Proof-of-concept proposal

Development of a negative self-vaccine against Type 1 diabetes based on central tolerogenic properties of the thymus

Pr Vincent Geenen
Research director at F.S.R.
Uliège GIGA Research Institute
Center of Immunoendocrinology
A thymus defect in type 1 diabetes (T1D)

Thymus physiology
- AIRE-regulated transcription of T1D related self-antigens in thymus epithelium
 - $IGF2 > IGF1 >> INS$
 - $GAD67 >> GAD65$
- Deletion of T cells with high affinity for T1D related self-peptide complexes.
- Selection of CD4+ CD25+ Foxp3+ tTreg, specific of T1D related self-peptides.

Thymus physiopathology
- Absence or decrease in expression/presentation of T1D related self-peptides in the thymus (BB rat, APECED/APS-1, ...)
- Enrichment of T-cell repertoire with ‘forbidden’ self-reactive effector T cells (Teff).
- Decrease in selection of tTreg with specificity to T1D related self-antigens.

Bridge between self-reactive Teff and target T1D antigens
- Role of environmental factors (viruses, diet, vitamin D deficiency, stress...)

Islet β cells
The concept of « negative self-vaccination »:
Thymus T1D self-antigens for reprogramming tolerance to β cells

In the thymus

SELF-TOLERANCE TO β CELLS
Clonal deletion and anergy of self-reactive T cells
Generation of specific tTreg

In pancreatic islets

AUTOIMMUNITY TO β CELLS
Activation of self-reactive T cells
Induction of memory T cells

TCR
Self-antigens
IGF-2, GAD67

T1D related antigens
Insulin, GAD65

= « Altered » self
Acknowledgments

GIGA Research Institute
Center of Immunoendocrinology

Henri Martens, PhD
Virginie Gridellet, PhD
Barbara Polese, PhD
Khalil FARHAT, MSc
Aymen HALOUANI, MSc
Chantal Renard, Technician
Pr Sophie Perrier d’Hauterive, MD, PhD
Pr Vincent Geenen, MD, PhD

University of Lille 2 – CHRU Lille
Laboratory of Virology

Hela Jaïdane, PhD
Pr Didier Hober, MD, PhD