

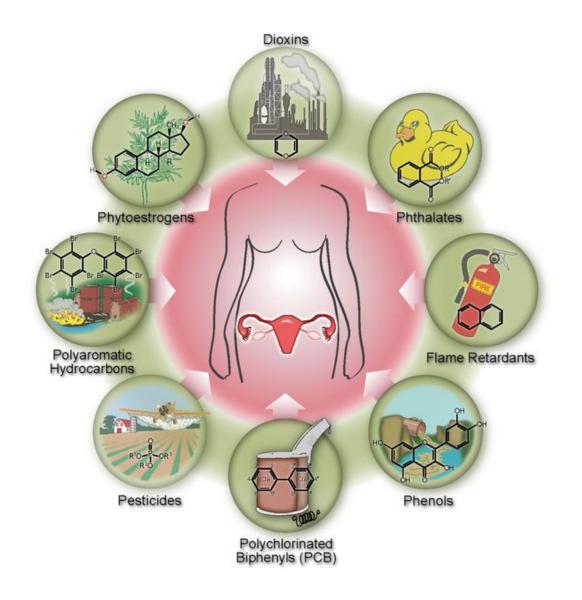
SETAC EUROPE 28th ANNUAL MEETING 13-17 MAY 2018 | ROME, ITALY Responsible and Innovative Research for Environmental Quality

Exposure to mixtures of Persistent Organic Pollutants (POPs) can inhibit the transactivation activities of the rat Aryl hydrocarbon Receptor (rAhR) in vitro Doan TQ.¹, Muller M.², Berntsen HF.³, Zimmer KE.⁴, Verhaegen S.³, Ropstad E.³, Connolly L.⁵, Scippo ML.¹

¹ Department of Food Science, FARAH, ULiège, Liège, Belgium. ² GIGA-R, Laboratory for Organogenesis and Regeneration, ULiège. Liège, Belgium. ³ Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU-Faculty of Veterinary Science, Oslo ,Norway. ⁴ Department of Basic Sciences and Aquatic Medicine, Section of Biochemistry and Physiology, NMBU-Faculty of Veterinary Science, Oslo, Norway. ⁵ Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast. Northern Ireland, UK. E-mail contact:

INTRODUCTION

- Persistent organic pollutants (POPs) are defined as organic chemicals
- resistant to degradation in the environment
- bioaccumulate and biomagnify in living organisms
- have potential harms on humans and wildlife


RESULTS

I rAhR mediated-activities for 29 POPs

5 out of the 29 compounds: rAhR agonistic activities

Table 1: : EC₅₀, efficiency and potency values for the 5 AhR agonistic compounds in DR-H4IIE cells.

Compounde	DDE 162	DCD 110	DCD 120

Humans are exposed to POP mixtures not as a simple compound, but few available scientific data have addressed the effect of POPs in mixture.

POPs and Early Menopause in U.S. Women http://t.co/ycXekUG2AA"

> Aims to determine, in vitro, how POPs act simultaneously in the mixture to produce an effect at the level of the rat Aryl hydrocarbon Receptor (rAhR) function

*AhR is a key receptor regulating the metabolism of xenobiotics including POPs.

MATERIALS AND METHODS

- Dioxin Responsive luciferase gene transformed rat hepatoma DR-H4IIE cells
- Induced light production will be in proportion with the concentration of rAhR ligands

Compounds	BDE 99	BDE 123	BDE 154	PCB 118	PCB 138
EC ₅₀ (μΜ)	4 ± 0.78	No full curve	No full curve	25 ± 13	28 ± 6.4
Efficiency	8.6%	-	-	43%	106%
Potency	3.8E-06	-	-	6E-07	5.4E-07

* EC_{50} = concentration giving half-maximal response

*Efficiency = maximum response expressed in % of the maximum response of TCDD *Potency = EC_{50} TCDD / EC_{50} substance, with EC_{50} TCDD (DR-H4IIE) = 15 pM

In contrast, 16 out of 29 compounds: rAhR antagonistic activities

Table 2: : IC₅₀ and efficiency values of 16 rAhR antagonistic compounds.

	BDE 47	BDE 99	HBCD				
IC ₅₀ (μΜ)	3.028 ± 0.34	5.11 ± 0.39	15.91 ± 6.86				
Efficiency	0.3%	35%	40%				
	PCB 28	PCB 52	PCB 101	PCB 118	PCB 138	PCB 153	PCB 180
IC ₅₀ (μΜ)	6.25 ± 0.92	3.90 ± 0.20	26.87 ± 8.42	0.304 ± 0.051	0.707 ± 0.057	5.3 ± 1.103	3.06 ± 0.072
Efficiency	15%	28%	40%	67%	40%	34%	33%
	НСВ	α -chlordane	o-chlordrane	<i>t</i> -nonachlor	γНСН	Dieldrin	
IC ₅₀ (μΜ)	12.85 ± 4.57	18.31 ± 8.24	26.47 ± 19.35	30.71 ± 1.26	34.47 ± 6.68	18.16 ± 7.12	
Efficiency	27%	25%	0%	38%	4%	51%	

* IC_{50} = concentration able to reduce by half the response of 15 pM TCDD *Efficiency = maximum activities expressed in % of the response of 15 pM TCDD

I rAhR mediated-activities POP Mixture and 6 sub-mixtures : Antagonism

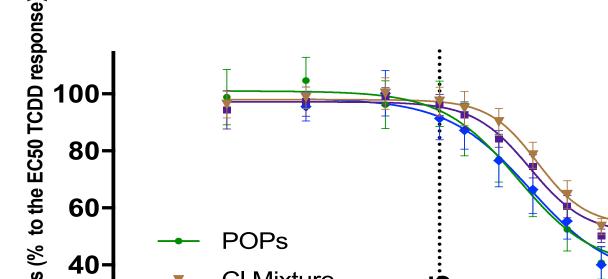
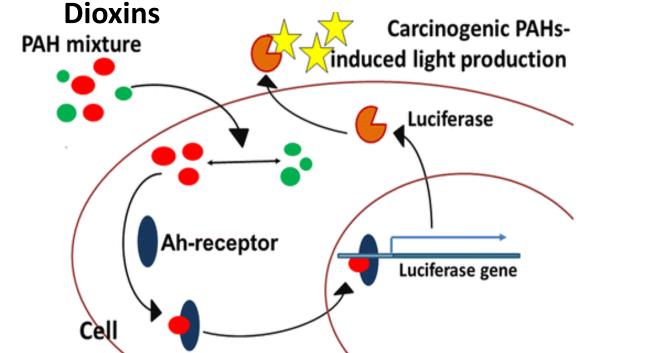



Table 3: IC_{50} (x blood levels, μ M) and efficiencies of POP and 6 sub-mixtures

Mixtures	<i>IC</i> ₅₀ (xblood levels)	<i>IC</i> ₅₀ (μM)	Efficiency
POP	371 ± 52	21.77 ± 3.1	39%
PFAA	No	No	No
Br	No	No	No
Cl	547 ± 44	1.9 ± 0.15	54%
Cl + Br	468 ± 38	1.5 ± 0.12	51%
CI + PFAA	472 ± 87	27 ± 5	35%
PFAA + Br	No	No	No

DR-CALUX (Dioxin Responsive Chemical Activated LUciferase gene eXpression) cell-based assays (Pieterse et al., 2013)

***** Test chemicals

29 POPs (Stockholm Convention 2001)

• PFHxS • PFOS • BDE 99 • PFOA • PFOA • PFDA • PFDA • PFUnDA • PFUnDA • PFUnDA • PFUnDA • PFUnDA • BDE 209 • PCB 153 • PCB 138 • PCB 138 • PCB 138 • PCB 138 • PCB 138 • A-HCH • Dieldrin • p,p'-DDE • A - A - A - A - A - A - A - A - A - A	6 Perfluorinated (PFAA) Compound	7 Brominated s (Br) Compounds	7 PCBs + 9 Organochlorine Compounds	24h incubation
• PFOA • PFNA • PFDA • PFDA • PFUnDA •	• PFHxS	• BDE 47	• PCB 28 • HCB	Cytotoxicity LDH, MTT assays
 PFOA BDE 100 PCB 101 O-chlordane BDE 153 PCB 118 t-nonachlor BDE 154 PCB 138 α-HCH BDE 209 PCB 153 β-HCH BDE 209 PCB 180 γ-HCH Dieldrin 	 PFOS 	• BDE 99	• PCB 52 • α-chlorda	ane Determination of luciferase activities
 PFUnDA BDE 209 PCB 153 β-HCH HBCD PCB 180 γ-HCH Dieldrin 	 PFOA 	• BDE 100	PCB 101 o-chlorda	
 PFUnDA BDE 209 PCB 153 β-HCH HBCD PCB 180 γ-HCH Dieldrin 	 PFNA 	• BDE 153	• PCB 118• t-nonach	
 PFUnDA BDE 209 PCB 153 β-HCH HBCD PCB 180 γ-HCH Dieldrin 	 PFDA 	• BDE 154	• PCB 138• α-HCH	
Dieldrin Data analyses	 PFUnDA 	• BDE 209	 PCB 153 β-HCH 	
• Dieldrin		 HBCD 	 PCB 180 γ-HCH 	
• p,p'-DDE			Dieldrin	Data analyses
			• p,p'-DDE	Analyze, graph and present scientific data easier than ever!

POP mixture = Mixture of 29 tested POPs

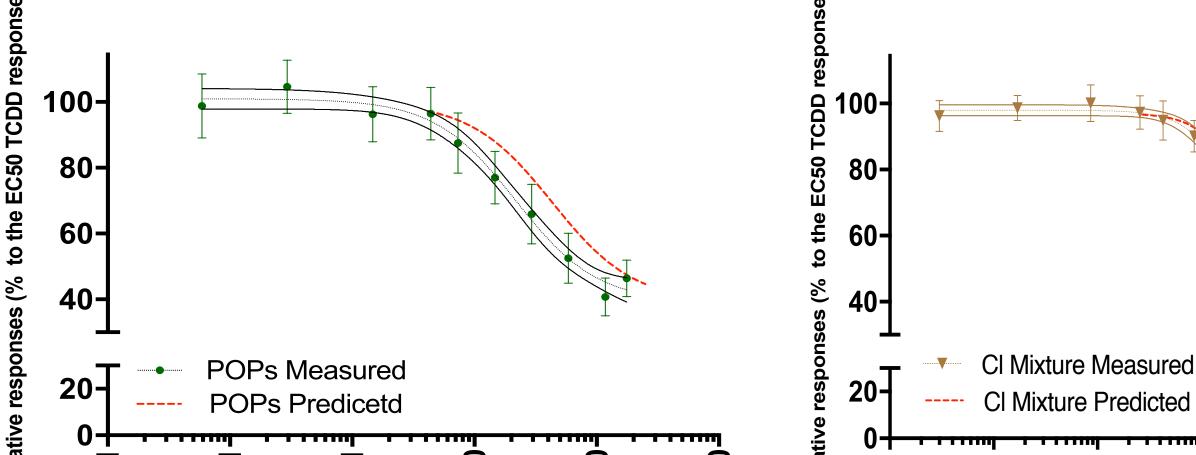
Seeding of cells

Exposure

Talle 4

24h incubation

Relativ	0.1-0	~ · · · · · · · · · · · · · · · · · · ·		001 001	1000
ve resp	20-	→ CI + F	PFAA Mixtu	ıre	
bon	–	CI + E	Br Mixture		
ses	.• T	Cl Mix	kture	5.2	± -


Figure 1: Dose-response curves of the POP (POPs), Cl, Cl + Br and CI + PFAA Mixture co-exposed with 15 pM TCDD

> Lowest effective concentration corresponding to 75 times the blood level (dash line in Figure 1)

- > Cl mixture is responsible for 80% of the POP response, no effects seen for PFAA and Br mixtures
- But only Cl + PFAA mixture induced the same response as the POP mixture
 - Perfluorinated compounds are probably non-specific rAhR antagonists

□ **Measued vs Predicted** IC₅₀ of POP and Cl mixtures

- \succ Cl mixture: calculated IC₅₀ (2.3 μ M) = measured IC₅₀ (1.9 μ M)
 - → 7 PCBs + 9 Organochlorine compounds act additively in the Cl mixture
- \blacktriangleright POP mixture: calculated IC₅₀ (43.25 μ M) > measured IC₅₀ (21.77 μ M), along with nonspecific rAhR antagonism of PFAA mixture **>** possible synergistic effect

<u>6 Sub-mixture</u> (Berntsen et al., 2017)

- **PFAA Mixture** • Cl + Br Mixture
- **CI + PFAA Mixture Br Mixture**
- **Cl Mixture Br + PFAA Mixture**

REFERENCES

- Berntsen, H.F., Berg, V. Thomsen, C., Ropstad E., & Zimmer, K.E. (2017) The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies, Journal of Toxicology and Environmental Health, Part A, 80:16-18, 1002-1016
- Payne, J., Nissanka, R., Megan, W., & Andreas, K. 2000. "Prediction and Assessment of the Effects of Mixtures of Four Xenoestrogens." Environmental Health Perspectives 108(10):983-87.

01-1 Relat 1000 00 001 000 0 Figure 2: Dose-response curves of the POP (right) and Cl (left) mixtures measured and predicted according

to an addition concentration model (Payne et al., 2000) co-exposed with 15 pM TCDD

DISCUSSIONS AND CONCLUSIONS

- POP mixture acts as rAhR antagonist, not agonist
- Lower POP mixture effective concentration of 75 times the blood level
- plausibly reached in humans after a food contamination incident or even in highly exposed sub-populations
- Perfluorinated compounds are probably non-specific rAhR antagonists
- Additive effect seen for the sub Cl mixture but a possible synergistic effect seen for the POP mixture

