Study of Main-Belt and Near-Earth Asteroids with TRAPPIST and larger telescopes

Marin Ferrais

Supervisor: EmmanuËl Jehin

University of Liège STAR Institute

January 2018

Introduction

The origins of the Solar System

Why to study asteroids ?

Artist view of the early Solar System (NASA)
\rightarrow Pristine material
\rightarrow Building blocks of the planets
\rightarrow Dynamical evolution of the Solar System
\rightarrow Impact history
\rightarrow Threat to Earth

Main-Belt Asteroids (MBAs)

- More than 700000 asteroids known in the Main-Belt
- About 200 larger than 100 km
- Various shapes, sizes and compositions \rightarrow but lack of observations!

Asteroids in the Solar System

(25143) Itokawa (JAXA)
(253) Mathilde (NASA)
(4) Vesta (NASA)

Optical asteroid lightcurves: master thesis

Shape model of (20) Massalia (ISAM)

Data acquisition/reduction TRAPPIST telescopes

- TRAPPIST-South: ESO La Silla Observatory (Chile)
- TRAPPIST-North: Oukaïmeden Observatory (Morocco)
\rightarrow Twin robotic telescopes
$\rightarrow \mathrm{D}=0.6 \mathrm{~m}$
\rightarrow Good observing sites
\rightarrow A lot of observation time
\rightarrow Large sky coverage
\rightarrow Long observing runs using both telescopes

[^0]
TRAPPIST rotational lightcurves

Phased lightcurve of (89) Julia (master thesis)

What can we learn from asteroid lightcurves?

Period spectrum of (89) Julia with the FALC method

Shape model of (89) Julia

- Determination of the rotation period (Fourier analysis)
- Rotation state (excited or relaxed rotation)
- Spin axis coordinates (lightcurves inversion)
- Global convex shape model (lightcurves inversion)

Probing the interior of primordial Main-Belt asteroids ESO Large Programme (PI: Vernazza P.)

- AO observations of the 40 largest ($\mathrm{D} \geq 100 \mathrm{~km}$) MBAs with the new SPHERE instrument at the ESO VLT
- TRAPPIST + VLT AO \rightarrow shape modelling \rightarrow precise volume \rightarrow bulk density

AO image of (7) Iris
Resolution of $\sim 2.3 \mathrm{~km} /$ pixel !

Detailed models from multi data sources modelling

Comparison of the VLT AO observations (top) and the shape model (bottom) of (7) Iris at different rotation phases (Hanus J.,...Ferrais M. et al., Submitted to A\&A)

- Snapshots are taken at different viewing geometries with the AO instrument VLT/SPHERE
- Rotation lightcurves are needed to have a full coverage

What can we learn from detailed 3D shapes?

- 3D shape \rightarrow volume \rightarrow density (uncertainty $<10 \%$)
\rightarrow constraints on the bulk compositions
\rightarrow constraints on the interior of asteroids (macroporosity)
- Origin of compositional classes (S, C, M)
- Crater size-frequency distribution (density of the outer shell)
- Origin of asteroid collisional families
\rightarrow Open new doors into ground-based asteroid exploration

Identification of the impact crater (Nonza) at the origin of the Julia family (Vernazza P.,...Ferrais M. et al., A\&A 168, 154 (2018))

ESO Large Programme: target list

Targets (MBAs)	Type	Date	Mag
(2) Pallas	B	$01 / 04 / 19$	7.5
(3) Juno	S	$01 / 11 / 18$	7.3
(4) Vesta	V	$01 / 11 / 19$	6.5
(6) Hebe	S	$01 / 01 / 19$	8.1
(7) Iris	S	$01 / 04 / 19$	9.1
(8) Flora	S	$01 / 05 / 19$	9.5
(9) Metis	S	$01 / 12 / 19$	8.5
(10) Hygiea	C	$01 / 12 / 19$	10.2
(11) Parthenope	Sk	$01 / 06 / 19$	9.3
(12) Victoria	S	$01 / 11 / 18$	10.1
(13) Egeria	Ch	$01 / 09 / 19$	10.5
(15) Eunomia	S	$01 / 09 / 18$	8.1
(16) Psyche	M / P	$01 / 08 / 19$	9.2
(18) Melpomene	S	$01 / 07 / 19$	9.1
(19) Fortuna	Ch	$01 / 05 / 19$	10.6
(20) Massalia*	S	$01 / 01 / 18$	8.3
(22) Kalliope*	M	$01 / 03 / 18$	10.7
(24) Themis	B	$01 / 10 / 17$	11.5
(29) Amphitrite	S	$01 / 10 / 19$	8.5
(31) Euphrosyne*	C	$01 / 01 / 18$	10.1
(40) Harmonia	S	$01 / 12 / 18$	9.3

(41) Daphne*	Ch	$01 / 08 / 18$	10.8
(45) Eugenia*	C	$01 / 04 / 18$	10.6
(48) Doris	Ch	$01 / 02 / 19$	10.8
(51) Nemausa	S	$01 / 08 / 19$	10.3
(52) Europa	C	$01 / 11 / 19$	10.6
(87) Sylvia	P	$01 / 12 / 18$	11.5
(88) Thisbe	B	$01 / 08 / 18$	9.5
(89) Julia*	S	$01 / 09 / 17$	8.6
(128) Nemesis	C	$01 / 12 / 18$	10.5
(145) Adeona*	Ch	$01 / 01 / 18$	10.7
(187) Lamberta*	Ch	$01 / 04 / 18$	10.1
(216) Kleopatra	M	$01 / 01 / 19$	10.4
(324) Bamberga	C	$01 / 01 / 19$	10.1
(354) Eleonora	S	$01 / 12 / 18$	10.1
(451) Patientia	C	$01 / 03 / 19$	11.1
(476) Hedwig*	P	$01 / 11 / 18$	12.1
(511) Davida	B	$01 / 01 / 20$	9.5
(532) Herculina	S	$01 / 03 / 19$	8.6
(596) Scheila*	P / D	$01 / 06 / 17$	11.6
(704) Interamnia	B	$01 / 01 / 19$	10.1

Near-Earth Asteroids (NEAs)

NEA approaching the Earth

NEA (3122) Florence

- NEAs are much smaller asteroids
- ~ 19000 known NEAs (fast growing number)
- Threat to the Earth
- Population steadily resupplied from Main-Belt
- Source of the various types of meteorites
- Seen at widely different viewing geometries

2014 JO25 in radar

Impact crater on Earth (Meteor Crater)

Lightcurve variation with the phase angle

 The example of (3200) Phaethon
(Ferrais et al., in prep)

Phase-polarization curves of NEAs

- Linear degree of polarization: $P_{r}=\frac{I_{\perp}-I_{\|}}{I_{\perp}+I_{\|}}$
- Diagnostic of surface properties including the geometric albedo, refractive index and the size of regolith particles
- Rotational polarimetric curves \rightarrow albedo maps
\rightarrow comparison with shape models

Typical phase-polarization curves for NEAs of S and B type (M. Devogèle, 2018)

Target list of NEAs Collaboration with M. Devogèle (Lowell, USA)

Target (NEAs)	Type	Date	Mag
(433) Eros	S	Jan-Mar	1912.1
(1627) Ivar	S	Oct-Dec	1812.2
(1916) Boreas	S	Sep-Nov	1816.6
(2061) Anza	?	Sep-Nov	1815.6
(3552) Don Quixote	?	Sep-Nov	1816.3
(6456) Golombek	D	Oct-Dec	1815.2
(13553) Masaakikoyama	?	Oct-Dec	1814.5
(16690) 1998 QS52	Sq	Sep-Nov	1815.2
(18109) 2000 NG11	?	Oct-Dec	1815.6
(418929) 2009 DM1	?	Oct-Dec	1815.1
(443923) 2002 RU25	?	Oct-Dec	1815.4
2000 LC16	Xk	Oct-Dec	1814.7
2001 CP44	?	Oct-Dec	1813.1
2001 TE42	?	Sep-Nov	1815.8
2002 RU25	?	Sep-Nov	1815.3
2005 UD	B	Oct-Dec	1815.7
2008 WM64	?	Jan-Mar	1915.3
2009 DM1	?	Oct-Dec	1815.7
2011UA	?	Oct-Dec	1815.1
2012 MS4	?	Jan-Mar	1916.3
2015 FP118	?	Oct-Dec	1814.6

NEAs for which polarimetric observation time have already been allocated

Top: C2PU observatory
Bottom left: DCT at Lowell observatory Bottom right: RCC-2m at Rozhen

First publications

- Vernazza P.,...Ferrais M. et al., A\&A 168, 154 (2018).

The impact crater at the origin of the Julia family detected with VLT/SPHERE?

- Viikinkoski M.,...Ferrais M. et al., A\&A letter 619, 3 (2018). (16) Psyche: A mesosiderite-like asteroid?
- Carry B.,...Ferrais M. et al., Submitted to A\&A.

The homogeneous internal structure of CM-like asteroid (41) Daphne.

- Hanus J.,...Ferrais M. et al., Submitted to A\&A .

Evidence of an ancient large impact on (7) Iris.

- Ferrais M., Jehin E., Manfroid J., Moulane Y., Pozuelos F., submitted to Minor Planet Bulletin.
TRAPPIST lightcurves of Main-Belt asteroids (31) Euphrosyne, (41) Daphne and (89) Julia.
- Ferrais M., Jehin E., et al., in preparation for A\&A. TRAPPIST observations of NEA (3200) Phaethon during its 2017 flyby

Summary

[^0]: https://www.trappist.uliege.be/

