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Plan

o Mise en situation et premiéres définitions
@ Morphismes et mot de Thue-Morse



Définition
Un morphisme sur I'alphabet A est une application

o A = A*
telle que, pour tout mot u = uy - - - u, € A%,

o(u)=0(w1)---o(up).
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Définition
Un morphisme sur I'alphabet A est une application
o: A" — A*
telle que, pour tout mot u = uy - - - u, € A%,
o(u)=0(w1)---o(up).

S'il existe une lettre a € A telle que o(a) commence par la lettre a et si
limp—s 100 |0"(a)] = 400, alors on peut définir le mot infini

o“(a) = nirroo o"(a).

On dit que c'est un point fixe du morphisme o.
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Exemple (Thue-Morse)

Définissons le morphisme de Thue-Morse

. .. [ 0~ 01=00;
#:{0,1)" = {01} :{ 110 = 1T.
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Exemple (Thue-Morse)

Définissons le morphisme de Thue-Morse

o . [ 0—01=00;
#:{0,1)" = {01} { 110 = 1T.
Nous avons
¢(0) = 01,
©*(0) = 0110,

©%(0) = 01101001,
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Exemple (Thue-Morse)

Définissons le morphisme de Thue-Morse

N . [ 0—01=00;
#:{0,1)" = {01} { 110 = 1T.
Nous avons
¢(0) = 01,
©°(0) = 0110,

©3(0) = 01101001,

Nous pouvons alors définir le mot de Thue-Morse comme un des deux

points fixes du morphisme ¢ :

t := ¢“(0) = 0110100110010110 - - -
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Remarque

Puisque t est un point fixe de ¢, nous avons

Ainsi, tout facteur de t peut s'écrire
k
py(2)s,

ol k > 1, p (resp., s) est un suffixe (resp., préfixe) propre d'un des mots
{0(0), ©*(1)}, et ol z est lui-méme un facteur de Thue-Morse.
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Les fonctions de complexité d'un mot w sont des applications liant chaque
naturel n avec les différents facteurs de w de longueur n.
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Les fonctions de complexité d'un mot w sont des applications liant chaque
naturel n avec les différents facteurs de w de longueur n.

Définition

Soit u = uy -+ - Uy un mot construit sur un alphabet A.

Un sous-mot de u est une sous-suite de (u;)™;.

Un facteur de u est un sous-mot constitué de lettres consécutives.

Autrement dit, tout facteur de u (non vide) est de la forme wjujiq - - Uiy,
avec 1 <i<m0</<m—1.
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Un sous-mot de u est une sous-suite de (u;)™;.

Un facteur de u est un sous-mot constitué de lettres consécutives.

Autrement dit, tout facteur de u (non vide) est de la forme wjujiq - - Uiy,
avec 1 <i<m0</<m—1.

On note (Y) le nombre de fois que le mot x apparait comme sous-mot de u
et |ul|x le nombre de fois qu'il apparait comme facteur de u.
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Les fonctions de complexité d'un mot w sont des applications liant chaque
naturel n avec les différents facteurs de w de longueur n.

Définition

Soit u = uy - -+ Uy, un mot construit sur un alphabet A.

Un sous-mot de u est une sous-suite de (u;)!™;.

Un facteur de u est un sous-mot constitué de lettres consécutives.

Autrement dit, tout facteur de u (non vide) est de la forme vju;iq - - Uiy,
avec 1 <i<m, 0</<m-—i.

On note (;’) le nombre de fois que le mot x apparait comme sous-mot de u
et |ulx le nombre de fois qu'il apparait comme facteur de u.

Exemple

Soit v = 0102010.
Le mot 021 est un sous-mot de u, mais pas un facteur.
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Les fonctions de complexité d'un mot w sont des applications liant chaque
naturel n avec les différents facteurs de w de longueur n.

Définition

Soit u = uy - -+ Uy, un mot construit sur un alphabet A.

Un sous-mot de u est une sous-suite de (u;)™ ;.

Un facteur de u est un sous-mot constitué de lettres consécutives.

Autrement dit, tout facteur de u (non vide) est de la forme wvjujiq - - Uiy,
avec 1 <i<mo</i<m-—i.

On note (Y) le nombre de fois que le mot x apparait comme sous-mot de u
et |ul|x le nombre de fois qu'il apparait comme facteur de v.

Exemple

Soit u = 0102010.
Le mot 021 est un sous-mot de u, mais pas un facteur.
Le mot 0201 est un facteur de u, et donc un sous-mot.
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La fonction de complexité la plus simple est la suivante.
Définition
La complexité factorielle du mot w est la fonction

pw : N — N: n— #Fac,(n).
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La fonction de complexité la plus simple est la suivante.
Définition
La complexité factorielle du mot w est la fonction

pw:N—-N:n— #(Facw(n)/ N=)7

ol U~ v& u=v.
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Exemple

Donnons les premiéres valeurs de la complexité factorielle du mot de
Thue-Morse.

Nous avons
t =0110100110010110---
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Exemple

Donnons les premiéres valeurs de la complexité factorielle du mot de

Thue-Morse.
Nous avons
t = 0110100110010110- - -

et
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Exemple

Donnons les premiéres valeurs de la complexité factorielle du mot de
Thue-Morse.
Nous avons

t =01101001100101101001011001101001 - - -

et
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Exemple
Donnons les premiéres valeurs de la complexité factorielle du mot de

Thue-Morse.

Nous avons
t =0110100110010110- - -

et

pe(n) ‘

n

01 2 3
1 2 4 6
Ensuite, pour tout n > 3, il est connu que

(n) = 4n—2.2M—4 si2-2M<n<L3.2m,
PR =Y 2nt4-2m 2 si3.2m<n<4.2m
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D’autres relations d’équivalence que ~_ peuvent étre définies.

e Relation abélienne : u ~,p1 v & |ul, =|v], Vac A
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D’autres relations d’équivalence que ~_ peuvent étre définies.
Si k € Ny,

e Relation abélienne : u ~,p1 v & |ul, =|v], Vac A

e Relation k-abélienne : u ~apk v & |ulx = |v|x Vx € ASK
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D’autres relations d’équivalence que ~_ peuvent étre définies.
Si k € Ny,

e Relation abélienne : u ~,p1 v & |ul, =|v], Vac A
e Relation k-abélienne : u ~apk v & |ulx = |v|x Vx € ASK
e Relation k-binomiale : u ~y v & ( ) = ( ) Vx € ASk

u v
X X
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D’autres relations d’équivalence que ~_ peuvent étre définies.
Si k € Np,
e Relation abélienne : u ~,p1 v & |ul, =|v], Vac A
e Relation k-abélienne : u ~apk v & |ulx = |v|x Vx € ASK
e Relation k-binomiale : u ~y v & ( ) = ( ) Vx € ASk

u v
X X

C’est avec cette derniére relation que nous allons travailler.
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Définition (rappel)

Soient u et x deux mots. Le coefficient binomial (5) est le nombre de fois
que le mot x apparait comme sous-mot de w.
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Définition (rappel)
Soient u et x deux mots. Le coefficient binomial (!) est le nombre de fois
que le mot x apparait comme sous-mot de w.

Exemple
Si u = aababa,
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Définition (rappel)
Soient u et x deux mots. Le coefficient binomial (!) est le nombre de fois
que le mot x apparait comme sous-mot de w.

Exemple
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si

()= () e
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
( >: ( >VxeA§k.
X X

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(s)=1=(2)

Exemple

Marie Lejeune (Université de Liége) 6 décembre 2018 10 /42



Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
( >: ( >VxeA§k.
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
( ); ( >VxeA§k.
X X

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(£)=2=(0)()=-()

Exemple
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
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Définition (rappel)
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u 14
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
( ); ( >VxeA§k.
X X

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(- 00--)

Exemple
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si
u 14
( ); ( >VxeA§k.
X X

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

()=2= ()6 == () (o)== ()

Exemple
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si

()= () e

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(2)=2= () () =+= () () == ()
<bub> —0- <bvb>'

Exemple
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si

()= () e

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(2)=2= () () =+= (). (o) == ()
<bub> —0- <bvb>’ (L) — <avb>‘

Exemple
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Définition (rappel)
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Définition (rappel)
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()= () e
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Définition (rappel)
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Définition (rappel)
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Définition (rappel)
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Définition (rappel)
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Définition (rappel)

Soient u et v deux mots finis. lls sont k-binomialement équivalents si

()= () e

Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car

(2)=2=()-G) =+=() () == ()
(bub> —0- (bvb>’ <aub> —4 (avb>’ (L) —4 <bva)‘
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Proposition

Pour tous mots u, v et pour tout naturel k,

Unrgi1 V= U"~gV.
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Proposition

Pour tous mots u, v et pour tout naturel k,

Unrgi1 V= U"~gV.

Proposition

Pour tous mots u, v,
U~y Ve Ungy V.

Définition (rappel)

Les mots u et v sont 1-abéliennement équivalents si

(“) —luls = |v]a— <V> Vac A
a a
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Définition

Si w est un mot infini, on lui associe la fonction

b(k) . N = N: n s #(Facyw(n)/~x),

appelée complexité k-binomiale du mot w.
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Définition

Si w est un mot infini, on lui associe la fonction
b(k) . N = N: n s #(Facyw(n)/~x),

appelée complexité k-binomiale du mot w.

Exemple

Pour le mot de Thue-Morse t, nous avons bil)(O) =1 et, pour tout n > 1,

@, [ 3 sin=0 (mod?2);
RNy _{ 2, sinon.
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Exemple (suite)

e Si n= 2/, tout facteur de t est de la forme ¢(z) (avec z € Face(¥))
ou de I'une des formes suivantes, avec z’ € Face(¢ — 1) :

0¢(2')0, 0p(2)1, 1¢(2')0, 1p(Z)1.
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Exemple (suite)

e Si n= 2/, tout facteur de t est de la forme ¢(z) (avec z € Face(¥))

ou de I'une des formes suivantes, avec z’ € Face(¢ — 1) :

0¢(2')0, 0p(2)1, 1¢(2')0, 1p(Z)1.

(gogz)) _ <0<p(02’)1> _ <1go(0z')o> .

(ng(z’)O) el @ <1cp(z’)1> — -1,

Nous avons

0 0
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Exemple (suite)

e Si n= 2/, tout facteur de t est de la forme ¢(z) (avec z € Face(¥))

ou de I'une des formes suivantes, avec z’ € Face(¢ — 1) :
0¢(2')0, 0p(2)1, 1¢(2')0, 1p(Z)1.
Nous avons
(«p(Z)) _ <0<p(2’)1> _ <1<P(Z’)0> _,
0 0 0 ’

(ng(z’)O) _0edl w <1<p(02’)1> 01,
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Exemple (suite)

@ Sin=2¢—1, tout facteur de t est de I'une des formes suivantes, avec
7z € Facy (4 — 1) :

0p(2"), 1p(2'), (2')0, p(2')1.

Marie Lejeune (Université de Liége) 6 décembre 2018 14 / 42



Exemple (suite)

@ Sin=2¢—1, tout facteur de t est de I'une des formes suivantes, avec
7z € Facy (4 — 1) :

0p(2), 1p(2), p(2')0, p(2)1.

Nous avons

Marie Lejeune (Université de Liége) 6 décembre 2018 14 / 42



Exemple (suite)

@ Sin=2¢—1, tout facteur de t est de I'une des formes suivantes, avec
7z € Facy (4 — 1) :

0p(2), 1p(2), p(2')0, p(2)1.

Nous avons

Marie Lejeune (Université de Liége) 6 décembre 2018 14 / 42
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@ Complexité k-binomiale
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Les différentes fonctions de complexité s’emboitent les unes dans les autres.
Proposition
P (n) < b8 (n) <bYT(n) < pu(n) VneN keNg

oll p2° est la fonction de complexité abélienne du mot w.

Marie Lejeune (Université de Liége) 6 décembre 2018 15 /42



Les différentes fonctions de complexité s’emboitent les unes dans les autres.
Proposition
p2(n) < bW (n) < bkt (n) < p,(n) VneN, ke Ny
oll p2° est la fonction de complexité abélienne du mot w.
De plus, de nombreuses propriétés sur la fonction de complexité factorielle

sont connues.

Théoréeme (Morse-Hedlund)

Soit w un mot infini construit sur un alphabet a ¢ lettres. Les trois
affirmations suivantes sont équivalentes.

O Le mot w est ultimement périodique : il existe des mots finis u, v tels
que w = u - v¥.
@ |l existe n € N tel que py(n) < n+¢—1.

© La fonction p,, est bornée par une constante.
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On peut alors définir les mots apériodiques ayant une complexité factorielle
minimale.

Définition
Un mot sturmien est un mot infini pour lequel, pour tout n € N,
p(n) =n+1.
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On peut alors définir les mots apériodiques ayant une complexité factorielle
minimale.

Définition

Un mot sturmien est un mot infini pour lequel, pour tout n € N,

p(n) =n—+1.

Soit w un mot sturmien quelconque. Nous avons, pour tout n > 2,

n < pw(n) < pe(n)-

Cependant, les résultats sont assez différents pour la fonction de
complexité k-binomiale.
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Théoréme (M. Rigo, P. Salimov) J

Soit w un mot sturmien quelconque. Nous avons b{?)(n) = p,,(n) = n + 1.

Ainsi, puisque b()(n) < bl**1)(pn) < p,,(n), nous avons b{¥)(n) = p,,(n)
pour tout k > 2 et pour tout n € N.
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Théoréme (M. Rigo, P. Salimov)

Soit w un mot sturmien quelconque. Nous avons b{?)(n) = p,,(n) = n + 1.

Ainsi, puisque b()(n) < bl**1)(pn) < p,,(n), nous avons b{¥)(n) = p,,(n)
pour tout k > 2 et pour tout n € N.

Ce n’est pas du tout le cas pour le mot de Thue-Morse.

Théoréme (M. Rigo, P. Salimov)

Pour tout k > 1, il existe une constante C, > 0 telle que, pour tout n € N,

b (n) < Cy.
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Ce résultat est méme valide pour tous les mots infinis qui sont points fixes
d’un morphisme Parikh-constant.
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Ce résultat est méme valide pour tous les mots infinis qui sont points fixes
d’un morphisme Parikh-constant.

Définition
Un morphisme o : A* — A* est Parikh-constant si, pour tous a, b, c € A,

lo(a)|c = |o(b)|c. Autrement dit, les images des différentes lettres doivent
&tre égales 3 permutation prés.
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Ce résultat est méme valide pour tous les mots infinis qui sont points fixes
d’un morphisme Parikh-constant.

Définition
Un morphisme o : A* — A* est Parikh-constant si, pour tous a, b, c € A,

lo(a)|c = |o(b)|c. Autrement dit, les images des différentes lettres doivent
&tre égales 3 permutation prés.

Exemple

Le morphisme

0 — 0112
o:{0,1,2}* - {0,1,2}* : { 1 ~— 1201;
2 — 1120;

est Parikh-constant.
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Théoréme (M. L., J. Leroy, M. Rigo)

Soit k un entier strictement positif. Pour tout n < 2K — 1, nous avons

b (n) = pe(n),

tandis que pour tout n > 2k,

|, [ 3:-26=3, sin=0 (mod 2¥);
2 (n)—{ 3.2k — 4. sinon.
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Théoréme (M. L., J. Leroy, M. Rigo)

Soit k un entier strictement positif. Pour tout n < 2K — 1, nous avons

b (n) = pe(n),

tandis que pour tout n > 2k,

3.2k — 4. sinon.

.ok _ B = kY.
bgk)(n):{?) 2k -3, sin=0 (mod 2%);

Les cas k = 1 et k = 2 peuvent étre calculés a la main. Nous allons donc
considérer dans la suite que k > 3.
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o Mise en situation et premiéres définitions
@ Morphismes et mot de Thue-Morse
@ Fonctions de complexité
@ Complexité k-binomiale

e Motivation de |'étude de bgk)

e Calcul de la fonction bék)

@ Factorisations d'ordre k

@ Coefficients binomiaux d’images exactes
@ Types d'ordre k

o

3
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0 Mise en situation et premiéres définitions
@ Morphismes et mot de Thue-Morse
@ Fonctions de complexité
@ Complexité k-binomiale

e Motivation de |'étude de b(tk>

e Calcul de la fonction bék)

@ Factorisations d'ordre k

@ Coefficients binomiaux d’images exactes
@ Types d'ordre k

o

3

«F
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Tous nos raisonnements demandent de calculer explicitement les valeurs de
certains coefficients binomiaux. Nous avons donc besoin de quelques outils.
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Tous nos raisonnements demandent de calculer explicitement les valeurs de
certains coefficients binomiaux. Nous avons donc besoin de quelques outils.

Proposition

Soient u, v des mots finis sur un alphabet A et soient a, b des lettres de A.

Nous avons
va\ [(u 45 u
vb)  \vb ab\ )

ol 0, vaut 1 si a = b, 0 sinon.
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Tous nos raisonnements demandent de calculer explicitement les valeurs de
certains coefficients binomiaux. Nous avons donc besoin de quelques outils.

Proposition

Soient u, v des mots finis sur un alphabet A et soient a, b des lettres de A.

Nous avons
va\ [(u 45 u
vb)  \vb ab\ )

ol 0, vaut 1 si a = b, 0 sinon.

Proposition

Soient u, v’ des mots finis sur un alphabet A, et v = vq - - - v, un mot de

A*. Nous avons
(UUI) Zm ( . ) ( ! >
V V “ . V' V' “ . V .
=0 1 j j+1 m
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Exemple

’ 5 o . . k
[llustrons le calcul d'un coefficient binomial (p“" V(Z)s) sur un exemple.

<0¢3E)0111)1) _
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Exemple
’ 5 o . . k
[llustrons le calcul d'un coefficient binomial (p“" V(z)s) sur un exemple.

(0¢3(()c)111)1> .
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Exemple

, . o k
[llustrons le calcul d'un coefficient binomial (p“" V(z)s) sur un exemple.

<0(,p320111)1) i <¢3(§)11)>
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Exemple

, . o k
[llustrons le calcul d'un coefficient binomial (p“" V(z)s) sur un exemple.

(0¢3(()c>111)1> L. (w(;m)) . <<,o3<811)>
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Exemple

, . o k
[llustrons le calcul d'un coefficient binomial (p“" V(z)s) sur un exemple.

(0993(00111)1> _ <¢3($11)> N <¢3(311)) N (@35)0111))
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Exemple

lllustrons le calcul d'un coefficient binomial (PS"kV(Z)S) sur un exemple.
043(011)1 3(011 3(011 3(011
O _ | (P01 | (PO | (010))
01 1 0 01

Comment peut-on calculer les coefficients du type (“’E/”)) et, de facon plus
)
générale, (5" ‘E”)) ?
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Exemple

[llustrons le calcul d'un coefficient binomial (P‘pkv(z)s) sur un exemple.
0%(011)1 (011 (011 (011
PO _ | (PO | (SO1)) (P01
01 1 0 01

Comment peut-on calculer les coefficients du type (“OS/”)) et, de facon plus
ané ¢t (u)) 7
générale, (¥ ") 7

Chaque fois qu’apparait un facteur 01 ou 10 dans v, on peut le voir
apparaitre dans ¢(u) comme I'image d’une seule lettre de u, ou bien dans
I'image de deux lettres différentes de u.

On va donc étudier les différentes factorisations de v.
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Définition : ¢-factorisation

Soit v un mot fini sur A = {0,1}. Si v contient un au moins un facteur
parmi {01, 10}, il peut étre factorisé sous la forme

V= Wpaiaiwy - - Wyg—1agagwy

= wop(ar)wy - - wi—1p(ar)we

pour £ >1, a1,...,as € Aet wy,...wp € A*.
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Définition : ¢-factorisation

Soit v un mot fini sur A = {0,1}. Si v contient un au moins un facteur
parmi {01, 10}, il peut étre factorisé sous la forme

V= Wpaiaiwy - - Wyg—1agagwy

= wop(ar)wy - - wi—1p(ar)we

pour £ >1, a1,...,as € Aet wy,...wp € A*.
Cette factorisation est appelée p-factorisation de v et elle est codée par le
tuple

k= (|wo|, |wop(ar)wal, ..., |wop(ar)ws ... p(ar—1)we—1]).

L'ensemble des tuples codant les y-factorisations de v est noté p-Fac(v).

v
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.

01101

(01)101
(0)
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.

01101

(01)101 01(10)1 011(01)
(0) (2) (3)
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.

01101
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Exemple

Soit v = 01101. L’arbre des ¢-factorisations de v est le suivant.

01101

Marie Lejeune (Université de Liége) 6 décembre 2018 23 /42



Avant de |'écrire formellement, illustrons le calcul de (S" ”)) sur un exemple

v
et calculons (“’(03%%?01)).
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Avant de |'écrire formellement, illustrons le calcul de (SDV”)) sur un exemple
01101001))
1101 .

et calculons (“0( 0
£(01101001)\  /|u]
01101 ~\5

@ Les 5 lettres de v proviennent de 5 lettres différentes de u.
Ce cas pourrait correspondre a la factorisation triviale x = ().
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Avant de |'écrire formellement, illustrons le calcul de (“"S/”)) sur un exemple

et calculons (50(03%%?01))_

Fomar )= (5)+ 2 (5

z€A3

@ Les 5 lettres de v proviennent de 5 lettres différentes de u.
Ce cas pourrait correspondre a la factorisation triviale k = ().

@ Les deux premiéres lettres de v proviennent de I'image par ¢ d'une
lettre 0 de u, tandis que les trois suivantes proviennent de trois lettres
différentes de u. Ce cas correspond a k = (0).
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Avant de I'écrire formellement, illustrons le calcul de (‘ps“)) sur un exemple

et calculons (“0(0311%?01)) )

Foaon )= ()2 () X ()

zEA3 zEA2 Z/CA

@ Les 5 lettres de v proviennent de 5 lettres différentes de u.
Ce cas pourrait correspondre a la factorisation triviale k = ().

@ Les deux premiéres lettres de v proviennent de I'image par ¢ d'une
lettre 0 de wu, tandis que les trois suivantes proviennent de trois lettres
différentes de u. Ce cas correspond a k = (0).

o Les lettres v3 et v4 proviennent d'un bloc (1) tandis que les 3 autres
lettres proviennet de lettres différentes dans u. La factorisation
associée est © = (2).
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Py ) () () X ()

z€A3

w2 ()

zeA3

@ Les lettres v4 et vs proviennent d'un bloc ¢(0), ce qui correspond a
k= (3).
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(Clooaon ) =()* 2 o)+ 2 ()

3 (20)+ 2 (ors)

zEA3

@ Les lettres v4 et vs proviennent d'un bloc ¢(0), ce qui correspond a
k= (3).

o Les lettres v; et v» proviennent de ¢(0) tandis que v et v4
proviennent de ¢(1). La factorisation associée est x = (0, 2).

Marie Lejeune (Université de Liége) 6 décembre 2018 25 /42



Conon ) =(5) Z (e) + 2 ()

+ 3 () * 2 o12) * 2 (oro)

z€ A3

o Les lettres v4 et v5 proviennent d'un bloc ¢(0), ce qui correspond a
k= (3).

@ Les lettres v; et vy proviennent de ¢(0) tandis que v3 et vq
proviennent de ¢(1). La factorisation associée est x = (0, 2).

o Les lettres v; et v» proviennent de ¢(0), tout comme les lettres v4 et
vs. La factorisation associée est k = (0, 3).
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A chaque factorisation x € p-Fac(v) de la forme
wop(ar)ws - - we—1p(ar)we,
on lui associe le langage
L(v, k) = Alwol g Alwal .o plwe-al 5, plwel

de sorte que le mot v = wyp(a1)ws - - - wy—1¢(ag)wy factorisé comme
indiqué puisse étre vu dans n'importe quel ¢(z), pour z € L(v, k).
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A chaque factorisation x € p-Fac(v) de la forme

wop(ar)w - - - wy_1p(ag)wy,
on lui associe le langage
L(v, k) = Alwolg Almil . Alwealg, plwel
de sorte que le mot v = wyp(a1)ws - - - wy—1¢(ag)wy factorisé comme
indiqué puisse étre vu dans n'importe quel ¢(z), pour z € L(v, k).

On définit alors

fv)= i L(v.k)

Kk€p-Fac(v)

si ¢-Fac(v) contient au moins une factorisation (non triviale). Sinon,
f(v)=0.

L'union |4 doit &tre considérée comme une union de multi-ensembles, ou
les multiplicités des différents éléments sont sommées.
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Exemple (suite)

Si v =01101, nous avions

¢-Fac(v) = {(0),(2), (3),(0,2),(0,3)}
et donc nous avons

£(01101) = £(v, (0)) W L(v, (2)) & L(v, (3)) & L(v, (0,2)) & L(v, (0,3)).
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Rappel

A chaque factorisation de la forme wyp(a1)ws - - - wy_1¢(ag)wy codée par
k = (|wol|, |wop(a1)wal,...), on lui associe le langage

L(v, k) = Alwolg Almil .. Alwe-alg, plwel

Exemple (suite)

Si v = 01101, nous avions
gp—Fac(v) = {(0)? (2)7 (3)7 (07 2)7 (Oa 3)}
et donc nous avons

£((01)101) = L(v, (0)) & L(v, (2)) W L(v, (3)) & L(v, (0,2)) & L(v, (0,3))
= A3
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Rappel

A chaque factorisation de la forme wyp(a1)ws - - - wy_1¢(ag)wy codée par
k = (|wol|, |wop(a1)wal,...), on lui associe le langage

L(v,k) = Alwol g Alwil ... Alwe—1] 5, Alwel

Exemple (suite)

Si v = 01101, nous avions
gp—Fac(v) = {(0)? (2)7 (3)7 (Oa 2)7 (Oa 3)}
et donc nous avons

£(01(10)1) = L(v, (0)) & L(v, (2)) W L(v, (3)) ¥ L(v, (0,2)) & L(v, (0, 3))
= 0A3 W A’1A
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Rappel

A chaque factorisation de la forme wyp(a1)ws - - - wy_1¢(ag)wy codée par
k = (|wol|, |wop(a1)wal,...), on lui associe le langage

L(v, k) = Alwolg Almil .. Alwe-alg, plwel

Exemple (suite)

Si v = 01101, nous avions
gp—Fac(v) = {(0)? (2)7 (3)7 (07 2)7 (Oa 3)}
et donc nous avons

£(011(01)) = L(v, (0)) & L(v, (2)) W L(v, (3)) W L(v, (0,2)) ¥ L(v, (0,3))
=0A3 W A’1A W A%0
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Rappel

A chaque factorisation de la forme wyp(a1)ws - - - wy_1¢(ag)wy codée par
k = (|wol|, |wop(a1)wal,...), on lui associe le langage

L(v,k) = Alwol g Alwil ... Alwe—1] 5, Alwel

Exemple (suite)

Si v = 01101, nous avions
gp—Fac(v) = {(0)? (2)7 (3)7 (Oa 2)7 (Oa 3)}
et donc nous avons

£((01)(10)1) = £L(v, (0)) W L(v, (2)) & L(v, (3)) ¥ L(v, (0,2)) & L(v, (0, 3)
=0A3 W A’1A W A0 WO01A
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Rappel

A chaque factorisation de la forme wyp(a1)ws - - - wy_1¢(ag)wy codée par
k = (|wol|, |wop(a1)wal,...), on lui associe le langage

L(v, k) = Alwolg Almil .. Alwe-alg, plwel

Exemple (suite)

Si v = 01101, nous avions
gp—Fac(v) = {(0)? (2)7 (3)7 (07 2)7 (Oa 3)}
et donc nous avons

£((01)1(01)) = L(v, (0)) & L(v, (2)) & L(v, (3)) ¥ L(v, (0,2)) & L(v, (0, 3)
= 0A%3 W A’1A W A0 WO01A W 0AO.
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Exemple (suite)

Si v =01101, nous avions

p-Fac(v) = {(0),(2),(3),(0,2),(0,3)}
et donc nous avons

£(01101) =L(v, (0)) & L(v, (2)) W L(v, (3)) & L(v, (0,2)) & L(v, (0, 3))
=0A% W A%21A W A30 W 01A W 0A0
—={0000,, 00011, 00103, 00115, 0100, 01017, 01103, 01115,
10105, 1011;,1110,,1111;, 10005, 11005, 0105, 0117, 0001 }.
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Proposition

Pour tous mots finis u et v, nous avons

)=+ %, 2,00

k€p-Fac(v) yeL(v,k)
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Proposition

Pour tous mots finis u et v, nous avons

()= 2,2, 0) = () 32 mom()

k€p-Fac(v) yeL(v,k) y€ef(v)
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

rkEp-Fac(v) yeL(v,k) yef(v)

Exemple (suite)

Nous avions auparavant calculé
©(01101001) |u|
01101 - on

+3 <:0) +3 (o12) + = or0)

cA3 z€EA

> (o)t 3 (et

zeA2 Z/€A
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Proposition

Pour tous mots finis u et v, nous avons

()= 2, 2, 0= () 3 mon)

rkE€p-Fac(v) yeL(v,k) yEf(v)

v

Exemple (suite)

(Fonmm) (). 5 () ¥ ()
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Proposition

Pour tous mots finis u et v, nous avons

()= 2, 2, 0= () 3 mon)

rkE€p-Fac(v) yeL(v,k) yEf(v)

v

Exemple (suite)
©(01101001)\ (|l
< 01101 s )" 2
y€0A3
u
0

+z;3<z -

O+ = (J)

z€EA? Z/€A

N +
y 01z OzO

ze
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)

©(01101001)\  (|u| u u
( 01101 s )" Z y * Z z1Z/
y€L(v,(0)) ZEA2 Z/EA
u u u
* Z <ZO +Z (Olz> Z <OZO>
ZEA3 zEA
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)

(o) () 3 ()0 3 (1)

z€A2 Z/cA
u u u
+ Z <ZO> * Z (Olz> * Z <OZO>'
zeA3 zEA zEA
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)
() 2,
o)

(:

() 2,0)

yeA21A

(01z> * Z <020>

(0))

z€A3
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

y

Exemple (suite)

¢(01101001)\  /ul
< 01101 =\s5)7 2.
yeL(v,(0

() .z, 0)

L(v,(0)) y€eL(v,(2))
u u u
+ Z <20> + Z <Olz> + Z (020)
zEA3 z€EA zZEA
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0)= () 32 o)

kEp-Fac(v) yeL(v,k) y€Ef(v)

y

Exemple (suite)

¢(01101001)\  /ul
< 01101 =\s5)7 2.
yeL(v,(0

() .z, 0)

L(v,(0)) yeL(v,(2))
u u u
+ Z <ZO> + Z <Olz> + Z (020)
zEA3 z€EA zZEA
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, ()= () 32 meoo()

Kk€p-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)

Fa )=(5) 2 G+ =, C)

YEL(v,(0)) YEL(v,(2))
u u u
= 2 ()2 (o) * S o)
y€eA30 zEA ZEA
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0=

k€p-Fac(v) yeL(v,k)

I
O
\_/

+

§

Q‘
A
\_/

Exemple (suite)

©(01101001)
01101

(-
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, 0=

k€p-Fac(v) yeL(v,k)

Il
O
S

+

.?
Q
A
\/

Exemple (suite)

©(01101001)
01101

(-
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, ()= () 32 moo ()

k€p-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)

() 5,00, 3,0

yEL(v,(0)) yEL(v,(2))

u u u
i (y) p> (y) +2 (020)'
YEL(v,(3)) y€O0lA z€EA
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<<,0(01101001)> _<|u|> "
1101 a
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)
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Pour tous mots finis u et v, nous avons

(V)= 2, 2, ()= () 32 moo ()

k€p-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)
IRy )

<<,0(01101001)> _<|u|> N
1101 -
0110 > YEL(v,(2))

= > () > ()2 ()
Y/ 2y VY zeoa VY

YEL(v,(3))

y€L(v,(0))
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Proposition

Pour tous mots finis u et v, nous avons

(V)= 2, 2, ()= () 32 moo ()

k€p-Fac(v) yeL(v,k) y€Ef(v)

Exemple (suite)

)(2)- 5,0

)
yeL(v.(0)) yeL(n(2)

N ORI LN )]
Y y€L(v,(0,2)) 4 z€L(v,(0,3)) Y

yEL(v+(3))
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En appliquant plusieurs fois la proposition précédente, nous obtenons une
formule permettant de calculer les coefficients d'images exactes / fois.

Proposition

Pour tous mots finis u, v et pour tout £ > 1, nous avons

()=5 & mom () £ mtn(()

i=0 yefi(v yeft(v
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En appliquant plusieurs fois la proposition précédente, nous obtenons une
formule permettant de calculer les coefficients d'images exactes / fois.

Proposition

Pour tous mots finis u, v et pour tout £ > 1, nous avons

()=5 & mom () £ mtn(()

i=0 yefi(v yeft(v

Corollaire

Si u et ' sont deux mots finis de méme longueur, alors, pour tout mot fini
Vv, NOUS avons

(") -(V) = 2 e [()- ()]

yeft(v)
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0 Mise en situation et premiéres définitions
@ Morphismes et mot de Thue-Morse
@ Fonctions de complexité
@ Complexité k-binomiale

e Motivation de |'étude de bgk)

e Calcul de la fonction bék)

@ Factorisations d'ordre k

@ Coefficients binomiaux d’images exactes
@ Types d'ordre k

o

3

«F

o>



Comment calculer bgk)(n)? [l faut regarder, pour chaque paire de mots

u,v € Facp(t), si u ~ v ou non.
Nous allons exploiter le fait que tout facteur u peut s'écrire

pe(2)s.
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Comment calculer bgk)(n)? [l faut regarder, pour chaque paire de mots

u,v € Facp(t), si u ~ v ou non.
Nous allons exploiter le fait que tout facteur u peut s'écrire

pe(2)s.

Définition : factorisation d'ordre k

Soit u € Fac(t). S'il existe (p, s) € A<?* x A<?“, a,b € Aet z € Fac(t)
tels que

o u=pp(z)s;
@ p est un suffixe propre de ©*(a);
@ s est un préfixe propre de *(b);

alors (p, s) est appelée factorisation d’ordre k de u tandis que le triplet
(a, z, b) est appelé désubstitution d’ordre k de u.
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Cette écriture est-elle unique?
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Cette écriture est-elle unique?
Non : le facteur 010 apparait dans t plusieurs fois, et peut donc étre écrit
comme 0¢p(1) ou ¢(0)0.

t=01-10-10-01-10-01-01-10---
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Cette écriture est-elle unique?
Non : le facteur 010 apparait dans t plusieurs fois, et peut donc étre écrit

comme 0¢p(1) ou ¢(0)0.
t=01-10-10-01-10-01-01-10---

Proposition

Soit u un facteur de t de longueur au moins 2 — 1. Le mot u posséde
exactement deux factorisations différentes d'ordre k si et seulement s'il est
facteur de ©*~1(010) ou de ©*~1(101).
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Cette écriture est-elle unique?
Non : le facteur 010 apparait dans t plusieurs fois, et peut donc étre écrit
comme 0¢p(1) ou ¢(0)0.

t=01-10-10-01-10-01-01-10---

Proposition

Soit u un facteur de t de longueur au moins 2 — 1. Le mot u posséde
exactement deux factorisations différentes d'ordre k si et seulement s'il est
facteur de ©*~1(010) ou de ©*~1(101). Sinon, il posséde une unique
factorisation d’ordre k.
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Cette écriture est-elle unique?
Non : le facteur 010 apparait dans t plusieurs fois, et peut donc étre écrit
comme 0¢p(1) ou ¢(0)0.

t=01-10-10-01-10-01-01-10---

Proposition

Soit u un facteur de t de longueur au moins 2 — 1. Le mot u posséde
exactement deux factorisations différentes d’ordre k si et seulement s'il est
facteur de ©*~1(010) ou de ©*~1(101). Sinon, il posséde une unique
factorisation d’ordre k.

De plus, si u posséde deux factorisations (p,s) et (p,s’), nous avons

ol = 1P/l = [Is] = |s'|] = 2%,

Nous allons travailler uniquement avec des facteurs de longueur au moins
2k —1.
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Exemple
Considérons le facteur v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -
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Exemple
Considérons le facteur v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Ainsi, (0,1001011) et (01001,011) sont les deux factorisations d’ordre 3 de
u.
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Exemple
Considérons le facteur v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Ainsi, (0,1001011) et (01001,011) sont les deux factorisations d’ordre 3 de
u. Les désubstitutions associées sont (1,¢,1) et (0,¢,0).
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Exemple
Considérons le facteur v = 01001011.

t= g03(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Ainsi, (0,1001011) et (01001,011) sont les deux factorisations d’ordre 3 de
u. Les désubstitutions associées sont (1,¢,1) et (0,¢,0).
Remarquons que

(0,1001011) = (0, ¢?(1)011)

et

(01001,011) = (0¢?(1),011).
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Exemple
Considérons le facteur v = 01001011.

t= <p3(t) =01101001 - 10010110 - 10010110 - 01101001-
10010110 - 01101001 - 01101001 - - -

Ainsi, (0,1001011) et (01001,011) sont les deux factorisations d’ordre 3 de
u. Les désubstitutions associées sont (1,¢,1) et (0,¢,0).
Remarquons que
(0,1001011) = (0, ¢?(1)011)
et
(01001,011) = (0¢?(1),011).

Que faire pour les facteurs qui ont deux factorisations ? Nous allons définir
une relation d’équivalence sur les factorisations, de sorte que si un mot
posséde deux factorisations, celles-ci sont équivalentes.
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o Mise en situation et premiéres définitions
@ Morphismes et mot de Thue-Morse
@ Fonctions de complexité
@ Complexité k-binomiale

e Motivation de |'étude de bgk)

e Calcul de la fonction bék)

@ Factorisations d'ordre k

@ Coefficients binomiaux d’images exactes
@ Types d'ordre k

o
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Définition : équivalence =
Soient (p1,s1) et (p2, s2) deux couples de A< % A<?“_ Ceux-ci sont
équivalents pour =4 s'il existe a € A, x,y € A* tels que I'un des cas
suivants a lieu :
Q [pi| +[s1| = [p2| + |s2] et
0 (p1,51) = (P2752)

@ (p1,51) = (xp ( ), y) et (p2, %) = (x, 0" (a)y);
o (p1, 1)=(X7 “Y(a)y) et (p2,%2) = (XSO 1(3)7 )
0 (p1,51) = (¢ 71(a), " 1(d)) et (p2, 2) = (¢*1(3), " 1(a));
(2] 1(|P1| +|s1]) = (Ip2] + |s2])| = 2% et
0 (p1,51) = (x.y) et (p2,%2) = (x¢* (@), 1 (a)y)
0 (p1,51) = (xp*(a), ¥ 1(3)y) et (p2,5) = (x,¥).
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Définition : équivalence =
Soient (p1, s1) et (p2, s2) deux couples de A< % A<?“_ Ceux-ci sont
équivalents pour =4 s'il existe a € A, x,y € A* tels que I'un des cas
suivants a lieu :
Q |pi| + [s1] = [p2| + [s2] et
0 (p1,51) = (P2,52)

@ (p1,51) = (xp ( ), y) et (p2,52) = (x, 0" *(a)y);

0 (p1,s1) = (x, »Ok Y(a)y) et (p2,%2) = (x¢**(a), ¥);

0 (p1,51) = (¥*71(a), ¢*71(3)) et (P2, 2) = (¥*71(3), ¥*1(a)):
@ [(|p1] + Is1]) = (Ip2] + [s2])] = 2% et

0 (p1,51) = (x, )et(pz,Sz) (xp*1(a), o ()y);
@ (p1,51) = (xp*"1(a), " 1(3)y) et (p2, %) = (x,¥)-

Exemple (suite)

Le mot u = 01001011 possédait les deux factorisations (0, ©%(1)011) et
(0¢?(1),011). Cela correspond au cas (1.3), avec x = 0, y = 011.
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Proposition

g k N g g
Si un mot u € A2 ~1 posséde deux factorisations (p1,s1) et (p2, s2), alors
celles-ci sont équivalentes pour =.

Soit u € A22*~1 QOn peut donc définir le type de u d’ordre k comme la
classe d’équivalence de ses factorisations. On note (p,, s,) le type d'ordre k
de u, avec |p,| minimal.
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Proposition

g k N g g
Si un mot u € A2 ~1 posséde deux factorisations (p1,s1) et (p2, s2), alors
celles-ci sont équivalentes pour =.

Soit u € A22*~1 QOn peut donc définir le type de u d’ordre k comme la
classe d’équivalence de ses factorisations. On note (p,, s,) le type d'ordre k
de u, avec |p,| minimal.

On peut également avoir deux mots différents, dont les factorisations sont
équivalentes. Alors, les deux mots dont elles proviennent sont équivalents.
Cela vient des résultats suivants.
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Proposition (Ochsenschlager)

Pour tout kK > 1, nous avons

P(0) ~i (1) et 9F(0) ka1 H(1).

Donc, pour tous mots z, 2’ de méme longueur, ©¥(z) ~x ©*(Z').
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Proposition (Ochsenschlager)

Pour tout kK > 1, nous avons
©*(0) ~k 0¥ (1) et ©*(0) ugr ©*(1).

Donc, pour tous mots z,z’ de méme longueur, ©*(z) ~x p*(2)).

Proposition (Lemme du transfert)

Soient k > 1 et u,z,z' € A* des mots tels que |z| = |Z’|. Nous avons

" (1) (') ~i X (2) " (u).
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Proposition (Ochsenschlager)

Pour tout k > 1, nous avons
©*(0) ~k © (1) et ©*(0) Hrp1 ¥*(1).

Donc, pour tous mots z, z’ de méme longueur, ©*(z) ~x o (2').

Proposition (Lemme du transfert)

Soient k > 1 et u,z,z' € A* des mots tels que |z| = |Z/|. Nous avons

o 7 (w) " (2) ~k 0% (2) "M ().

Exemple

Soient x, y, z, z' des mots tels que |z| = |Z/|. Soit a € {0,1}. Nous avons

P12 (Z) ~ o (2)* M (a).
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Proposition (Ochsenschlager)

Pour tout k > 1, nous avons
©*(0) ~k © (1) et ©*(0) Hrp1 ¥*(1).

Donc, pour tous mots z, z’ de méme longueur, ©*(z) ~x o (2').

Proposition (Lemme du transfert)

Soient k > 1 et u,z,z' € A* des mots tels que |z| = |Z/|. Nous avons

o 7 (w) " (2) ~k 0% (2) "M ().

Exemple

Soient x, y, z, z' des mots tels que |z| = |Z/|. Soit a € {0,1}. Nous avons

xp* (@) (2 )y ~i x*(2)p* 1 (a)y.
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Ces deux résultats ménent au théoréme suivant.

Théoréme

Soient u et v deux facteurs de t de longueur n > 2K — 1. Nous avons

UV < (pu;su) =k (pv;sv)-
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Ces deux résultats ménent au théoréme suivant.

Théoréme

Soient u et v deux facteurs de t de longueur n > 2K — 1. Nous avons

UV < (pmsu) =k (Pva)-

Le sens < est direct; il suffit de considérer tous les cas dans la définition
de =K.
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Ces deux résultats ménent au théoréme suivant.

Théoréme

Soient u et v deux facteurs de t de longueur n > 2K — 1. Nous avons

UV < (pwsu) =k (pwsv)-

Le sens < est direct; il suffit de considérer tous les cas dans la définition
de =K.
Pour prouver =, on va plutdt démontrer la contraposée :

(pwsu) ?—ék (Pva) = u 7ék v,

en faisant appel a 2 résultats principaux.
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Lemme 1

Si u=xu'y et v=xv'y sont deux mots de méme longueur tels que v/ et
v/ n'ont pas de préfixe ni suffixe commun et n’ayant pas le méme type
d’ordre k, alors si v’ (et v') sont de longueur au moins 2k _ 1, les mots o/
et v/ ne sont pas non plus de méme type d’ordre k.
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Lemme 1

Si u=xu'y et v=xv'y sont deux mots de méme longueur tels que v/ et
v/ n'ont pas de préfixe ni suffixe commun et n’ayant pas le méme type
d’ordre k, alors si v’ (et v') sont de longueur au moins 2k _ 1, les mots u
et v/ ne sont pas non plus de méme type d’ordre k.

/

Lemme 2

Soient u, v € Fac,(t) deux mots de longueur au moins 2¥ — 1 sans préfixe
ni suffixe commun et n'ayant pas le méme type d’'ordre k. Alors u % v.
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Démonstration du théoréme
Supprimons les préfixes et suffixes communs de u et v.

o Si |u'| > 2K — 1, par le Lemme 1, les mots obtenus n’ont pas le méme
type d'ordre k. Vu le Lemme 2, ils ne sont pas équivalents.
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Démonstration du théoréme
Supprimons les préfixes et suffixes communs de u et v.
o Si |u'| > 2K — 1, par le Lemme 1, les mots obtenus n’ont pas le méme
type d'ordre k. Vu le Lemme 2, ils ne sont pas équivalents.

@ Sinon, on prend le plus grand j pour lequel le type d'ordre j est bien
défini.

Marie Lejeune (Université de Liége) 6 décembre 2018 38 /42



Démonstration du théoréme
Supprimons les préfixes et suffixes communs de u et v.
o Si |u'| > 2K — 1, par le Lemme 1, les mots obtenus n’ont pas le méme
type d'ordre k. Vu le Lemme 2, ils ne sont pas équivalents.
@ Sinon, on prend le plus grand j pour lequel le type d'ordre j est bien
défini.
Si les deux mots n’ont pas le méme type d'ordre j, on applique le
Lemme 2.
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Démonstration du théoréme
Supprimons les préfixes et suffixes communs de u et v.
o Si |u'| > 2K — 1, par le Lemme 1, les mots obtenus n’ont pas le méme
type d'ordre k. Vu le Lemme 2, ils ne sont pas équivalents.
@ Sinon, on prend le plus grand j pour lequel le type d'ordre j est bien
défini.
Si les deux mots n’ont pas le méme type d'ordre j, on applique le

Lemme 2.
Sinon, on revient 3 la définition de =;. On montre que v’ ;11 v/ en

calculant
u v/
(our) ~ (o)
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Démonstration du théoréme
Supprimons les préfixes et suffixes communs de u et v.
o Si |u'| > 2K — 1, par le Lemme 1, les mots obtenus n’ont pas le méme
type d'ordre k. Vu le Lemme 2, ils ne sont pas équivalents.
@ Sinon, on prend le plus grand j pour lequel le type d'ordre j est bien
défini.
Si les deux mots n’ont pas le méme type d'ordre j, on applique le

Lemme 2.
Sinon, on revient 3 la définition de =;. On montre que v’ ;11 v/ en

calculant
u v/
(01f> B (011)'
Le méme raisonnement permet de montrer que pour tous facteurs

u,v € Fac(t) de longueur au plus 2K — 1, nous avons u 7 v.
Ainsi, pour tout n < 2K — 1, pour tout k > 3, nous avons bEk)(n) = pe(n).
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Théoréme (rappel)

Soient u et v deux facteurs de t de longueur n > 2% — 1. Nous avons

ur~g v & (pussu) =k (Pv,Sv)-

Corollaire
Soient k > 3 et n > 2X. Nous avons

bt (n) = #(Facy(t)/ ~k) = #({(Pu, su) : u € Faca(t)}/ =)
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Théoréme (rappel)

Soient u et v deux facteurs de t de longueur n > 2% — 1. Nous avons

ur~g v & (pussu) =k (Pv,Sv)-

Corollaire
Soient k > 3 et n > 2X. Nous avons

b{¥)(n) = #(Faca(t)/ ~k) = #({(pu: 5u) : u € Faca(t)}/=¢)

Il reste a calculer cette derniére quantité. Fixons n € N.
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Pour tout £ € {0,...,2k"1 — 1}, définissons

Pe = {(pu;su) : u € Faca(t), |pul = € ou |py| =21 + ¢}

Ainsi,
2k—1_1
{(pu,su) : u € Facy(t U P, et
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Pour tout £ € {0,...,2¥" — 1}, définissons
Py = {(pu,su) : u € Fac,(t), |pu] = £ ou |p,| =271 4 ¢}.
Ainsi,
ok—1_1 ok—1_1
{(pus su) + u € Faco(t U Pe et b{(n) = #(Pe/ =)
Il existe ¢y tel que
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Pour tout ¢ € {0,...,2%~1 — 1}, définissons
Pe = {(pu;su) : u € Faca(t), |pul = € ou |py| =21 + ¢}
Ainsi,
ok—1_1 ok—1_1
{(pus su) + u € Faco(t U Pe et b{(n) = #(Pe/ =)
Il existe ¢p tel que

Notons A = n mod 2%. Nous avons

2k=1 1 siA=0ou \=2k1;
k—1 — ) '
#{0,...,2 1}\{07&)} { ok—1 — 2, sinon.
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De plus, nous pouvons montrer que

3, siA=0;
#((PoUPy)/=k) =1 2, sia=2"1
8, sinon;
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De plus, nous pouvons montrer que

3, siA=0;
#((PoUPy)/=k) =14 2, six=2k1
8, sinon;
et que, pour tout ¢ ¢ {0, ¢y},
#(Py/=k) = 6.
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Ainsi, regroupant toutes ces informations,
2kt

# ({(pu,su) 1 u € Facy(t)}/=x) = # U P,

6@k1—n+3 si A =0;
= 6Qk1—U+2 si A = 2k—1;

6 (2K~ —2) 48, sinon,
32k—3 si A= 0;
3.2k — 4. sinon,

ce qui donne le résultat annoncé depuis le début de I'exposé.
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