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RESEARCH OBJECTIVE

Looking for the tangent portfolio using risk-optimization techniques.

Our objective is to propose a simple intermediary method to proxy for •

1/53 ,



THE PAPER IN A NUTSHELL OUR CONTRIBUTION DATA EMPIRICAL RESULTS CONCLUSION REFERENCES

METHODOLOGY AND RESULTS

I Stratification of the US equity universe (NYSE,
AMEX, Nasdaq) into size and book-to-markets
equity style buckets

I Extension to momentum

I Risk-based investment strategies (MV, MD, RP) are
shown to provide

I Better pricing of characteristic-sorted portfolios than
existing multifactor models

I Higher Sharpe ratio than a portfolio made of:
I market portfolio (Mkt)
I 30-year US treasury bond (B30)
I size (SMB) and value (HML) factors
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MOTIVATION

We ground our research into the following papers:
I Daniel et al. (2017, JF)
I Grinblatt and Saxena (2018, JFQA Forthcoming)
I Ao, Li, and Zheng (2018, RFS)

We rely on the following facts and evidence:

1. Caveats over the cap-weighted market benchmarks

2. Sharp rise in multi-factor models and in the number of index-funds and ETFs

3. Inefficiencies of long-short factors

4. Finding MSR is a noisy exercise
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MOTIVATION - CAVEATS OVER THE CAP-WEIGHTED MARKET BENCHMARKS

I “Market indices [. . . ] are if anything inside that [mean-variance] frontier” (Cochrane 2001,
Asset Pricing)

I “Cap-weighted stock portfolios are inefficient investments. [. . . ] Even the most
comprehensive cap-weighted portfolios occupy positions inside the efficient set” (Haugen
and Baker 1991, JPM, p.35)

Based on data for the period 1979-1998. The efficient frontier assumes a perfect forecast of the future
covariance matrix and of the future mean return. Figure taken from Schwartz(2000, Figure 3, p. 19).
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MOTIVATION - SHARP RISE IN THE NUMBER OF MULTI-FACTOR MODELS

I From 50 significant characteristics
(Subrahmanyam, 2010 EFM)

I To over 300!
I 316 anomaly-based firm characteristics, see

Harvey and Liu (2016, RFS)
I 330 characteristics, see Green, Hand, and

Zhang (2013, RAS)
I +430 characteristics, see Hou, Xue, and

Zhang (2018, WP)

Source: Harvey and Liu (2016, RFS)
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MOTIVATION - SHARP RISE IN THE NUMBER OF ETFS VERSUS LISTED STOCKS

Source: Bloomberg.com
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MOTIVATION – INEFFICIENCIES OF LONG/SHORT FACTORS

Daniel et al. (2017, WP, p. 3):
“This set of portfolios will explain the returns of portfolios sorted on the same characteristics,
but are unlikely to span the MVE portfolio of all assets, because they do not take into account
the asset covariance structure.”

Grinblatt and Saxena (2018, JFQA Forthcoming, p. 5):
“The optimal combination of the factor mimicking portfolios has a significantly lower Sharpe
ratio than the optimal combination of the basis portfolios they are created from.”

7/53 ,



THE PAPER IN A NUTSHELL OUR CONTRIBUTION DATA EMPIRICAL RESULTS CONCLUSION REFERENCES

MOTIVATION – SAMPLE ERRORS WITH MSR ESTIMATE

I Sample and specification errors
I Low-risk portfolios : giving up on estimating expected returns
I Robust variance-covariance matrix
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO

1. The opportunity sets: the DNS versus the original Fama-French sorting procedure
I Independent versus dependent (D) sorting
I NYSE breakpoints vs all names (N) breakpoints
I Double and triple sort (size, value and momentum): 2x3, 3x3 and 3x3x3 (Asymmetric versus

Symmetric sort)

(a) Independent Sort (b) Dependent Sort
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO

1. The opportunity sets

2. MSR weights replaced by smart beta (risk-based) optimization
I Minimum Variance (MV) (Clarke, Silva, and Thorley 2013, JPM)
I Maximum Diversification (MD) (Choueifaty and Coignard 2008, JPM)
I Risk parity (RP) (Maillard, Roncalli, and Teı̈letche 2010, JPM)

Strategy Objective Function Constraints

Minimum Variance (MV) min f (w) =
∑N

i
∑N

j wiσijwj

wi ∈ [0, 1] and
∑N

i=1 wi = 1Maximum Diversification (MD) max f (w) =
∑N

i wiσi√∑N
i
∑N

j wiσijwj

Risk parity (RP) min f (w) =
∑N

i
∑N

j (wi × (Σw)i − wj × (Σw)j)
2
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO - THE OPPORTUNITY SETS

The DNS sorting procedure allows for:
I A better stratification of the US equity universe
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO - THE OPPORTUNITY SETS

The DNS sorting procedure allows for:
I A better stratification of the US equity universe
I Better diversification

# Portfolios Independent Sort Dependent Sort Difference
(1) (2) (1)-(2)
Panel A: Cap-weighted Portfolios

2x3 84.99 78.00 6.99
3x3 84.99 75.81 9.18
3x3x3 78.38 66.8 11.58
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO - THE OPPORTUNITY SETS

The DNS sorting procedure allows for:
I A better stratification of the US equity universe
I Better diversification
I Similar to other portfolio sorts, a reduction of the complexity of the universe (consistent

with the categorization process of Barberis and Shleifer (2003))
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FINDING A CANDIDATE FOR THE MVE PORTFOLIO - MSR WEIGHTS
REPLACED BY SMART BETA (RISK-BASED) OPTIMIZATION

I Long-only investment scheme
I Avoid the empirical challenge of estimating expected returns
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US EQUITIES

We employ:
I Dataset from the merge of CRSP and Compustat.
I All stocks listed on NYSE, NASDAQ, and AMEX stocks and share code of 10 or 11.
I Sample period ranges from July 1963 to December 2015.

Filtering criteria following Fama and French (1993, JF):
I Shares (SHROUT) and price (PRC)
I Stock return (RET) data for month t
I 2 years of listing on COMPUSTAT (survival bias)

Characteristics:
I Market equity (firm size) as SHARE× PRICE
I Book-to-market equity as BE/ME
I Momentum is the t-2 to t-12 cumulative return of stock
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CHARACTERISTIC-SORTED PORTFOLIOS

Each year in June, we sort US stocks on the following traditional characteristics.
I size and value (2x3)
I size and value (3x3)
I size and value and momentum (3x3x3)

Average distribution of stock in portfolios
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EMPIRICAL TESTS AND RESULTS IN A NUTSHELL

1. Smart investment strategies on DSN portfolios achieve better diversification return than
other smart investment strategies and equally weighted scheme

I Diversification return framework of Booth and Fama (1992, FAJ) and Willenbrock (2011, FAJ)

2. Strategic beta portfolios constructed on dependent equity style buckets outperform a
single-index model (using CW factor), a multi-factor model (FF-3 Factors) and other
strategic beta portfolios

I Mean-variance spanning of Kan and Zhou (2012, AEF)

I Bootstrap procedure similar to Fama and French (2010, JF) and Harvey and Liu (2016, WP)

I Factor selection technique from Harvey and Liu (2016, WP)
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DIVERSIFICATION RETURN

Following Booth and Fama (1992, FAJ) and Willenbrock (2011, FAJ), the diversification return is
given by,

DRFW = µp −
N∑
i

wiµi︸ ︷︷ ︸
DRFW

1 = 0 if weights are constant

+
1
2

( N∑
i

wiσ
2
i − σ

2
p

)
︸ ︷︷ ︸

DRFW
2 = variance reduction benefit

(1)

The relationship assumes that ,
I weights wi are held constant over the estimation period,
I i stands for the ith security in the portfolio p,
I FW denotes Fixed-Weight.
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DIVERSIFICATION RETURN

Issues:
I Weights of the low risk strategies are not constant over time. For rebalancing strategies

(non fixed weight), Erb and Harvey (2006, FAJ) use of the average of the weights over the
sample period (wi = 1

T
∑T

1 wt
i ).

I The endogenous fixed weights benchmark used in the FW configuration differ sharply
across the strategies.

Proposition: diversification return with regard to an EW benchmark.

DREW = µp −
1
N

N∑
i

µi︸ ︷︷ ︸
DREW

1

+
1
2

(
1
N

N∑
i

σ2
i − σ

2
p

)
︸ ︷︷ ︸

DREW
2

(2)
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DIVERSIFICATION RETURN

We test the difference in the diversification components (DR1, DR2, and DR) using the bootstrap
method of Ledoit and Wolf (2008, JEF).

Fixed-Weight (FW) Benchmark

DRFW
1 DRFW

2 DRFW

Ind Dep
∆

p-valb Ind Dep
∆

p-valb Ind Dep
∆

p-valbDep-Ind Dep-Ind Dep-Ind
MD2x3 -0.005 -0.003 0.002 0.936 0.025 0.038 0.012 0.000 0.020 0.034 0.014 0.524
MD3x3 0.004 -0.032 -0.035 0.257 0.031 0.050 0.019 0.000 0.034 0.018 -0.016 0.594
MD3x3x3 -0.041 -0.075 -0.034 0.428 0.046 0.080 0.034 0.000 0.005 0.005 0.000 0.993
MV2x3 0.013 -0.025 -0.038 0.554 0.024 0.031 0.007 0.165 0.037 0.006 -0.031 0.635
MV3x3 -0.001 -0.036 -0.035 0.581 0.024 0.045 0.020 0.003 0.023 0.009 -0.014 0.807
MV3x3x3 -0.018 -0.115 -0.097 0.093 0.047 0.070 0.023 0.001 0.029 -0.045 -0.074 0.191
RP2x3 0.005 0.005 0.000 0.992 0.024 0.036 0.012 0.000 0.030 0.041 0.012 0.308
RP3x3 0.005 0.000 -0.005 0.679 0.027 0.042 0.014 0.000 0.032 0.041 0.009 0.460
RP3x3x3 -0.001 -0.010 -0.009 0.522 0.043 0.065 0.023 0.000 0.041 0.056 0.014 0.307

*number of bootstraps=4999
** figures are from gross return on a monthly basis (in %)
*** Block size for bootstrap = 10

Bootstrap
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DIVERSIFICATION RETURN

In this framework, results suggests that dependent-sorted portfolios provide significantly
I greater variance reduction benefits
I greater diversification return

Equal-Weight (EW) Benchmark

DREW
1 DREW

2 DREW

Ind Dep
∆

p-val Ind Dep
∆

p-val Ind Dep
∆

p-valDep-Ind Dep-Ind Dep-Ind
MD2x3 0.005 0.088 0.083 0.012 0.027 0.038 0.011 0.003 0.032 0.126 0.094 0.007
MD3x3 0.010 0.070 0.060 0.125 0.033 0.048 0.015 0.000 0.043 0.118 0.075 0.055
MD3x3x3 -0.034 0.063 0.097 0.107 0.046 0.061 0.014 0.010 0.012 0.124 0.112 0.067
MV2x3 0.082 0.218 0.136 0.071 0.033 0.028 -0.004 0.407 0.115 0.246 0.131 0.075
MV3x3 0.050 0.143 0.093 0.163 0.034 0.046 0.012 0.066 0.084 0.189 0.105 0.112
MV3x3x3 0.022 0.019 -0.003 0.955 0.061 0.080 0.018 0.002 0.084 0.099 0.015 0.785
RP2x3 0.020 0.056 0.036 0.013 0.026 0.036 0.010 0.001 0.046 0.092 0.047 0.005
RP3x3 0.019 0.048 0.029 0.063 0.029 0.042 0.013 0.000 0.048 0.090 0.041 0.015
RP3x3x3 0.011 0.035 0.024 0.102 0.046 0.068 0.022 0.000 0.057 0.102 0.046 0.007

*number of bootstraps=4999
** figures are from gross return on a monthly basis (in %)
*** Block size for bootstrap = 10

Bootstrap
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TEST OF MEAN-VARIANCE SPANNING

Illustration of Kan and Zhou (2012, AEF) mean-variance spanning test :

H1
0 : Tangency Portfolio Benchmark Assets (R1):

I US Bond
I Portfolio A
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TEST OF MEAN-VARIANCE SPANNING

Illustration of Kan and Zhou (2012, AEF) test of Mean-Variance spanning :

H1
0 : Tangency Portfolio Benchmark Assets (R1):

I US Bond
I Portfolio A

Test Asset (R2):

I Portfolio B
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TEST OF MEAN-VARIANCE SPANNING

Illustration of Kan and Zhou (2012, AEF) test of Mean-Variance spanning :

H2
0 : GMV Portfolio Benchmark Assets (R1):

I US Bond
I Portfolio A

22/53 ,



THE PAPER IN A NUTSHELL OUR CONTRIBUTION DATA EMPIRICAL RESULTS CONCLUSION REFERENCES

TEST OF MEAN-VARIANCE SPANNING

Illustration of Kan and Zhou (2012, AEF) test of mean-variance spanning :

H2
0 : GMV Portfolio Benchmark Assets (R1):

I US Bond
I Portfolio A

Test Asset (R2):

I Portfolio B
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TEST OF MEAN-VARIANCE SPANNING

Huberman and Kandel (1987, JF) define the following regression test:

Rt
2 = α+ βRt

1 + et (3)

The null hypothesis H0 sets α = 0 and δ = 1− β = 0.

Considering an efficient frontier comprising K + N assets, the weights of the N assets into the
tangent (Qw1) and GMV (Qw2) portfolios are defined as:

Qw1 =
QV−1µ

1′N+KV−1µ
=

Σ−1α

1′N+KV−1µ

Qw2 =
QV−11N+K

1′N+KV−11N+K
=

Σ−1δ

1′N+KV−11N+K

(4)

where Q = [0N×K, IN], IN is an N × N identity matrix, Σ = V22 − V21V−1
11 V12, and V is the

variance-covariance matrix of the K benchmark assets (R1) plus the N test assets (R2) such that,

V = Var[R1,R2] =

[
V11 V12
V21 V22

]
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TEST OF MEAN-VARIANCE SPANNING

Step-down procedure to test the spanning hypothesis (Kan and Zhou 2012, AEF):

H1
0 = α = 0N , such that Qw1 = 0.

H1
0 : Tangency Portfolio

The F-test (H1
0):

F1 =
T − K − N

N
â− â1

1 + â1

I T is the number of observations
I K is the number of benchmark assets
I N is the number of test assets
I â1 = µ̂′1V̂−1

11 µ̂1

I V̂11: the variance of the benchmark assets
I µ̂1: the vector of mean return of the

benchmark assets
I â but refers to the benchmark assets (R1)

plus the new test asset (R2)
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TEST OF MEAN-VARIANCE SPANNING

Step-down procedure to test the spanning hypothesis (Kan and Zhou 2012, AEF):

H2
0 : δ = 1N − β1K = 0N|α = 0N , such that Qw2 = 0 conditional on Qw1 = 0.

H2
0 : GMV Portfolio

The F-test (H2
0):

F2 =
T − K − N + 1

N

[
ĉ + d̂

ĉ1 + d̂1

1 + â1

1 + â
− 1

]

I â1 = µ̂
′
1V̂−1

11 µ̂1

I b̂1 = µ̂
′
1V̂−1

11 1K

I ĉ1 = 1
′
KV̂−1

11 1K

I d̂1 = â1 ĉ1 − b̂2
1

I V̂11: the variance of the benchmark assets
I µ̂1: the vector of mean return of the

benchmark assets
â, b̂, ĉ and d̂ refers to the benchmark assets (R1) plus the new test asset (R2)
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BOOTSTRAP APPROACH ON TEST OF MEAN-VARIANCE SPANNING

The null hypothesis should be true in-sample (Harvey and Liu (2016, WP) and White (2000,
ECO)):

→ Qw1 = 0 and Qw2 = 0.

Step 1: Orthogonalization under the null

Rt
2 = α+ βRt

1 + Rt,e
2 (5)

I Rorth
2 = Rt,e

2 + Rt
1,MVE by construction α = 0 and βMVE = 1→ Qw1 = 0 and Qw2 = 0

I R1,MVE is the proxy for the market portfolio present in R1

Step 2: Bootstrap (Harvey and Liu 2016, WP)

I preserves the cross-sectional correlations among the benchmark (R1) and test (Rorth
2 ) assets

I preserves the uncertainty of the time-series: bootstrap sampling length=original
time-series length
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BOOTSTRAP APPROACH ON TEST OF MEAN-VARIANCE SPANNING

Step 3: Test of Mean-Variance Spanning

I Apply the test of mean-variance spanning from Kan and Zhou (2012, AEF)

I Outputs:
I Tangency portoflio: range of Fb

1,ind and Fb
1,dep with {b = 1, 2, ..., B}

I GMV portoflio: range of Fb
2,ind and Fb

2,dep with {b = 1, 2, ..., B}
I Where,

F1 =
T − K − N

N
â− â1

1 + â1

F2 =
T − K − N + 1

N

[
ĉ + d̂

ĉ1 + d̂1

1 + â1

1 + â
− 1

]
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BOOTSTRAP APPROACH ON TEST OF MEAN-VARIANCE SPANNING

Step 3: Mean-Variance Spanning Test (cont’d)

I Harvey and Liu (2016, WP)’s bootstrap approach robust for multiple testing
I Conservative reference point:

I Fb
1 = max(Fb

1,ind, Fb
1,dep) with {b = 1, 2, ..., B}

I Fb
2 = max(Fb

2,ind, Fb
2,dep) with {b = 1, 2, ..., B}

I Bootstrap p-value for the F-tests

Fo
1 p-value:

p-valbind =
#{Fb

1 > Fo
1,ind}

B

p-valbdep =
#{Fb

1 > Fo
1,dep}

B

Fo
2 p-value:

p-valbind =
#{Fb

2 > Fo
1,ind}

B

p-valbdep =
#{Fb

2 > Fo
1,dep}

B
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SPANNING OF SINGLE INDEX AND MULTIFACTOR MODELS

Sample period: July 1963 - December 2015
I Benchmark assets (R1)= CW-Market Portfolio (Mkt) + 30-Year US Treasury Bond (B30)
I Test asset (R2)= Smart Beta (SB)

Rt
2 = α+ β1B30t + β2Mktt + Rt,e

2

I Rorth
2 = Rt,e

2 + Mktt

MVE candidates αind F1,ind p-valb F2,ind p-valb αdep F1,dep p-valb F2,dep p-valb

Panel A: R1 = MKT + B30,R2 = SB,Rorth
2 = SBe + Mkt

MD2x3 0.0020 11.69 0.00 2.37 0.31 0.0031 13.00 0.00 13.52 0.01
MD3x3 0.0022 11.89 0.00 2.96 0.25 0.0034 10.66 0.00 21.30 0.00
MD3x3x3 0.0019 7.21 0.01 1.42 0.58 0.0038 9.45 0.00 19.39 0.00
MV2x3 0.0032 13.63 0.00 11.83 0.01 0.0049 15.55 0.00 23.12 0.00
MV3x3 0.0029 10.60 0.00 6.68 0.07 0.0044 13.39 0.00 28.21 0.00
MV3x3x3 0.0029 13.60 0.00 10.24 0.02 0.0034 10.02 0.00 19.87 0.00
RP2x3 0.0021 13.03 0.00 1.62 0.42 0.0027 10.60 0.00 7.48 0.04
RP3x3 0.0022 11.57 0.00 0.49 0.72 0.0029 8.70 0.00 8.49 0.02
RP3x3x3 0.0023 12.09 0.00 0.25 0.84 0.0031 10.28 0.00 7.34 0.04

* Mkt, B30 and SB are taken in excess of the risk-free rate (one-month T-bill from Ibbotson)
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SPANNING OF SINGLE INDEX AND MULTIFACTOR MODELS

Sample period: July 1963 - December 2015
I Benchmark assets (R1)= CW-Market Portfolio (Mkt) + 30-Year US Treasury Bond (B30) +

SMB + HML
I Test asset (R2)= Smart Beta (SB)

Rt
2 = α+ β1B30t + β2Mktt + β3SMBt + β4HMLt + Rt,e

2

I Rorth
2 = Rt,e

2 + Mktt

MVE candidates αind F1,ind p-valb F2,ind p-valb αdep F1,dep p-valb F2,dep p-valb

Panel B: R1 = MKT + B30 + SMB + HML,R2 = SB,Rorth
2 = SBe + Mkt

MD2x3 0.0001 0.21 0.85 1419.96 0.00 0.0011 4.89 0.05 578.95 0.00
MD3x3 0.0002 0.66 0.63 1392.77 0.00 0.0011 3.13 0.14 365.03 0.00
MD3x3x3 -0.0003 0.65 0.63 824.06 0.00 0.0012 2.22 0.22 285.69 0.00
MV2x3 0.0009 2.22 0.22 317.78 0.00 0.0022 6.21 0.02 249.22 0.00
MV3x3 0.0006 1.02 0.47 438.93 0.00 0.0018 4.59 0.06 254.99 0.00
MV3x3x3 0.0007 2.22 0.23 564.35 0.00 0.0010 1.92 0.28 310.91 0.00
RP2x3 0.0002 0.92 0.47 1786.24 0.00 0.0007 3.21 0.11 882.21 0.00
RP3x3 0.0002 0.88 0.52 2015.93 0.00 0.0007 2.36 0.20 801.67 0.00
RP3x3x3 0.0003 1.16 0.44 1895.22 0.00 0.0010 4.27 0.06 811.01 0.00

* Mkt, B30 and SB are taken in excess of the risk-free rate (one-month T-bill from Ibbotson)
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SPANNING OF SINGLE INDEX AND MULTIFACTOR MODELS

Sample period: July 1963 - December 2015
I Benchmark assets (R1)= Smart Beta (SB) + 30-Year US Treasury Bond (B30)
I Test asset (R2)= CW-Market Portfolio (Mkt)

Rt
2 = α+ β1B30t + β2SBt + Rt,e

2

I Rorth
2 = Rt,e

2 + SBt

MVE candidates αind F1,ind p-valb F2,ind p-valb αdep F1,dep p-valb F2,dep p-valb

Panel C: R1 = SB + B30,R2 = Mkt,Rorth
2 = Mkte + SB

MD2x3 -0.0013 5.92 0.01 7.93 0.03 -0.0016 4.20 0.05 8.11 0.03
MD3x3 -0.0014 5.51 0.02 9.40 0.02 -0.0013 1.99 0.22 10.40 0.01
MD3x3x3 -0.0010 2.22 0.18 17.25 0.01 -0.0010 0.92 0.49 19.97 0.01
MV2x3 -0.0017 3.97 0.05 12.51 0.01 -0.0016 2.31 0.17 21.01 0.00
MV3x3 -0.0014 2.63 0.13 18.31 0.00 -0.0014 1.87 0.22 15.30 0.00
MV3x3x3 -0.0017 4.60 0.05 10.31 0.01 -0.0012 1.45 0.30 14.54 0.00
RP2x3 -0.0014 6.82 0.01 9.52 0.02 -0.0014 3.44 0.07 10.80 0.01
RP3x3 -0.0014 5.35 0.03 16.33 0.00 -0.0011 1.81 0.21 16.07 0.00
RP3x3x3 -0.0014 5.50 0.02 19.14 0.00 -0.0013 2.46 0.14 17.64 0.00

* Mkt, B30 and SB are taken in excess of the risk-free rate (one-month T-bill from Ibbotson)
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SPANNING OF SINGLE INDEX AND MULTIFACTOR MODELS

Sample period: July 1993 - December 2015
I Benchmark assets (R1)= CW-Market Portfolio (Mkt) + 30-Year US Treasury Bond (B30)
I Test asset (R2)= Smart Beta (SB)

Rt
2 = α+ β1B30t + β2Mktt + Rt,e

2

I Rorth
2 = Rt,e

2 + Mktt

MVE candidates αind F1,ind p-valb F2,ind p-valb αdep F1,dep p-valb F2,dep p-valb

Panel A: R1 = MKT + B30,R2 = SB,Rorth
2 = SBe + Mkt

MD2x3 0.0019 3.77 0.11 6.48 0.09 0.0048 12.70 0.00 16.12 0.00
MD3x3 0.0024 5.08 0.06 7.26 0.05 0.0049 9.14 0.01 16.55 0.00
MD3x3x3 0.0016 1.86 0.33 5.87 0.17 0.0053 9.38 0.01 16.66 0.02
MV2x3 0.0039 9.03 0.00 19.93 0.00 0.0071 14.13 0.00 17.80 0.00
MV3x3 0.0038 7.55 0.02 11.39 0.01 0.0066 13.10 0.00 21.37 0.00
MV3x3x3 0.0042 11.36 0.00 18.15 0.00 0.0050 9.92 0.00 19.77 0.00
RP2x3 0.0021 4.73 0.07 4.94 0.12 0.0039 9.39 0.01 9.07 0.03
RP3x3 0.0024 5.02 0.05 3.44 0.21 0.0039 6.64 0.02 7.98 0.05
RP3x3x3 0.0027 6.19 0.03 4.37 0.13 0.0043 8.69 0.01 9.42 0.02

* Mkt, B30 and SB are taken in excess of the risk-free rate (one-month T-bill from Ibbotson)
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SPANNING OF SINGLE INDEX AND MULTIFACTOR MODELS

Sample period: July 1993 - December 2015
I Benchmark assets (R1)= CW-Market Portfolio (Mkt) + 30-Year US Treasury Bond (B30) +

SMB + HML
I MVE market portfolio proxy in is Mkt (R1,MVE)
I Test asset (R2)= Smart Beta (SB)

Rt
2 = α+ β1B30t + β2Mktt + β3SMBt + β4HMLt + Rt,e

2

I Rorth
2 = Rt,e

2 + Mktt

MVE candidates αind F1,ind p-valb F2,ind p-valb αdep F1,dep p-valb F2,dep p-valb

Panel B: R1 = MKT + B30 + SMB + HML,R2 = SB,Rorth
2 = SBe + Mkt

MD2x3 0.0006 1.52 0.40 384.37 0.00 0.0036 16.78 0.00 118.87 0.00
MD3x3 0.0010 3.71 0.11 382.82 0.00 0.0036 9.31 0.00 63.08 0.00
MD3x3x3 0.0001 0.02 0.99 249.23 0.00 0.0041 8.88 0.01 39.76 0.00
MV2x3 0.0027 6.52 0.03 42.73 0.00 0.0056 14.39 0.00 44.38 0.00
MV3x3 0.0025 5.89 0.02 92.31 0.00 0.0052 13.19 0.00 43.67 0.00
MV3x3x3 0.0028 11.43 0.00 124.93 0.00 0.0038 9.86 0.00 51.57 0.00
RP2x3 0.0008 3.50 0.11 563.63 0.00 0.0026 14.80 0.00 217.80 0.00
RP3x3 0.0010 5.07 0.05 652.92 0.00 0.0026 9.23 0.00 174.22 0.00
RP3x3x3 0.0013 7.72 0.02 618.11 0.00 0.0031 13.91 0.00 158.94 0.00

* Mkt, B30 and SB are taken in excess of the risk-free rate (one-month T-bill from Ibbotson)
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HORSE RACE BETWEEN SMART INVESTMENT PORTFOLIOS

I Panel A: MVE market portfolio proxy is SBnet
dep (R1,MVE)

I Panel B: MVE market portfolio proxy is SBnet
ind (R1,MVE)

Panel A: Panel B:
R1 = B30 + SBnet

dep R1 = B30 + SBnet
ind

R2 = SBnet
ind R2 = SBnet

dep MVE GMV
Fo

1,ind p-valb Fo
2,ind p-valb Fo

1,dep p-valb Fo
2,dep p-valb Candidate Candidate

MD2x3 0.801 0.448 0.064 0.944 5.823 0.012 11.175 0.013 Dependent Dependent
MD3x3 0.016 0.973 0.121 0.914 4.160 0.049 17.576 0.000 Dependent Dependent
MD3x3x3 0.001 1.000 2.470 0.361 5.959 0.026 18.900 0.005 Dependent Dependent
MV2x3 0.118 0.871 6.515 0.054 5.254 0.015 10.170 0.015 Dependent Dependent
MV3x3 0.035 0.956 0.090 0.954 6.095 0.011 24.206 0.000 Dependent Dependent
MV3x3x3 1.490 0.285 3.210 0.178 0.788 0.471 9.723 0.010 Dep ≈ Ind Dependent
RP2x3 0.006 0.984 0.299 0.773 1.743 0.173 5.814 0.061 Dep ≈ Ind Dependent
RP3x3 0.035 0.931 0.116 0.885 1.497 0.204 9.125 0.019 Dep ≈ Ind Dependent
RP3x3x3 0.009 0.984 0.087 0.922 2.315 0.109 9.240 0.021 Dep ≈ Ind Dependent

* SB strategies are net of transactions costs estimated according to Hasbrouck (2009, JF)’s model
as in Novy-Marx and Velikov (2016, RFS) Transaction Costs
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CROSS-SECTIONAL ASSET PRICING TEST

Harvey and Liu (2016, WP) define a scaled intercept (SI) to
I measure the incremental contribution of an augmented model w.r.t. a baseline model to

explain the cross-sectional variations of the J test assets returns
I overcome the over-rejection issues of the GRS test

SImed
ew =

median({|ag
i |/sb

i }
J
i=1)− median({|ab

i |/sb
i }

J
i=1)

median({|ab
i |/sb

i }
J
i=1)

(6)
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CROSS-SECTIONAL ASSET PRICING TEST

Harvey and Liu (2016, WP) define a scaled intercept (SI) to
I measure the incremental contribution of an augmented model w.r.t. a baseline model to

explain the cross-sectional variations of the J test assets returns
I overcome the over-rejection issues of the GRS test

SImed
ew =

median({|ag
i |/sb

i }
J
i=1)− median({|ab

i |/sb
i }

J
i=1)

median({|ab
i |/sb

i }
J
i=1)

(6)

where,
I median(.) is the median value of the ratio |ag

i |/sb
i or |ab

i |/sb
i

I s denotes the standard errors for the regression intercept a
I superscript b is for the baseline model
I superscript g is for the augmented model
I subscript i refers to the i-th portfolio among the J test assets
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CROSS-SECTIONAL ASSET PRICING TEST

Harvey and Liu (2016, WP) define a scaled intercept (SI) to
I measure the incremental contribution of an augmented model w.r.t. a baseline model to

explain the cross-sectional variations of the J test assets returns
I overcome the over-rejection issues of the GRS test

SImed
ew =

median({|ag
i |/sb

i }
J
i=1)− median({|ab

i |/sb
i }

J
i=1)

median({|ab
i |/sb

i }
J
i=1)

(6)

Outputs:
I if SI<0 then augmented > baseline model
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CROSS-SECTIONAL ASSET PRICING TEST

To test the significance of the model improvement, Harvey and Liu (2016, WP) define the fol-
lowing boostrap procedure,

Step 1: Orthogonalization of the list of K candidates

I Baseline assets (R1)= 30-Year US Treasury Bond (B30) + SMB + HML
I Test asset (Ri

2)= i-th candidate among the list of K candidates

Ri
2 = αi + βiR1 + ei

Rα,i2 = Ri
2 − α

i = βiR1 + ei
(7)

Such that, Rα,i2 does not bring any additional information to the baseline model.
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CROSS-SECTIONAL ASSET PRICING TEST

Step 2: Bootstrap (Similar to the method presented earlier)

In each sample of the B bootstrap:
I a score for the scaled intercept SImed

ew can be obtained for the K number of orthogonalized
candidates (i.e, Rα,i2 with the i = {1, 2, ...,K} candidate)

I take the minimum value among the b-th bootstrap to control for multiple testing

SIb,∗ = min︸︷︷︸
i∈{1,2,...,K}

{SIb,i} (8)

Step 3: Single test p-value

Select the candidate with the lowest SIo value and significant p-val

p-val =
#{SIo > SIb}

B
(9)

Step 4: Multiple test p-value

p-val =
#{SIo > SIb,∗}

B
(10)
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CROSS-SECTIONAL ASSET PRICING TEST

MVE Candidates→ Mkt MVdep MDdep RPdep MVind MDind RPind

Baseline = US30 + SMB + HML
Panel A: 2x3 cap-weighted independent portfolios as test assets

GRS 4.836 4.189 4.391 4.538 4.155 4.445 4.341
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) 0.042 0.070 0.041 0.036 0.066 -0.012 -0.842
Single test p-value 0.701 0.984 0.929 0.894 0.893 0.325 0.000
SI sequence 2 2 2 2 2 2 1
Selected candidate(s) RPind
Multiple test p-value [0.000]

Panel B: 2x3 cap-weighted dependent portfolios as test assets
GRS 12.058 10.947 11.344 11.589 11.552 11.888 11.962
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) 0.049 0.061 -0.838 0.023 0.009 -0.001 -0.008
Single test p-value 0.880 0.865 0.000 0.782 0.569 0.547 0.468
SI sequence 2 2 1 2 2 2 2
Selected candidate(s) MDdep
Multiple test p-value [0.000]
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CROSS-SECTIONAL ASSET PRICING TEST

MVE Candidates→ Mkt MVdep MDdep RPdep MVind MDind RPind

Baseline = US30 + SMB + HML
Panel C: 3x3 cap-weighted independent portfolios as test assets

GRS 3.403 2.792 2.892 2.975 2.909 2.918 2.929
p-value 0.000 0.003 0.002 0.002 0.002 0.002 0.002
Scaled intercept (SI) -0.006 0.041 0.255 0.373 -0.876 0.100 0.169
Single test p-value 0.542 0.755 0.883 0.895 0.000 0.697 0.755
SI sequence 2 2 2 2 1 2 2
Selected candidate(s) MVind
Multiple test p-value [0.000]

Panel D: 3x3 cap-weighted dependent portfolios as test assets
GRS 8.228 7.757 7.959 7.950 8.116 8.108 8.108
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) 0.210 0.249 0.221 -0.806 0.001 0.150 0.107
Single test p-value 0.937 0.979 0.916 0.000 0.528 0.861 0.849
SI sequence 2 2 2 1 2 2 2
Selected candidate(s) RPdep
Multiple test p-value [0.000]
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CROSS-SECTIONAL ASSET PRICING TEST

MVE Candidates→ Mkt MVdep MDdep RPdep MVind MDind RPind

Baseline = US30 + SMB + HML
Panel E: 3x3x3 cap-weighted independent portfolios as test assets

GRS 2.262 2.135 2.164 2.213 2.085 2.332 2.110
p-value 0.000 0.001 0.001 0.000 0.001 0.000 0.001
Scaled intercept (SI) 0.245 0.030 -0.790 0.301 0.283 0.111 0.225
Single test p-value 0.943 0.661 0.000 0.970 0.962 0.816 0.952
SI sequence 2 2 1 2 2 2 2
Selected candidate(s) MDdep
Multiple test p-value [0.000]

Panel F: 3x3x3 cap-weighted dependent portfolios as test assets
GRS 4.591 4.366 4.335 4.283 4.335 4.608 4.379
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) -0.015 0.007 -0.668 -0.039 0.006 0.013 0.020
Single test p-value 0.566 0.571 0.000 0.431 0.610 0.686 0.739
SI sequence 2 2 1 2 2 2 2
Selected candidate(s) MDdep
Multiple test p-value [0.000]
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CONCLUSION AND TAKEWAYS

Testing the MVE of Smart Beta strategies on characteristic-sorted portfolios

I Context
I Multidimensional market risks, especially after 1993
I Inefficiencies of long-short factors
I Sample errors for estimating MVE
I Need for long-only solutions

I Contribution
I Risk-based optimization on DNS opportunity sets span a single-index model, other MVE

candidates (market-cap and other risk-based strategies) and improves a 3-factor model
I Risk-based strategies on DNS opportunity sets have incremental significance for pricing

characteristics-sorted portfolios
I Dependent-sorted portfolios provide a better investment opportunity set to investors compared

to independent-sorted portfolio

I Robustness
I Out-of-sample, multiple testing
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DIVERSIFICATION RETURN: BOOTSTRAP

Method:
I block-bootstrap method from Politis and Romano (1992)
I studentized test statistic following Ledoit and Wolf (2008)

Bootstrap:

1. block length = 10 observations (robust to other length {2, 4, 6, 8, 10})
2. match the length of the original time-series (630 observations)

3. randomly resample with replacement the original time-series

4. keep the same sequence for all assets in each sample (cross-dependence)

5. 4999 simulations similar to Ledoit and Wolf (2008)
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TESTING THE INCREMENTAL DIVERSIFICATION RETURN

Hypothesis testing the spread in Sharpe ratio between the strategy i and j,

∆̂ =
µ̂i

σ̂i
−
µ̂j

σ̂j
(11)

Assumption:
Difference between the first and second moments of the distributions between the two series
converge towards zero

√
T(û− u)

d−→ N(0,Ω) (12)

I û = (µ̂i, µ̂j, σ̂i
2, σ̂j

2) are the sample estimates of u = (µi, µj, σ
2
i , σ

2
j )

I
d−→ refers to the convergence in distribution of the parameters

I Ω not valid when returns exhibit non-normal distribution or serial autocorrelation

Solution:

√
T(v̂− v)

d−→ N(0,Ψ) (13)

where v̂ = (µ̂i, µ̂j, γ̂i, γ̂j) is the sample estimates of v = (µi, µj, γi, γj), γ̂i = E(r2
i ) and γ̂i = E(r2

j )

and a HAC kernel estimate of Ψ.
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DIVERSIFICATION RETURN: HYPOTHESIS TESTING

Spread in Sharpe ratio:

f (a, b, c, d) =
a√

c− a2
−

b√
d− b2

(14)

With a = µ̂i, b = µ̂j, c = γ̂i, and d = γ̂j.

Gradient of this function (delta-method) is

∇
′
f (v̂) = (

c
(c− a2)1.5

,−
d

(d− b2)1.5
,−

1
2

a
(c− a2)1.5

,
1
2

b
(d− b2)1.5

)

The standard error is of delta estimate is,

s(∆̂) =

√
∇′ f (v̂)Ψ̂∇f (v̂)

T
(15)

The kernel estimator Ψ̂ ensures that the estimation of the standard error is robust to heteroskedas-
ticity and autocorrelation (HAC).
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DIVERSIFICATION RETURN: HYPOTHESIS TESTING

Studentized test statistic:

On the original time-series,

d =
|∆̂|

s(∆̂)
(16)

On the b-th bootstrap sample,

db =
|∆̂b − ∆̂|

s(∆̂b)
(17)

The boostrap 1-α confidence interval is defined as:[
∆̂− zb

|.|,1−α/2s(∆̂), ∆̂ + zb
|.|,1−α/2s(∆̂)

]
(18)

with zb
|.|,1−α the quantile of the distribution of db denoted L(db).

p-value:

p-val =
#{db ≥ d}+ 1

B + 1
(19)
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TRANSACTION COSTS: GIBBS ESTIMATES

Hasbrouck (2009) extend Roll (1984)’s price dynamics model with a market factor

∆pt = c∆qt + βrmrmt + ut (20)

with

∆pt = pt − pt−1

= mt + cqt − mt−1 − cqt−1

= c∆qt + ut

(21)

I mt is the log midpoint of the prior bid-ask price
I pt is the log trade price
I qt is the sign of the last trade of the day (+1 for a buy and −1 for a sale)
I ut is assumed to be unrelated to the sign of the trade (qt)
I rmt is the market return on day t
I βrm is the slope on the marker return
I c is the effective cost
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TRANSACTION COSTS: GIBBS ESTIMATES

∆pt = c∆qt + βrmrmt + ut (22)

Iterative Bayesian methodology to estimate the effective costs (c):

1. Initialize q1 to +1 and σ2
u to 0.001.

I if no trade qt=0 (in CRSP, PRC<0) else qt = sign(∆pt)
I minimum of 60 to a max 250 daily observations

2. Initialize the distribution from where the values c, βrm, and σ2
u will be drawn:

I c∼ N+ (µ = 0.01, σ2 = 0.012)
I βrm ∼ N (µ = 1, σ2 = 1)
I σ2

u ∼ IG (α = 10−12, β = 10−12)
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TRANSACTION COSTS: GIBBS ESTIMATES

for 1 to 1000 sweeps

1. Perform a Bayesian OLS regression on a 250-day of lagged observations to estimate the new values of c
and βrm, update the posterior distribution of the parameters and make a new draw of the coefficients.

2. Back out ut according to c, βrm, ∆pt, rmt, ∆qt

ut = ∆pt − βrmrmt − c∆qt (23)

I update σ2
u

3. Draw new series of qt according to the posterior σ2
u

ut = ∆pt − βrmrmt − cqt + cqt−1 (24)

I estimate ut(qt = +1) and ut(qt = −1) given ut ∼ N(0, σ2
u)

Odds =
f (ut(qt = +1))

f (ut(qt = −1))

{
qt = +1 if Odds> 1
qt = −1 if Odds< 1

(25)

end
→ c is the average of the last 800 estimations (”burn in” the 200 first obs.)
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