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Dé�nition

Un morphisme sur l'alphabet A est une application

σ : A∗ → A∗

telle que, pour tout mot u = u1 · · · un ∈ A∗,

σ(u) = σ(u1) · · ·σ(un).

S'il existe une lettre a ∈ A telle que σ(a) commence par la lettre a et si

limn→+∞ |σn(a)| = +∞, alors on peut dé�nir le mot in�ni

σω(a) = lim
n→+∞

σn(a).

On dit que c'est un point �xe du morphisme σ.
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Exemple (Thue-Morse)

Dé�nissons le morphisme de Thue-Morse

ϕ : {0, 1}∗ → {0, 1}∗ :

{
0 7→ 01 = 00;
1 7→ 10 = 11.

Nous avons

ϕ(0) = 01,

ϕ2(0) = 0110,

ϕ3(0) = 01101001,

. . .

Nous pouvons alors dé�nir le mot de Thue-Morse comme un des deux

points �xes du morphisme ϕ :

t := ϕω(0) = 0110100110010110 · · ·
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Remarque

Puisque t est un point �xe de ϕ, nous avons

t = ϕ(t) = ϕ2(t) = ϕ3(t) = · · · .

Ainsi, tout facteur de t peut s'écrire

pϕk(z)s,

où k ≥ 1, p (resp., s) est un su�xe (resp., pré�xe) propre d'un des mots

{ϕk(0), ϕk(1)}, et où z est lui-même un facteur de Thue-Morse.
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Les fonctions de complexité d'un mot w sont des applications liant chaque

naturel n avec les di�érents facteurs de w de longueur n.

Dé�nition

Soit u = u1 · · · um un mot construit sur un alphabet A.
Un sous-mot de u est une sous-suite de (uj)

m
j=1

.

Un facteur de u est un sous-mot constitué de lettres consécutives.

Autrement dit, tout facteur de u (non vide) est de la forme uiui+1 · · · ui+`,
avec 1 ≤ i ≤ m, 0 ≤ ` ≤ m − i .

On note
(u
x

)
le nombre de fois que le mot x apparait comme sous-mot de u

et |u|x le nombre de fois qu'il apparait comme facteur de u.

Exemple
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Soit u = 0102010.

Le mot 021 est un sous-mot de u, mais pas un facteur.
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Les fonctions de complexité d'un mot w sont des applications liant chaque

naturel n avec les di�érents facteurs de w de longueur n.

Dé�nition

Soit u = u1 · · · um un mot construit sur un alphabet A.
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m
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.
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et |u|x le nombre de fois qu'il apparait comme facteur de u.

Exemple

Soit u = 0102010.

Le mot 021 est un sous-mot de u, mais pas un facteur.

Le mot 0201 est un facteur de u, et donc un sous-mot.
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La fonction de complexité la plus simple est la suivante.

Dé�nition

La complexité factorielle du mot w est la fonction

pw : N→ N : n 7→ #Facw (n).
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La fonction de complexité la plus simple est la suivante.

Dé�nition

La complexité factorielle du mot w est la fonction

pw : N→ N : n 7→ #(Facw (n)/ ∼=),

où u ∼= v ⇔ u = v .
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Exemple

Donnons les premières valeurs de la complexité factorielle du mot de

Thue-Morse.

Nous avons

t = 0110100110010110 · · ·
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Exemple

Donnons les premières valeurs de la complexité factorielle du mot de
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t = 0110100110010110 · · ·
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n 0 1 2 3 · · ·
pt(n) 1
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Exemple

Donnons les premières valeurs de la complexité factorielle du mot de

Thue-Morse.

Nous avons

t = 01101001100101101001011001101001 · · ·

et

n 0 1 2 3 · · ·
pt(n) 1 2 4 6
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Exemple

Donnons les premières valeurs de la complexité factorielle du mot de

Thue-Morse.

Nous avons

t = 0110100110010110 · · ·

et

n 0 1 2 3 · · ·
pt(n) 1 2 4 6 · · ·

Ensuite, pour tout n ≥ 3, il est connu que

pt(n) =

{
4n − 2 · 2m − 4, si 2 · 2m < n ≤ 3 · 2m;
2n + 4 · 2m − 2, si 3 · 2m < n ≤ 4 · 2m.
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D'autres relations d'équivalence que ∼= peuvent être dé�nies.

Si k ∈ N0,

• Relation abélienne : u ∼ab,1 v ⇔ |u|a = |v |a ∀a ∈ A

• Relation k-abélienne : u ∼ab,k v ⇔ |u|x = |v |x ∀x ∈ A≤k

• Relation k-binomiale : u ∼k v ⇔
(u
x

)
=
(v
x

)
∀x ∈ A≤k

C'est avec cette dernière relation que nous allons travailler.
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Dé�nition (rappel)

Soient u et x deux mots. Le coe�cient binomial
(u
x

)
est le nombre de fois

que le mot x apparait comme sous-mot de u.
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Si u = aababa, (
u

ab
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= ?
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Dé�nition (rappel)

Soient u et v deux mots �nis. Ils sont k-binomialement équivalents si(
u

x

)
=

(
v

x

)
∀x ∈ A≤k .
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Dé�nition (rappel)
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u
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(
v

x

)
∀x ∈ A≤k .
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Les mots u = bbaabb et v = babbab sont 2-binomialement équivalents car(
u

a

)
= 1 =

(
v

a

)
.
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Proposition

Pour tous mots u, v et pour tout naturel k ,

u ∼k+1 v ⇒ u ∼k v .

Proposition

Pour tous mots u, v ,
u ∼1 v ⇔ u ∼ab,1 v .

Dé�nition (rappel)

Les mots u et v sont 1-abéliennement équivalents si(
u

a

)
=|u|a = |v |a=

(
v

a

)
∀a ∈ A.
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Dé�nition

Si w est un mot in�ni, on lui associe la fonction

b
(k)
w : N→ N : n 7→ #(Facw (n)/∼k),

appelée complexité k-binomiale du mot w .

Exemple

Pour le mot de Thue-Morse t, nous avons b
(1)
t

(0) = 1 et, pour tout n ≥ 1,

b
(1)
t

(n) =

{
3, si n ≡ 0 (mod 2);
2, sinon.

Marie Lejeune (Université de Liège) 6 décembre 2018 12 / 42



Dé�nition

Si w est un mot in�ni, on lui associe la fonction

b
(k)
w : N→ N : n 7→ #(Facw (n)/∼k),

appelée complexité k-binomiale du mot w .

Exemple

Pour le mot de Thue-Morse t, nous avons b
(1)
t

(0) = 1 et, pour tout n ≥ 1,

b
(1)
t

(n) =

{
3, si n ≡ 0 (mod 2);
2, sinon.

Marie Lejeune (Université de Liège) 6 décembre 2018 12 / 42



Exemple (suite)

Si n = 2`, tout facteur de t est de la forme ϕ(z) (avec z ∈ Fact(`))
ou de l'une des formes suivantes, avec z ′ ∈ Fact(`− 1) :

0ϕ(z ′)0, 0ϕ(z ′)1, 1ϕ(z ′)0, 1ϕ(z ′)1.

Nous avons (
ϕ(z)

0

)
=

(
0ϕ(z ′)1

0

)
=

(
1ϕ(z ′)0

0

)
= `,(

0ϕ(z ′)0

0

)
= `+ 1 et

(
1ϕ(z ′)1

0

)
= `− 1,

donc b
(1)
t

(n) = 3.

Marie Lejeune (Université de Liège) 6 décembre 2018 13 / 42



Exemple (suite)

Si n = 2`, tout facteur de t est de la forme ϕ(z) (avec z ∈ Fact(`))
ou de l'une des formes suivantes, avec z ′ ∈ Fact(`− 1) :

0ϕ(z ′)0, 0ϕ(z ′)1, 1ϕ(z ′)0, 1ϕ(z ′)1.

Nous avons (
ϕ(z)

0

)
=

(
0ϕ(z ′)1

0

)
=

(
1ϕ(z ′)0

0

)
= `,(

0ϕ(z ′)0

0

)
= `+ 1 et

(
1ϕ(z ′)1

0

)
= `− 1,

donc b
(1)
t

(n) = 3.

Marie Lejeune (Université de Liège) 6 décembre 2018 13 / 42



Exemple (suite)

Si n = 2`, tout facteur de t est de la forme ϕ(z) (avec z ∈ Fact(`))
ou de l'une des formes suivantes, avec z ′ ∈ Fact(`− 1) :

0ϕ(z ′)0, 0ϕ(z ′)1, 1ϕ(z ′)0, 1ϕ(z ′)1.

Nous avons (
ϕ(z)

0

)
=

(
0ϕ(z ′)1

0

)
=

(
1ϕ(z ′)0

0

)
= `,(

0ϕ(z ′)0

0

)
= `+ 1 et

(
1ϕ(z ′)1

0

)
= `− 1,

donc b
(1)
t

(n) = 3.

Marie Lejeune (Université de Liège) 6 décembre 2018 13 / 42



Exemple (suite)

Si n = 2`− 1, tout facteur de t est de l'une des formes suivantes, avec

z ′ ∈ Fact(`− 1) :

0ϕ(z ′), 1ϕ(z ′), ϕ(z ′)0, ϕ(z ′)1.

Nous avons (
0ϕ(z ′)

0

)
=

(
ϕ(z ′)0

0

)
= `,(

1ϕ(z ′)

0

)
=

(
ϕ(z ′)1

0

)
= `− 1,

donc b
(1)
t

(n) = 2.
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Plan

1 Mise en situation et premières dé�nitions

Morphismes et mot de Thue-Morse

Fonctions de complexité

Complexité k-binomiale

2 Motivation de l'étude de b
(k)
t

3 Calcul de la fonction b
(k)
t

Coe�cients binomiaux d'images exactes

Factorisations d'ordre k
Types d'ordre k



Les di�érentes fonctions de complexité s'emboîtent les unes dans les autres.

Proposition

ρabw (n) ≤ b
(k)
w (n) ≤ b

(k+1)
w (n) ≤ pw (n) ∀n ∈ N, k ∈ N0

où ρabw est la fonction de complexité abélienne du mot w .

De plus, de nombreuses propriétés sur la fonction de complexité factorielle

sont connues.

Théorème (Morse-Hedlund)

Soit w un mot in�ni construit sur un alphabet à ` lettres. Les trois
a�rmations suivantes sont équivalentes.

1 Le mot w est ultimement périodique : il existe des mots �nis u, v tels

que w = u · vω.
2 Il existe n ∈ N tel que pw (n) < n + `− 1.

3 La fonction pw est bornée par une constante.
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On peut alors dé�nir les mots apériodiques ayant une complexité factorielle

minimale.

Dé�nition

Un mot sturmien est un mot in�ni pour lequel, pour tout n ∈ N,
p(n) = n + 1.

Soit w un mot sturmien quelconque. Nous avons, pour tout n ≥ 2,

n < pw (n) < pt(n).

Cependant, les résultats sont assez di�érents pour la fonction de

complexité k-binomiale.
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Théorème (M. Rigo, P. Salimov)

Soit w un mot sturmien quelconque. Nous avons b(2)w (n) = pw (n) = n + 1.

Ainsi, puisque b
(k)
w (n) ≤ b

(k+1)
w (n) ≤ pw (n), nous avons b(k)w (n) = pw (n)

pour tout k ≥ 2 et pour tout n ∈ N.

Ce n'est pas du tout le cas pour le mot de Thue-Morse.

Théorème (M. Rigo, P. Salimov)

Pour tout k ≥ 1, il existe une constante Ck > 0 telle que, pour tout n ∈ N,

b
(k)
t

(n) ≤ Ck .
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Ce résultat est même valide pour tous les mots in�nis qui sont points �xes

d'un morphisme Parikh-constant.

Dé�nition

Un morphisme σ : A∗ → A∗ est Parikh-constant si, pour tous a, b, c ∈ A,
|σ(a)|c = |σ(b)|c . Autrement dit, les images des di�érentes lettres doivent

être égales à permutation près.

Exemple

Le morphisme

σ : {0, 1, 2}∗ → {0, 1, 2}∗ :


0 7→ 0112;
1 7→ 1201;
2 7→ 1120;

est Parikh-constant.
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Théorème (M. L., J. Leroy, M. Rigo)

Soit k un entier strictement positif. Pour tout n ≤ 2k − 1, nous avons

b
(k)
t

(n) = pt(n),

tandis que pour tout n ≥ 2k ,

b
(k)
t

(n) =

{
3 · 2k − 3, si n ≡ 0 (mod 2k);
3 · 2k − 4, sinon.

Les cas k = 1 et k = 2 peuvent être calculés à la main. Nous allons donc

considérer dans la suite que k ≥ 3.
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Tous nos raisonnements demandent de calculer explicitement les valeurs de

certains coe�cients binomiaux. Nous avons donc besoin de quelques outils.

Proposition

Soient u, v des mots �nis sur un alphabet A et soient a, b des lettres de A.
Nous avons (

ua

vb

)
=

(
u

vb

)
+ δa,b

(
u

v

)
,

où δa,b vaut 1 si a = b, 0 sinon.

Proposition

Soient u, u′ des mots �nis sur un alphabet A, et v = v1 · · · vm un mot de

A∗. Nous avons (
uu′

v

)
=

m∑
j=0

(
u

v1 · · · vj

)(
u′

vj+1 · · · vm

)
.
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Exemple

Illustrons le calcul d'un coe�cient binomial
(pϕk (z)s

v

)
sur un exemple.(

0ϕ3(011)1

01

)
=
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Exemple
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(
ϕ3(011)

1

)
+

(
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0
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(
ϕ3(011)

01

)
.

Comment peut-on calculer les coe�cients du type
(
ϕ(u)
v

)
et, de façon plus

générale,
(
ϕ`(u)
v

)
?
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Comment peut-on calculer les coe�cients du type
(
ϕ(u)
v

)
et, de façon plus

générale,
(
ϕ`(u)
v

)
?

Chaque fois qu'apparait un facteur 01 ou 10 dans v , on peut le voir

apparaitre dans ϕ(u) comme l'image d'une seule lettre de u, ou bien dans

l'image de deux lettres di�érentes de u.
On va donc étudier les di�érentes factorisations de v .
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Dé�nition : ϕ-factorisation

Soit v un mot �ni sur A = {0, 1}. Si v contient un au moins un facteur

parmi {01, 10}, il peut être factorisé sous la forme

v = w0a1a1w1 · · ·w`−1a`a`w`
= w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w`

pour ` ≥ 1, a1, . . . , a` ∈ A et w0, . . .w` ∈ A∗.

Cette factorisation est appelée ϕ-factorisation de v et elle est codée par le

tuple

κ = (|w0|, |w0ϕ(a1)w1|, . . . , |w0ϕ(a1)w1 . . . ϕ(a`−1)w`−1|).

L'ensemble des tuples codant les ϕ-factorisations de v est noté ϕ-Fac(v).
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parmi {01, 10}, il peut être factorisé sous la forme

v = w0a1a1w1 · · ·w`−1a`a`w`
= w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w`

pour ` ≥ 1, a1, . . . , a` ∈ A et w0, . . .w` ∈ A∗.
Cette factorisation est appelée ϕ-factorisation de v et elle est codée par le

tuple

κ = (|w0|, |w0ϕ(a1)w1|, . . . , |w0ϕ(a1)w1 . . . ϕ(a`−1)w`−1|).

L'ensemble des tuples codant les ϕ-factorisations de v est noté ϕ-Fac(v).
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101

(01)101

(0)
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101

(01)101

(0)

01(10)1

(2)
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101

(01)101

(0)

01(10)1

(2)

011(01)

(3)
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101

(01)101

(0)

(01)(10)1

(0,2)

01(10)1

(2)

011(01)

(3)
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Exemple

Soit v = 01101. L'arbre des ϕ-factorisations de v est le suivant.

01101

(01)101

(0)

(01)(10)1

(0,2)

(01)1(01)

(0,3)

01(10)1

(2)

011(01)

(3)
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Avant de l'écrire formellement, illustrons le calcul de
(
ϕ(u)
v

)
sur un exemple

et calculons
(
ϕ(01101001)

01101

)
.
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Avant de l'écrire formellement, illustrons le calcul de
(
ϕ(u)
v

)
sur un exemple

et calculons
(
ϕ(01101001)

01101

)
.(
ϕ(01101001)

01101

)
=

(
|u|
5

)

Les 5 lettres de v proviennent de 5 lettres di�érentes de u.
Ce cas pourrait correspondre à la factorisation triviale κ = ().
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Avant de l'écrire formellement, illustrons le calcul de
(
ϕ(u)
v

)
sur un exemple

et calculons
(
ϕ(01101001)

01101

)
.(

ϕ(01101001)

(01)101

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)

Les 5 lettres de v proviennent de 5 lettres di�érentes de u.
Ce cas pourrait correspondre à la factorisation triviale κ = ().

Les deux premières lettres de v proviennent de l'image par ϕ d'une

lettre 0 de u, tandis que les trois suivantes proviennent de trois lettres

di�érentes de u. Ce cas correspond à κ = (0).
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Avant de l'écrire formellement, illustrons le calcul de
(
ϕ(u)
v

)
sur un exemple

et calculons
(
ϕ(01101001)

01101

)
.(

ϕ(01101001)

01(10)1

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)
+

∑
z∈A2,z ′∈A

(
u

z1z ′

)

Les 5 lettres de v proviennent de 5 lettres di�érentes de u.
Ce cas pourrait correspondre à la factorisation triviale κ = ().

Les deux premières lettres de v proviennent de l'image par ϕ d'une

lettre 0 de u, tandis que les trois suivantes proviennent de trois lettres

di�érentes de u. Ce cas correspond à κ = (0).

Les lettres v3 et v4 proviennent d'un bloc ϕ(1) tandis que les 3 autres

lettres proviennet de lettres di�érentes dans u. La factorisation

associée est κ = (2).
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(
ϕ(01101001)

011(01)

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)
+

∑
z∈A2,z ′∈A

(
u

z1z ′

)

+
∑
z∈A3

(
u

z0

)

Les lettres v4 et v5 proviennent d'un bloc ϕ(0), ce qui correspond à

κ = (3).
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(
ϕ(01101001)

(01)(10)1

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)
+

∑
z∈A2,z ′∈A

(
u

z1z ′

)

+
∑
z∈A3

(
u

z0

)
+
∑
z∈A

(
u

01z

)

Les lettres v4 et v5 proviennent d'un bloc ϕ(0), ce qui correspond à

κ = (3).

Les lettres v1 et v2 proviennent de ϕ(0) tandis que v3 et v4
proviennent de ϕ(1). La factorisation associée est κ = (0, 2).
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(
ϕ(01101001)

(01)1(01)

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)
+

∑
z∈A2,z ′∈A

(
u

z1z ′

)

+
∑
z∈A3

(
u

z0

)
+
∑
z∈A

(
u

01z

)
+
∑
z∈A

(
u

0z0

)

Les lettres v4 et v5 proviennent d'un bloc ϕ(0), ce qui correspond à

κ = (3).

Les lettres v1 et v2 proviennent de ϕ(0) tandis que v3 et v4
proviennent de ϕ(1). La factorisation associée est κ = (0, 2).

Les lettres v1 et v2 proviennent de ϕ(0), tout comme les lettres v4 et

v5. La factorisation associée est κ = (0, 3).
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A chaque factorisation κ ∈ ϕ-Fac(v) de la forme

w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w`,

on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|,

de sorte que le mot v = w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` factorisé comme

indiqué puisse être vu dans n'importe quel ϕ(z), pour z ∈ L(v , κ).

On dé�nit alors

f (v) =
⊎

κ∈ϕ-Fac(v)

L(v , κ)

si ϕ-Fac(v) contient au moins une factorisation (non triviale). Sinon,

f (v) = ∅.
L'union

⊎
doit être considérée comme une union de multi-ensembles, où

les multiplicités des di�érents éléments sont sommées.
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indiqué puisse être vu dans n'importe quel ϕ(z), pour z ∈ L(v , κ).

On dé�nit alors

f (v) =
⊎

κ∈ϕ-Fac(v)

L(v , κ)

si ϕ-Fac(v) contient au moins une factorisation (non triviale). Sinon,

f (v) = ∅.
L'union

⊎
doit être considérée comme une union de multi-ensembles, où

les multiplicités des di�érents éléments sont sommées.
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Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f (01101) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3)).
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Rappel

A chaque factorisation de la forme w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` codée par

κ = (|w0|, |w0ϕ(a1)w1|, . . .), on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|.

Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f ((01)101) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

= 0A3
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Rappel

A chaque factorisation de la forme w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` codée par

κ = (|w0|, |w0ϕ(a1)w1|, . . .), on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|.

Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f (01(10)1) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

= 0A3 ] A21A
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Rappel

A chaque factorisation de la forme w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` codée par

κ = (|w0|, |w0ϕ(a1)w1|, . . .), on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|.

Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f (011(01)) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

= 0A3 ] A21A ] A30
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Rappel

A chaque factorisation de la forme w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` codée par

κ = (|w0|, |w0ϕ(a1)w1|, . . .), on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|.

Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f ((01)(10)1) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

= 0A3 ] A21A ] A30 ] 01A
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Rappel

A chaque factorisation de la forme w0ϕ(a1)w1 · · ·w`−1ϕ(a`)w` codée par

κ = (|w0|, |w0ϕ(a1)w1|, . . .), on lui associe le langage

L(v , κ) := A|w0|a1A
|w1| · · ·A|w`−1|a`A

|w`|.

Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f ((01)1(01)) = L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

= 0A3 ] A21A ] A30 ] 01A ] 0A0.
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Exemple (suite)

Si v = 01101, nous avions

ϕ-Fac(v) = {(0), (2), (3), (0, 2), (0, 3)}

et donc nous avons

f (01101) =L(v , (0)) ] L(v , (2)) ] L(v , (3)) ] L(v , (0, 2)) ] L(v , (0, 3))

=0A3 ] A21A ] A30 ] 01A ] 0A0

={00002, 00011, 00103, 00112, 01002, 01011, 01103, 01112,
10102, 10111, 11102, 11111, 10002, 11002, 0102, 0111, 0001}.
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Proposition

Pour tous mots �nis u et v , nous avons(
ϕ(u)

v

)
=

(
|u|
|v |

)
+

∑
κ∈ϕ-Fac(v)

∑
y∈L(v ,κ)

(
u

y

)
.
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Proposition

Pour tous mots �nis u et v , nous avons(
ϕ(u)

v

)
=

(
|u|
|v |

)
+

∑
κ∈ϕ-Fac(v)

∑
y∈L(v ,κ)

(
u

y

)
=

(
|u|
|v |

)
+
∑

y∈f (v)

mf (v)(y)

(
u

y

)
.
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Proposition

Pour tous mots �nis u et v , nous avons(
ϕ(u)

v

)
=

(
|u|
|v |

)
+

∑
κ∈ϕ-Fac(v)

∑
y∈L(v ,κ)

(
u

y

)
=

(
|u|
|v |

)
+
∑

y∈f (v)

mf (v)(y)

(
u

y

)
.

Exemple (suite)

Nous avions auparavant calculé(
ϕ(01101001)

01101

)
=

(
|u|
5

)
+
∑
z∈A3

(
u

0z

)
+

∑
z∈A2,z ′∈A

(
u

z1z ′

)

+
∑
z∈A3

(
u

z0

)
+
∑
z∈A

(
u

01z

)
+
∑
z∈A

(
u

0z0

)
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Proposition
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En appliquant plusieurs fois la proposition précédente, nous obtenons une

formule permettant de calculer les coe�cients d'images exactes ` fois.

Proposition

Pour tous mots �nis u, v et pour tout ` ≥ 1, nous avons(
ϕ`(u)

v

)
=

`−1∑
i=0

∑
y∈f i (v)

mf i (v)(y)

(
|ϕ`−i−1(u)|
|v |

)
+

∑
y∈f `(v)

mf `(v)(y)

(
u

y

)
.

Corollaire

Si u et u′ sont deux mots �nis de même longueur, alors, pour tout mot �ni

v , nous avons(
ϕ`(u)

v

)
−
(
ϕ`(u′)

v

)
=

∑
y∈f `(v)

mf `(v)(y)

[(
u

y

)
−
(
u′

y

)]
.
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Comment calculer b
(k)
t

(n) ? Il faut regarder, pour chaque paire de mots

u, v ∈ Facn(t), si u ∼k v ou non.

Nous allons exploiter le fait que tout facteur u peut s'écrire

pϕk(z)s.

Dé�nition : factorisation d'ordre k

Soit u ∈ Fac(t). S'il existe (p, s) ∈ A<2
k × A<2

k
, a, b ∈ A et z ∈ Fac(t)

tels que

u = pϕk(z)s ;

p est un su�xe propre de ϕk(a) ;

s est un pré�xe propre de ϕk(b) ;

alors (p, s) est appelée factorisation d'ordre k de u tandis que le triplet

(a, z , b) est appelé désubstitution d'ordre k de u.
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Cette écriture est-elle unique ?

Non : le facteur 010 apparait dans t plusieurs fois, et peut donc être écrit

comme 0ϕ(1) ou ϕ(0)0.

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · 10 · · ·

Proposition

Soit u un facteur de t de longueur au moins 2k − 1. Le mot u possède

exactement deux factorisations di�érentes d'ordre k si et seulement s'il est

facteur de ϕk−1(010) ou de ϕk−1(101). Sinon, il possède une unique

factorisation d'ordre k .
De plus, si u possède deux factorisations (p, s) et (p′, s ′), nous avons
||p| − |p′|| = ||s| − |s ′|| = 2k−1.

Nous allons travailler uniquement avec des facteurs de longueur au moins

2k − 1.
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Exemple

Considérons le facteur u = 01001011.

t = ϕ3(t) =01101001 · 10010110 · 10010110 · 01101001·
10010110 · 01101001 · 01101001 · · ·

Ainsi, (0, 1001011) et (01001, 011) sont les deux factorisations d'ordre 3 de

u. Les désubstitutions associées sont (1, ε, 1) et (0, ε, 0).
Remarquons que

(0, 1001011) = (0, ϕ2(1)011)

et

(01001, 011) = (0ϕ2(1), 011).

Que faire pour les facteurs qui ont deux factorisations ? Nous allons dé�nir

une relation d'équivalence sur les factorisations, de sorte que si un mot

possède deux factorisations, celles-ci sont équivalentes.
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Dé�nition : équivalence ≡k

Soient (p1, s1) et (p2, s2) deux couples de A<2
k × A<2

k
. Ceux-ci sont

équivalents pour ≡k s'il existe a ∈ A, x , y ∈ A∗ tels que l'un des cas

suivants a lieu :
1 |p1|+ |s1| = |p2|+ |s2| et

1 (p1, s1) = (p2, s2) ;
2 (p1, s1) = (xϕk−1(a), y) et (p2, s2) = (x , ϕk−1(a)y) ;
3 (p1, s1) = (x , ϕk−1(a)y) et (p2, s2) = (xϕk−1(a), y) ;
4 (p1, s1) = (ϕk−1(a), ϕk−1(a)) et (p2, s2) = (ϕk−1(a), ϕk−1(a)) ;

2

∣∣(|p1|+ |s1|)− (|p2|+ |s2|)
∣∣ = 2k et

1 (p1, s1) = (x , y) et (p2, s2) = (xϕk−1(a), ϕk−1(ā)y) ;
2 (p1, s1) = (xϕk−1(a), ϕk−1(ā)y) et (p2, s2) = (x , y).
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Exemple (suite)

Le mot u = 01001011 possédait les deux factorisations (0, ϕ2(1)011) et

(0ϕ2(1), 011). Cela correspond au cas (1.3), avec x = 0, y = 011.
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Proposition

Si un mot u ∈ A≥2
k−1 possède deux factorisations (p1, s1) et (p2, s2), alors

celles-ci sont équivalentes pour ≡k .

Soit u ∈ A≥2
k−1. On peut donc dé�nir le type de u d'ordre k comme la

classe d'équivalence de ses factorisations. On note (pu, su) le type d'ordre k
de u, avec |pu| minimal.

On peut également avoir deux mots di�érents, dont les factorisations sont

équivalentes. Alors, les deux mots dont elles proviennent sont équivalents.

Cela vient des résultats suivants.
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Proposition (Ochsenschläger)

Pour tout k ≥ 1, nous avons

ϕk(0) ∼k ϕ
k(1) et ϕk(0) 6∼k+1 ϕ

k(1).

Donc, pour tous mots z , z ′ de même longueur, ϕk(z) ∼k ϕ
k(z ′).

Proposition (Lemme du transfert)

Soient k ≥ 1 et u, z , z ′ ∈ A∗ des mots tels que |z | = |z ′|. Nous avons

ϕk−1(u)ϕk(z ′) ∼k ϕ
k(z)ϕk−1(u).

Exemple

Soient x , y , z , z ′ des mots tels que |z | = |z ′|. Soit a ∈ {0, 1}. Nous avons
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Proposition (Lemme du transfert)

Soient k ≥ 1 et u, z , z ′ ∈ A∗ des mots tels que |z | = |z ′|. Nous avons

ϕk−1(u)ϕk(z ′) ∼k ϕ
k(z)ϕk−1(u).

Exemple

Soient x , y , z , z ′ des mots tels que |z | = |z ′|. Soit a ∈ {0, 1}. Nous avons
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Ces deux résultats mènent au théorème suivant.

Théorème

Soient u et v deux facteurs de t de longueur n ≥ 2k − 1. Nous avons

u ∼k v ⇔ (pu, su) ≡k (pv , sv ).

Le sens ⇐ est direct ; il su�t de considérer tous les cas dans la dé�nition

de ≡k .

Pour prouver ⇒, on va plutôt démontrer la contraposée :

(pu, su) 6≡k (pv , sv ) ⇒ u 6∼k v ,

en faisant appel à 2 résultats principaux.
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Lemme 1

Si u = xu′y et v = xv ′y sont deux mots de même longueur tels que u′ et
v ′ n'ont pas de pré�xe ni su�xe commun et n'ayant pas le même type

d'ordre k , alors si u′ (et v ′) sont de longueur au moins 2k − 1, les mots u′

et v ′ ne sont pas non plus de même type d'ordre k .

Lemme 2

Soient u, v ∈ Facn(t) deux mots de longueur au moins 2k − 1 sans pré�xe

ni su�xe commun et n'ayant pas le même type d'ordre k . Alors u 6∼k v .
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Démonstration du théorème

Supprimons les pré�xes et su�xes communs de u et v .

Si |u′| ≥ 2k − 1, par le Lemme 1, les mots obtenus n'ont pas le même

type d'ordre k . Vu le Lemme 2, ils ne sont pas équivalents.

Sinon, on prend le plus grand j pour lequel le type d'ordre j est bien
dé�ni.

I Si les deux mots n'ont pas le même type d'ordre j , on applique le

Lemme 2.
I Sinon, on revient à la dé�nition de ≡j . On montre que u′ 6∼j+1 v

′ en

calculant (
u′

01j

)
−
(
v ′

01j

)
.

Le même raisonnement permet de montrer que pour tous facteurs

u, v ∈ Fac(t) de longueur au plus 2k − 1, nous avons u 6∼k v .

Ainsi, pour tout n ≤ 2k − 1, pour tout k ≥ 3, nous avons b
(k)
t

(n) = pt(n).
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Théorème (rappel)

Soient u et v deux facteurs de t de longueur n ≥ 2k − 1. Nous avons

u ∼k v ⇔ (pu, su) ≡k (pv , sv ).

Corollaire

Soient k ≥ 3 et n ≥ 2k . Nous avons

b
(k)
t

(n) = #(Facn(t)/∼k) = #({(pu, su) : u ∈ Facn(t)}/≡k)

Il reste à calculer cette dernière quantité. Fixons n ∈ N0.
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Pour tout ` ∈ {0, . . . , 2k−1 − 1}, dé�nissons

P` = {(pu, su) : u ∈ Facn(t), |pu| = ` ou |pu| = 2k−1 + `}.

Ainsi,

{(pu, su) : u ∈ Facn(t)} =
2
k−1−1⋃
`=0

P` et b
(k)
t

(n) =
2
k−1−1∑
`=0

#(P`/≡k).

Il existe `0 tel que

P`0 = {(pu, su) : u ∈ Facn(t), |su| = 0 ou |su| = 2k−1}.

Notons λ = n mod 2k . Nous avons

#{0, . . . , 2k−1 − 1} \ {0, `0} =

{
2k−1 − 1, si λ = 0 ou λ = 2k−1;
2k−1 − 2, sinon.
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De plus, nous pouvons montrer que

# ((P0 ∪ P`0)/≡k) =


3, si λ = 0;
2, si λ = 2k−1;
8, sinon;

et que, pour tout ` 6∈ {0, `0},

# (P`/≡k) = 6.
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Ainsi, regroupant toutes ces informations,

# ({(pu, su) : u ∈ Facn(t)}/≡k) = #
2
k−1−1⋃
`=0

P`

=


6 (2k−1 − 1) + 3, si λ = 0;
6 (2k−1 − 1) + 2, si λ = 2k−1;
6 (2k−1 − 2) + 8, sinon,

=

{
3 · 2k − 3, si λ = 0;
3 · 2k − 4, sinon,

ce qui donne le résultat annoncé depuis le début de l'exposé.
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