

Exposure to mixtures of Persistent Organic Pollutants (POPs) can reduce the transactivation activities of Aryl hydrocarbon Receptor (AhR) in Dioxin Responsive (DR)-H4IIE cells Doan TQ.¹, Muller M.², Connolly L.³, Scippo ML.^{1*}

1 Department of Food Science, FARAH, ULiège. 2 GIGA-R, Laboratory for Organogenesis and Regeneration, ULiège. 3 Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast

Corresponding author: mlscippo@uliege.be

INTRODUCTION

- Persistent organic pollutants (POPs) are defined as organic chemicals
- resistant to degradation in the environment
- bioaccumulate and biomagnify in living organisms

RESULTS

Only 4 out of the 29 compounds showed AhR agonistic activities on DR-H4IIE cells

Table 1: EC50, efficiency and potency values for the 5 AhR agonistic compounds in DR-H4IIE cells.

have potential harmful impacts on humans and wildlife

Humans are exposed to POP mixtures.

- However, most available scientific data focus on:
- the effect of single compounds at a time
- do not address the cocktail/mixture effect of mixtures of POPs

POPs and Early Menopause in U.S. Women http://t.co/ycXekUG2AA"

> This study aims to determine *in vitro* the cocktail effect of a mixture of POPs in reporter cell lines at the level of the Aryl hydrocarbon Receptor (AhR) function.

*AhR is a key receptor regulating the metabolism of xenobiotics including POPs.

MATERIALS AND METHODS

	PBDE 99	PBDE 153	PBDE 154	PCB 118	PCB 138
ΕС50 (μΜ)	0.15±0.07	Not full curve	0.26±0.7	9.5±3.7	6.1±10.7
Efficiency	10%	15%	8%	39%	11%
Potency	1.0E-7	-	1.8E-8	6.3E-07	4.07E-07

* Efficiency = Rmax (maximum response expressed in % of the maximum response of TCDD) * Potency = EC50 TCDD / EC50 substance, with EC50 TCDD (DR-H4IIE) = 15 pM, EC50 TCDD (DR-T47D) = 150 pM

In contrast, 19 out of 29 compounds showed AhR antagonistic activities on DR-H4IIE cells

Table 2: IC 50 and efficiency values of the POP Mixture and 19 AhR antagonistic compounds in DR-H4IIE cells.

	POP r	nixtures	PBDE 47	PBDE 99	HBCD	PFOA	PFNA
IC50 (μM)	5.07	7 ± 2.02	0.051 ± 0.033	0.047 ± 0.024	0.32 ± 0.49	71.3 ± 802.5	22.2 ± 89.1
Efficiency	3	36%	18.3%	38.3%	58.3%	69%	67.5%
	PCB 28	PCB 52	PCB 101	PCB 138	PCB 153	PCB 180	PCB 118
IC50 (μM)	5.9 ± 8.6	3.6 ± 1.3	~ 3.6 ± 9438	1.002 ± 0.2	7.2 ± 12.9	7.8 ± 12.8	~ 4.3
Efficiency	27.6%	22.6%	58%	21%	21%	20.3%	62%
	HCB	α-chlordane	o-chlordrane	t-nonachlor	αΗϹΗ	үНСН	Dieldrin
IC50 (μM)	28.4 ± 83.2	~ 350 ± 2611	~ 55885 ± 31E7	59.67 ± 299.5	18.5 ± 17.6	20.6 ± 14.1	17 ± 5.3
Efficiency	64.6%	19%	26.7%	45.7%	68.7%	45.7%	69.3%

*Efficiency = Response obtained for the higher tested concentration, expressed in % of the response of 15 pM TCDD

POP Mixture effect: antagonistic

120 **T**

- Dioxin Responsive and luciferase gene transformed rat hepatoma DR-H4IIE
- Induced light production will be in proportion with the concentration of Ahr ligands.

PFCs	PBDES	PFCs	Chlorinat	ed compounds
PFHxS	PBDE 47	PFHxS	PCB 28	HCB
PFOS	PBDE 99	PFOS	PCB 52	α -chlordane
PFOA	BDE 100	PFOA	PCB 101	o-chlordane
PFNA	BDE 153	PFNA	PCB 118	t-nonachlor
PFDA	BDE 154	PFDA	PCB 138	α-HCH

24h incubation Cytotoxicity assays **Determination of** luciferase activities

Figure 1: Dose-response curves of the POP Mixture (POPs), GNF-351 (a typical AhR antagonistic) and PBED 47 (the most efficiency AhR antagonistic in the mixture) on DR-H4IIE cells co-exposed with 15 pM TCDD.

- \succ The effect starts increasing significantly when the mixture concentration is 75 times higher than their levels in the human blood.
- According to the addition concentration model (Payne et al., 2000): Calculated IC50 = 16.8 μM < Measured IC50 = 5.07 ± 2.02 μM

DISCUSSIONS AND CONCLUSIONS

- The POP Mixture is an AhR antagonistic in DR-H4IIE cells.
- The compounds in the POP Mixture could act additively or even synergically

Mixture

*Concentration = 1000 x human blood levels

(Stockholm Convention on Persistent Organic Pollutants) Berntsen et al., 2017

as AhR antagonists in DR-H4IIE cells.

* Extrapolating from *in vitro* to *in vivo*, we could say that a contamination incident leading to an increase of the POP mixture blood concentration up to 75 times the background level could result in an inhibition of the AhR transactivation activities.

REFERENCES

Berntsen, H.F, Berg, V. Thomsen, C., Ropstad E., & Zimmer, K.E. (2017) The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies, Journal of Toxicology and Environmental Health, Part A, 80:16-18, 1002-1016

Payne, J., Nissanka, R., Megan, W., & Andreas, K. 2000. "Prediction and Assessment of the Effects of Mixtures of Four Xenoestrogens." Environmental Health Perspectives 108(10):983-87.

