images



All our reasonings need to compute certain binomial coefficients explicitely.
We thus need some tools.
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All our reasonings need to compute certain binomial coefficients explicitely.
We thus need some tools.

Proposition

Let u, v be some finite words over A and let a, b be letters of A. We have

()= ()~ ()

where 0, , equals 1 if a = b, 0 otherwise.
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All our reasonings need to compute certain binomial coefficients explicitely.
We thus need some tools.

Proposition

Let u, v be some finite words over A and let a, b be letters of A. We have

()= ()~ ()

where 0, , equals 1 if a = b, 0 otherwise.

Proposition

Let u, u’ be some finite words over A, and let v = vq - - - v;,, be a word in
A*. We have
4 = u u
< v ) _;;(\/1-"‘0) <VJ+1-~vm>'
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Example

o . - K
Let us first illustrate the computation of a coefficient (P¥ V(Z)s) on an

example.
00%(011)1
01 -
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Let us first illustrate the computation of a coefficient (P¥ V(Z)s) on an

example.
0p%(011)1Y .
01 B
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Example

o . - K
Let us first illustrate the computation of a coefficient (P¥ V(Z)s) on an

sk, <O@3E)0111)1> 14 (993(;)11)>
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Example

o . - K
Let us first illustrate the computation of a coefficient (P¥ V(Z)s) on an

- (0993 E)Olll)1> L (@(211)) + <¢3(811)>
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Example

o . . K
Let us first illustrate the computation of a coefficient (P¥ v(z)s) on an
example.

(PP (SO | (WO) (A0
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Example

_ : .. k
Let us first illustrate the computation of a coefficient (W’ V(Z)s) on an
example.

(SO _y (SO, (FODY (01

How could we compute coefficients of the form (*(*)) and, more generally,
(s@‘(U)) ?

v
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Example

o . - K
Let us first illustrate the computation of a coefficient (P¥ V(Z)S) on an
example.

(PO (FEDY , (HO) | (PO

How could we compute coefficients of the form (99‘/”)) and, more generally,
(eof(U)) ?

v
Each time a factor 01 or 10 occurs in v, either we can see it appearing in
©(u) as the image of a unique letter of u, or we can see it appearing as a
subword of the image of two different letters of wu.
We will thus study the different factorizations of v.
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Definition : ¢-factorization

Let v be a finite word over A = {0,1}. If v contains at least one factor in

{01,10}, it can be factorized as follows :

V = Wpajaiwy - - - Wp_1a¢agwy

= Wo@(al)W1 ce szl@(af)WE

where £ > 1, a1,...,3a, € Aand wp, ... wy € A*.
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Definition : ¢-factorization

Let v be a finite word over A = {0,1}. If v contains at least one factor in
{01,10}, it can be factorized as follows :

V = Wpaiaiwy - - - Wy_1agagwy

= wop(ar)wi - - - wo—1p(ar)we

where £ > 1, a1,...,3a, € Aand wp, ... wy € A*.
This factorization is called a -factorization of v and is coded by the tuple

k= ([wol, [wop(ar)wa|, ..., [wop(ar)wr ... p(ar—1)we-1])-

The set of all tuples coding ¢-factorizations of v is denoted by ¢-Fac(v).
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Example
Let v = 01101. The tree of all p-factorizations of v is the following.
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Example
Let v = 01101. The tree of all p-factorizations of v is the following.

01101

(01)101
(0)
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Example
Let v = 01101. The tree of all p-factorizations of v is the following.

01101

(01)101 01(10)1 011(01)
(0) (2) (3)
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Example
Let v = 01101. The tree of all p-factorizations of v is the following.

01101
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Example
Let v = 01101. The tree of all p-factorizations of v is the following.

01101
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Let us illustrate the computation of (‘ps”)) on an example. Let us compute

(“Cotor )
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Let us illustrate the computation of (‘pE/”)) on an example. Let us compute

(¢(01101001))_
©(01101001)\  /uf
01101 ~\ 5

01101
@ The 5 letters of v come from 5 different letters of u.
This case could correspond to the trivial factorization « = ().
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Let us illustrate the computation of (‘ps”)) on an example. Let us compute

(¢(01101001))_
Flommor ) = (5)+ 2 (or)

01101
zeA3

@ The 5 letters of v come from 5 different letters of wv.
This case could correspond to the trivial factorization x = ().

@ The two first letters of v come from the image (by ¢) of a letter 0 in
u, while the three last ones come from three different letters of u. This
case corresponds to k = (0).
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Let us illustrate the computation of ("OE/“)) on an example. Let us compute

(“Cottor ).

Foaon )= ()2 () X ()

zEA3 zEA2 Z/CA

@ The 5 letters of v come from 5 different letters of wv.
This case could correspond to the trivial factorization x = ().

@ The two first letters of v come from the image (by ¢) of a letter 0 in
u, while the three last ones come from three different letters of u. This
case corresponds to k = (0).

o Letters v3 and v4 come from a block (1) while the three other ones
come from different letters of u. The associated factorization is
k= (2).
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©(01101001)
( 011(01) )

(5)r S le) 2 )

o Letters v4 and v5 come from a block ©(0) in u, which corresponds to
the factorization x = (3).
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(Clooaon ) =()* 2 o)+ 2 ()

3 (20)+ 2 (ors)

zEA3

o Letters v4 and v5 come from a block ©(0) in u, which corresponds to
the factorization x = (3).

o Letters v and v» come from a block ¢(0) while vz and v4 come from
©(1). The associated factorization is x = (0, 2).
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Conon ) =(5) Z (e) + 2 ()

+ 3 () * 2 o12) * 2 (oro)

z€ A3

o Letters v4 and vs come from a block ¢(0) in u, which corresponds to
the factorization x = (3).

o Letters v; and v» come from a block ¢(0) while vz and v4 come from
©(1). The associated factorization is k = (0, 2).

o Letters v; and v, come from a block ©(0), exactly like v4 and vs. The
associated factorization is k = (0, 3).
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We will associate to every p-factorization k € p-Fac(v) of the form
wop(ar)wi - - we—1p(ar)we,
the language
L(v,kK) = Alwol g Alwal .o plwe-al g, plwel

in such a way that v = wyp(a1)ws - - - wy—1¢(ag)wy (factorized in this way)
can be seen in any ¢(z), where z € L(v, k).

Marie Lejeune (Liége University) January 17, 2019 26 / 40



We will associate to every p-factorization k € p-Fac(v) of the form

wop(ar)wi - - we—1p(ag)we,
the language
E(V, K,) = A‘W0‘31A|W1‘ .. .A|W£—1\a£A|Wg|’
in such a way that v = wop(ar)wi - - - wy_10(ar)wy (factorized in this way)

can be seen in any ¢(z), where z € L(v, k).

We then define
fv)= i L(v.k)

Kk€p-Fac(v)

if ¢o-Fac(v) contains at least one (non trivial) factorization. Otherwise,
f(v)=0.

The union | has to be considered as a multiset union, where the
multiplicities of an element are summed up.
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Example (continuing)
Let v = 01101; we had

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
and we thus obtain

£(01101) = £(v, (0)) W L(v, (2)) & L(v, (3)) & L(v, (0,2)) & L(v, (0,3)).
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Reminder

To every p-factorization of the form wyp(ar)ws - - - wy_1p(ag)wy coded by
k= (|wol, [wop(a1)wal, . ..), we associate the language

L(v, k) := Alwol g Alwl . plwe—al g, Alwel,

Example (continuing)
Let v =01101; we had

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
and we thus obtain

f((01)101) = L(v,(0))w L(v,(2)) W L(v,(3)) W L(v,(0,2)) W L(v, (0,3))
= 0A°
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Reminder

To every p-factorization of the form wyp(ar)ws - - - wy_1p(ag)wy coded by
k= (|wol, [wop(a1)wal, . ..), we associate the language

L(v, k) := Alwol g Alwl . plwe—al g, Alwel,

Example (continuing)
Let v =01101; we had

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
and we thus obtain

£(01(10)1) = L(v, (0)) W L(v, (2)) w L(v, (3)) W L(v, (0,2)) & L(v, (0, 3))
= 0A%3 W A’1A
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Reminder

To every p-factorization of the form wyp(ar)ws - - - wy_1p(ag)wy coded by
k= (|wol, [wop(a1)wal, . ..), we associate the language

L(v, k) := Alwol g Alwl . plwe—al g, Alwel,

Example (continuing)
Let v =01101; we had

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
and we thus obtain

f(011(01)) = L(v,(0))w L(v,(2)) W L(v,(3)) W L(v,(0,2)) w L(v, (0,3))
= 0A3 W A’1A W A%0
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Reminder

To every p-factorization of the form wyp(ar)ws - - - wy_1p(ag)wy coded by
k= (|wol, [wop(a1)wal, . ..), we associate the language

L(v, k) := Alwol g Alwl . plwe—al g, Alwel,

Example (continuing)
Let v =01101; we had
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Reminder

To every p-factorization of the form wyp(ar)ws - - - wy_1p(ag)wy coded by
k= (|wol, [wop(a1)wal, . ..), we associate the language

L(v, k) := Alwol g Alwl . plwe—al g, Alwel,

Example (continuing)
Let v =01101; we had

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
and we thus obtain

£((01)1(01)) = L(v, (0)) & L(v, (2)) & L(v, (3)) W L(v, (0,2)) & L(v, (0, 3)
= 0A%3 W A’1A W A%0 WO01A W 0AO.
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Example (continuing)
Let v = 01101; we had

p-Fac(v) = {(0),(2),(3),(0,2),(0,3)}
and we thus obtain

£(01101) =L (v, (0)) W L(v, (2)) W L(v, (3)) ¥ L(v, (0,2)) & L(v, (0,3))
—0A% W A21A W A%0 W 01A W 0A0
={0000,, 00011, 00103, 00115, 01005, 01011, 01103, 01115,
1010,,1011;,1110, 11111, 10002, 11005, 0102, 0111, 0001 }.

v
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Example (continuing)
Let v = 01101; we had

¢-Fac(v) = {(0),(2),(3),(0,2),(0,3)}
and we thus obtain
F(01101) =L(v, (0)) & L(v, (2)) W L(v, (3)) & L(v, (0,2)) W L(v, (0,3))
—0A3 W A21A W A30 W 01A W 0A0

—{00005, 00011, 00103, 00115,0100,, 01011, 01103, 01115,
1010,,1011;,1110,,1111;,10005, 1100, 0105, 0115, 000 }.

We can now state the formal proposition.
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Proposition

For all finite words v and v, we have

)=+ %, 2,00

k€p-Fac(v) yeL(v,k)
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Proposition

For all finite words v and v, we have

()= 2, 2, 0= () 32 moo())

k€p-Fac(v) yeL(v,k) y€ef(v)
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Proposition
For all finite words v and v, we have

(V)= 2, 2, 0)= () 32 o)

rkEp-Fac(v) yeL(v,k) yef(v)

Example (continuing)

We computed
©(01101001)\ |
01101 - on

+3 <zo) +3 (o12) + = or0)

cA3 z€EA

> (o)t 3 (et

zeA2 Z/€A
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Proposition

For all finite words u and v, we have

()= 2, 2, 0= () 3 mon)

rkE€p-Fac(v) yeL(v,k)

Example (continuing)

<¢(01101001)>

01101

655 (5
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Proposition

For all finite words u and v, we have

()= 2, 2, 0= () 3 mon)

rkE€p-Fac(v) yeL(v,k) yEf(v)

v

Example (continuing)

¢(01101001)\ _ /u]

< 01101 s )" 2
y€0A3
u
0
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Proposition

For all finite words u and v, we have

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(o) () £ () x4

yeL(v,(0)) zeA?,Z/cA
u u u
+ Z <ZO + Z (Olz> Z <OZO>
zeA3 z€A
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Proposition

For all finite words u and v, we have

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(o) (2 £ (0 5. ()

y€L(v,(0)) zEA2 Z/CA
u u u
* Z <ZO> * Z (Olz> * Z <OZO>'
ze A3 z€A zEA
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Proposition

For all finite words u and v, we have

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

y

Example (continuing)
£(01101001)\ _ (|u|
< 01101 )‘(5 * ;

5 (2)-

() 2,0)

(0)) y€EA21A

(01z> * Z <020>

z€A3
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Proposition

For all finite words u and v, we have

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

y

Example (continuing)

¢(01101001)\  /ul
< 01101 =\s5)7 2.
yeL(v,(0

() .z, 0)

L(v,(0)) y€eL(v,(2))
u u u
+ Z <20> + Z <Olz> + Z (020)
zEA3 z€EA zZEA
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Proposition

For all finite words u and v, we have

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

y

Example (continuing)

¢(01101001)\  /ul
< 01101 =\s5)7 2.
yeL(v,(0

() .z, 0)

L(v,(0)) yeL(v,(2))
u u u
+ Z <ZO> + Z <Olz> + Z (020)
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Proposition

For all finite words u and v, we have

(V)= 2,2, 0)= () 32 mon()

Kk€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

Fa )=(5) 2 G+ =, C)

YEL(v,(0)) YEL(v,(2))
u u u
= 2 ()2 (o) * S o)
y€eA30 zEA ZEA
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(o) (1)
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(o) (1)
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

() 5,00, 3,0

yEL(v,(0)) yEL(v,(2))

u u u
i (y) p> (y) +2 (020)'
YEL(v,(3)) y€O0lA z€EA

Marie Lejeune (Liége University) January 17, 2019 28 /40



Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(TG 5,075,
20 2 0 E o)

YEL(v,(3))
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

(TG 5,075,
0, 0 E o)

YEL(v,(3))
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

)2 5,0, 5,0

y€L(v,(0)) yeL(v,(2)
- x> () > )+ ()
ver(n3) Y7 yecio2) VY yeomo VY
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Proposition

For all finite words v and v, we have

(V)= 2,2, 0)= () 32 o)

k€p-Fac(v) yeL(v,k) y€Ef(v)

Example (continuing)

)(2) 5,0, 5,0

y€L(v,(0)) yEL(v,(2))

> () > 0 > ()
yee(3) Y7 yectno2) VY yecwi03) Y
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Applying several times the previous proposition, we can obtain a formula
. - £
allowing us to compute coefficients of the form (¥ ‘E”)).

Proposition

For all finite words u, v and for all £ > 1, we have

()=5 & mom () & mtn(()

i=0 yefi(v yeft(v) Y

Marie Lejeune (Liége University) January 17, 2019 29 /40



Applying several times the previous proposition, we can obtain a formula
. - £
allowing us to compute coefficients of the form (¥ ‘E”)).

Proposition

For all finite words u, v and for all £ > 1, we have

()=5 & mom () & mtn(()

i=0 yefi(v yeft(v) Y

Corollary

If uand o« are two finite words of the same length, then, for every finite
word v, we have

() -() = 2w [6)-C))

y€eft(v)
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0 Preliminary definitions
@ Morphisms and the Thue—-Morse word
@ Complexity functions

@ k-binomial complexity
e Why to compute bgk)?

e Computing the function b&k)

@ Binomial coefficients of (iterated) images
@ Factorizations of order k

@ Types of order k

«F

a

it
it
v

o>



(k)

How could we compute by ’(n) ? We have to look, for each pair of words

u,v € Facp(t), if u ~, v or not.
Recall that every factor u of t can be written as

pe¥(2)s.
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How could we compute bgk)(n) 7 We have to look, for each pair of words
u,v € Facp(t), if u ~, v or not.
Recall that every factor u of t can be written as

pe¥(2)s.

Definition : factorization of order k

Let u € Fac(t). If there exist (p,s) € A<?" x A<? a2 be Aand
z € Fac(t) such that

o u=ppk(z)s;
o pis a proper suffix of p¥(a);
e s is a proper prefix of *(b);

then (p, s) is called a factorization of order k of u while the triple (a, z, b)
is called a desubstitution of order k of u.
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Is this writing unique ?
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Is this writing unique ?
No : the word 010 appears as a factor of t several times; it can be
factorized as 0¢(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---
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Is this writing unique ?
No : the word 010 appears as a factor of t several times; it can be
factorized as 0¢(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---

Proposition

Let u be a factor of t of length at least 2K — 1. The word u has exactly two
different factorizations of order k if and only if it is a factor of ©*~1(010)
or pk=1(101).
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Is this writing unique ?
No : the word 010 appears as a factor of t several times; it can be
factorized as 0¢(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---

Proposition

Let u be a factor of t of length at least 2K — 1. The word u has exactly two
different factorizations of order k if and only if it is a factor of ©*~1(010)
or ©k71(101). Otherwise, it has a unique factorization of order k.
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Is this writing unique ?
No : the word 010 appears as a factor of t several times; it can be
factorized as 0¢(1) or as ¢(0)0.

t=01-10-10-01-10-01-01-10---

Proposition

Let u be a factor of t of length at least 2K — 1. The word u has exactly two
different factorizations of order k if and only if it is a factor of ©*~1(010)
or ©k71(101). Otherwise, it has a unique factorization of order k.
Moreover, if u has two factorizations (p,s) and (p’,s’), we have

ol = 1P/l = Ils| = Is'|| = 2.

Because we will use this result, we will only consider words of length at
least 2K — 1.
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Exemple
Let us consider the factor v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Marie Lejeune (Liége University) January 17, 2019 32 /40



Exemple
Let us consider the factor v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001, 011) are the two factorizations of order 3
of u.
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Exemple
Let us consider the factor v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001, 011) are the two factorizations of order 3
of u. Their associated desubstitutions are (1,¢,1) and (0, ¢,0).
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Exemple
Let us consider the factor v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001, 011) are the two factorizations of order 3
of u. Their associated desubstitutions are (1,¢,1) and (0, ¢,0).
Observe that

(0,1001011) = (0, ¢?(1)011)

and

(01001,011) = (0¢?(1),011).
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Exemple
Let us consider the factor v = 01001011.

t= <p3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Hence, (0,1001011) and (01001, 011) are the two factorizations of order 3
of u. Their associated desubstitutions are (1,¢,1) and (0, ¢,0).
Observe that

(0,1001011) = (0, ¢?(1)011)

and

(01001,011) = (0¢?(1),011).

How can we deal with factors having two factorizations? We will define an
equivalence relation on factorizations, in such a way that if a word has two
factorizations, these two are equivalent.
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Definition : equivalence =

Let (p1,51) and (p2, s2) be couples of A< % A<?“ These two are

equivalent for = if there exist a € A, x,y € A* such that one of these

cases OCcurs .
Q [p1| + [s1] = [p2| + |2 and
(1] (plvsl) (p2752);

@ (p1,51) = (x¢p*"!(a),y) and (p2, %) = (x, ¥**(a)y);

0 (p1,s1) = (x, 9" (a)y )and (p2,52) = (W (3)7 y);

0 (p1,51) = (¢ 1(a),¢*1(3)) and (p2, 52) = (©*1(3), " 1(a)):
Q@ [(Ip1] + [s1]) = (Ip2| + |s2])| = 2% and

0 (p1,s1) = (x, y) and (p2, 52) = (x¢*7(a), ¥*1(3)y):
@ (p1,51) = (xp*1(a), p*"1(3)y) and (p2,52) = (x,y).
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Definition : equivalence =

Let (p1,s1) and (p2, s2) be couples of A< x A<?“_ These two are
equivalent for = if there exist a € A, x,y € A* such that one of these
cases occurs :
Q |p1| + [si] = |p2| + [s2| and
0 (p1,51) = (P2,52)

0 (p1,51) = (xp*(a), ¥) and (2, ) = (x, " *(a)y):

(Pl,sl):(x P 1(a)y) and (p2, 52) = (x¢*"Y(a), y);

0 (p1,51) = (¢71(a),¥*1(3)) and (p2, %2) = (¢*7*(3), ¥* ()
@ [(Ip1] + Is1]) = (Ip2| + [s2])] = 2* and

© (p1,51) = (x,y) and (p2, %) = (x¢*"1(a), ¥ 1(3)y);
@ (p1,51) = (xp*"!(a), p*"1(3)y) and (p2, 52) = (x,y).

Example (continuing)

The word u = 01001011 has the two factorizations (0, ©?(1)011) and
(0¢?(1),011). This corresponds to case (1.3), where x = 0, y = 011.
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Proposition

If a word u € A>2~ has two factorizations (p1,s1) and (p2, s), then
these two are equivalent for =.

Let u € AZ2°~1. We can thus define the type of u of order k as the
equivalence class of its factorizations. We denote by (p,, s,) the type of
order k of u, with |p,| minimal.
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Proposition

If a word u € A>2~ has two factorizations (p1,s1) and (p2, s), then
these two are equivalent for =.

Let u € AZ2°~1. We can thus define the type of u of order k as the
equivalence class of its factorizations. We denote by (p,, s,) the type of
order k of u, with |p,| minimal.

We can also have two different words having equivalent factorizations. In
this case, the two words they come from are k-binomially equivalent. This
result is even stronger.
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Theorem
Let u and v be two factors of t of length n > 2K — 1. We have

U~k v < (Pussu) =« (Pvssv)-

Marie Lejeune (Liége University) January 17, 2019 35 /40



Theorem
Let u and v be two factors of t of length n > 2K — 1. We have

U~k v < (Pussu) =« (Pvssv)-

The reasoning used in the proof can be adapted to show that for all factors
u, v € Fac(t) of length at most 2K — 1, we have u %y v.

Hence, for all n < 2k — 1, for all k > 3, we have bgk)(n) = pe(n).
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Theorem
Let u and v be two factors of t of length n > 2K — 1. We have

U~k v < (Pussu) =« (Pvssv)-

The reasoning used in the proof can be adapted to show that for all factors
u, v € Fac(t) of length at most 2K — 1, we have u %y v.

Hence, for all n < 2k — 1, for all k > 3, we have bgk)(n) = pe(n).

Corollary
Let k > 3 and n > 2k. We have

bt*)(n) = #(Facy(t)/ ~k) = #({(Pu, su) : u € Faca(t)}/ =)
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Theorem
Let u and v be two factors of t of length n > 2K — 1. We have

U~k v < (Pussu) =« (Pvssv)-

The reasoning used in the proof can be adapted to show that for all factors
u, v € Fac(t) of length at most 2K — 1, we have u %y v.

Hence, for all n < 2k — 1, for all k > 3, we have bgk)(n) = pe(n).

Corollary
Let k > 3 and n > 2k. We have

bt*)(n) = #(Facy(t)/ ~k) = #({(Pu, su) : u € Faca(t)}/ =)

The last part of the reasoning consists in computing this quantity. Fix
n € Np.
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Forall £ € {0,...,2k"1 — 1}, define
PZ = {(pU75u) U Fa(:,-,(t)7 ‘pu| =/ or |pu| — 21(71 +€}

Hence,

2kt 2kt

{(pussu) : u € Facy(t)} = U P, and bgk)(n) = #(Py/=
=0
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Forall £ € {0,...,2k"1 — 1}, define
PZ = {(pU75u) U Fa(:,-,(t)7 ‘pu| =/ or |pu| — 21(71 +€}

Hence,

2kt 2kt

{(pussu) : u € Facy(t)} = U P, and bgk)(n) = #(Py/=

=0 =0

There exists ¢5 such that

Poy = {(pu,su) : u € Facy(t), |sy| =0 or |s,| = ok=1},
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Forall £ € {0,...,2k"1 — 1}, define
PZ = {(pU75u) U Fa(:,-,(t)7 ‘pu| =/ or |pu| — 21(71 +€}
Hence,

2k—171 2k—171

{(pu,su) : u € Facy(t)} = U Py, and bgk)(n) = #(Pe/=x).
=0 £=0

There exists ¢5 such that
Py, = {(pu,Su) : u € Facy(t),|su| =0 or |s,| = 2K71}.
Denote by \ the quantity n mod 2%. We have

2k=1 1, ifX=0o0r A =2K1,
k=1 — ’ '
#{0,...,2 11\ {0, 6} = { 2k=1 _ 2 otherwise.
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Moreover, we can show that

3, fA=0;
#((PQUPgO)/Ek): 2, if)\:2k_1;
8, otherwise;
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Moreover, we can show that

3, fA=0;
#((PQUPgO)/Ek): 2, if)\:2k_1;
8, otherwise;

and that, for all ¢ & {0, 4y},

#(Pg/Ek) = 0.
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Hence, putting all the information together,

2kt

# ({(pu,su) : u € Facy(t)}/=k) = # U P,
/=0

6(2k-1 —1)+3, if A=0;
6 (21 —1)+2, if \=2k1;
6 (2k~1 —2) +8, otherwise,

[ 3-2k—3, ifA=0;
| 3-2K—4, otherwise,

which leads to the result that was announced in the beginning of the talk.
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Is there a possible generalisation of our results?
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Is there a possible generalisation of our results?
The formula used to compute (“"(V”)) was generalized to an arbitrary
non-erasing morphism.

Proposition

Let W : A* — B* be a non-erasing morphism and u € A", v € B™ be two
words.

(=% =, 2 () ()6

k=1 vq,...,vy€BT a1,...,akEA
V=V1- Vg
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Definition
Let t; be the fixed point ©7°(0) on the alphabet B := {0,1,...,¢ — 1},
where

0w 01---(£—1);
e B* — B*: ;'.r.—>i(i+1)---(€—1)01---(i—1);
'ﬁ.;lr—>(€—1)01---(€—2).

is the generalized Thue—Morse morphism on an {-letter alphabet.
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Definition
Let t; be the fixed point ©7°(0) on the alphabet B := {0,1,...,¢ — 1},
where

0—01---(£—1);
pei B B s (1) (=101 (1~ 1)
E‘;1»—>(€—1)01---(€—2).
is the generalized Thue—Morse morphism on an {-letter alphabet.

Conjecture
Let k € Ng. We have, for all n < 3k, bE:)(n) = p;(n) and, for all n > 3,
7-3k—14, ifn=0 (mod 3¥);

bg)(”) = 7. 3k - 15, if n= 3k_1 or 2 - 3k—1 (mod 3/();
7-3k—-19 otherwise.
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