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During genome evolution, the two strands of the DNA double helix are not subjected to the
same mutation patterns. This mutation bias is considered as a by-product of replicative and
transcriptional activities. In this paper, we develop a wavelet-based methodology to analyze
the DNA strand asymmetry profiles with the specific goal to extract the contributions
associated with replication and transcription respectively. In a first step, we use an adapted
N-shaped analyzing wavelet to perform a multi-scale pattern recognition analysis of the
sum of the TA and GC skews along human chromosomes. This method provides an
objective segmentation of the human genome in skew domains of � 1 Mbp characteristic
size, bordered by two putative replication origins recognized as large amplitude upward
jumps in the noisy skew profile. In a second step, we use a least-square fitting procedure
to disentangle, in these skew domains, the small-scale (the mean human gene size
� 30 kbp) square-like transcription component from the global N-shaped component
induced by replication. When applying this procedure to the 22 human autosomes, we
delineate 678 replication domains of mean length L̄ = 1.2 ± 0.6 Mbp spanning 33.8%
of the human genome and we predict 1062 replication origins. When investigating the
distribution of transcription-associated skew inside the replication N-domains, we reveal
some dependence upon the distance to the putative replication origins located at N-
domain extremities, the closer the genes to the origin, the larger their transcription bias
as the signature of a higher transcriptional activity in the germ-line. As a comparative
analysis, we further apply our wavelet-based methodology to skew profiles along the
mouse chromosomes. The striking similarity of the results in human and mouse indicates
that the remarkable gene organization observed inside the human replication N-domains
is likely to be a general feature of mammalian genomes.
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1. Introduction

Since the pioneering works of J. Morlet and A. Grossmann in the early 1980’s [62,64,65], the continuous wavelet trans-
form (WT) has been the subject of considerable theoretical developments and practical applications in a wide variety of
fields [3,42,44,49,50,80,97,103,104,125,129,134]. Originally introduced to perform time-frequency analysis, the WT has been
early recognized as a mathematical microscope that is well adapted to characterize the scale-invariance properties of fractal
objects and to reveal the hierarchy that governs the spatial distribution of the singularities of multifractal measures and
functions [2,5,19,68,69,75,76,98,99]. This has led A. Arneodo and collaborators [12,29,109–111] to elaborate on a unified
statistical (thermodynamic) description of multifractal distributions including measures and functions, the so-called wavelet
transform modulus maxima (WTMM) method. This method relies on the computation of partition functions from the WT
skeleton defined by the wavelet transform modulus maxima. This skeleton provides an adaptive space-scale partition of the
fractal distribution under study, from which one can extract the D(h) singularity spectrum of Hölder exponent values as
the equivalent of a thermodynamic potential (entropy) [12]. We refer the reader to Bacry et al. [29], Jaffard [77,78] and col-
laborators [79] for rigorous mathematical results and to Hentschel [66] for the theoretical treatment of random multifractal
functions. Applications of the WTMM method to 1D signals [9] and its generalization in 2D for image analysis [16,18,45]
and in 3D for scalar and vector fields analysis [82–84] have already provided insights into a wide variety of problems [9],
in domains as different as fully developed turbulence [20,21,46,105,106,122], hydrology [123,142,143], astrophysics [87],
geophysics [17,23,121], econophysics [22,112], fractal growth phenomena [4,6,7,88], medical time series analysis [72,73] and
medical and biological image processing [16,38,85,86]. Surprisingly, among these applications, there is one that turns out
to be quite fruitful and very promising in regards to its unexpected appropriateness, namely the multi-scale wavelet-based
analysis of genomic sequences [9,11,15,25,26].

The possible relevance of scale invariance and fractal concepts to the structural complexity of genomic sequences has
been the subject of increasing interest [9,93,130]. During the past fifteen years or so, there has been intense discussion
about the existence, the nature and origin of the long-range correlations (LRC) observed in DNA sequences [9,15,28,34,41,
67,81,89,91,92,100,113,117,118,130,144–146]. One of the main obstacles to LRC analysis in DNA sequences is the genuine
mosaic structure of these sequences that are well known to be formed of patches of different underlying composition [32,
57,94]. When using the DNA walk representation, these patches appear as trends in the DNA walk landscapes that are likely
to break scale-invariance [9,34,41,81,89,113,117,130,144]. Indeed, most of the techniques, e.g. the variance method, used in
the early studies for characterizing the presence of LRC, were not well-adapted to study non-stationary sequences. There
have been some phenomenological attempts to differentiate local patchiness from LRC using ad hoc methods such as the
so-called “min–max method” [117] and the “detrended fluctuations analysis” [119]. In that context the WT has been early
recognized as a well-suited technique that overcomes this difficulty [9,11,15]. By considering analyzing wavelets that make
the WT microscope blind to low-frequency trends, any bias in the DNA walk can be removed and the existence of power-law
correlations with specific scale invariance properties can be revealed accurately. As a first important result, from a system-
atic WT analysis of human exons, CDSs and introns, LRC were found in non-coding sequences as well as in regions coding
for proteins somehow hidden in their inner codon structure [13]. This observation made rather questionable the model
based on genome plasticity proposed at that time to account for the reported absence of LRC in coding sequences [11,15,36,
91,117,130]. An alternative structural interpretation of these LRC has emerged from a comparative multifractal analysis of
DNA sequences using structural coding tables based on nucleosome positioning data [25,26]. The application of the WTMM
method has revealed that the corresponding DNA chain bending profiles are monofractal (homogeneous) as characterized
by a unique Hölder exponent h = H and that there exists two LRC regimes. In the 10–200 bp range, LRC are observed for
eukaryotic sequences as quantified by a Hurst exponent value H � 0.6 as the signature of the nucleosomal structure. In con-
trast, for eubacterial sequences, the uncorrelated H = 0.5 value is systematically obtained. These LRC were further shown to
favor the autonomous formation of small (a few hundred bps) 2D DNA loops and in turn the propensity of eukaryotic DNA
to interact with histones to form nucleosomes [139,141]. In addition these LRC might induce some local hyper-diffusion of
these loops which would be a very attractive interpretation of the nucleosome repositioning dynamics. Over larger distances
(� 200 bp), stronger LRC with H � 0.8 seem to exist in any sequence [25,26] as experimentally confirmed by atomic force
microscopy imaging of naked DNA molecules deposited onto a mica surface under 2D thermodynamic equilibrium condi-
tions [107]. Furthermore these LRC were recently observed in S. cerevisiae nucleosome positioning in vivo data suggesting
that they are involved in the collective nucleosome organization of the so-called 30 nm chromatin fiber [10,140]. The fact
that this second regime of LRC is also present in eubacterial sequences shows that it is likely to be a possible key to the
understanding of the structure and dynamics of both eukaryotic and prokaryotic chromatin fibers.

The flowering availability of new fully sequenced genomes has provided the unprecedented opportunity to generalize the
application of the WTMM method to genome-wide multifractal sequence analysis when using alternative codings that have
a clear functional meaning. According to the second parity rule [40,124], under no strand-bias conditions, each genomic
DNA strand should present equimolarities of adenines A and thymines T, and of guanines G and cytosines C [51,95]. Devi-
ations from intrastrand equimolarities have been extensively studied during the past decade and the observed TA and GC
skews have been attributed to asymmetries intrinsic to the replication and transcription processes. During these processes,
an asymmetry can result if mutational events or repair mechanisms affect the two strands differently. The existence of
transcription- and/or replication-associated strand asymmetries has been mainly established for prokaryote, organelle and
virus genomes [30,54–56,108,120,133]. For a long time the existence of compositional biases in eukaryotic sequences has
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been unclear and it is only recently that (i) statistical analyses of eukaryotic gene introns have revealed the presence of
transcription-coupled strand asymmetries [63,136,137] and (ii) genome-wide multi-scale analysis of mammalian genomes
has clearly shown some departure from the intrastrand equimolarities in intergenic regions and further confirmed the ex-
istence of replication-associated strand asymmetries [35,115,138]. In particular the application of the WTMM method to
the skew S = STA + SGC in the human genome [8,116] has revealed the bifractal nature of the corresponding DNA walk
landscape which involves two competing scale invariant (from repeat masked distances of 1 kbp up to 40 kbp) components
characterized by Hölder exponent h1 = 0.78 and h2 = 1 respectively. The former corresponds to the long-range correlated
homogeneous fluctuations previously observed in DNA walks generated with structural codings [25,26]. The latest is as-
sociated with the presence of jumps in the original strand asymmetry noisy signal S . A majority of the detected upward
(resp. downward) jumps were shown to co-locate with gene transcription start sites (TSS) (resp. transcription termination
sites (TTS)). Out of the 20 023 TSS annotated in “refGene”, 36% (7728) were delineated within 2 kbp by an upward jump of
sufficient amplitude (�S > 0.1). This provides a very reasonable estimate of the number of genes expressed in germ-line
cells as compared to the 32% experimentally found to be bound to PolII in human embryonic cells [90]. Interestingly, about
a third of the detected upward jumps are still observed at scale � 200 kbp as bordering large-scale (mean size � 1 Mbp) N-
shaped skew domains. As some of these large amplitude upward jumps co-locate with experimentally identified replication
origins, these domains were further qualified as replication domains [8,35,70,138]. Recent high resolution replication timing
data have confirmed these in silico predictions: the putative replication origins at the N-domain extremities are replicating
earlier than their surrounding whereas the central regions replicate late in the S-phase [24]. Furthermore, these replication
N-domains were shown to be at the heart of a remarkable gene organization along human chromosomes [70].

In regards to the very limited knowledge on replication initiation in mammalian genomes (only about 30 replication
origins were experimentally identified when we started this study [35,115,138]), our aim here is to use the WT transform
to develop a multi-scale methodology to objectively define replication skew domains thereby predicting (at their edges)
replication origins directly from the DNA sequence. With an adequate choice of the analyzing wavelet, we show that the
proposed method can be further used to disentangle, in the so-identified skew domains, the contribution coming from
transcription (local square-like genic skew component) from the one associated with replication (global N-shaped skew
component). Efficient algorithms are implemented and tested on synthetic skew profiles prior to genome-wide analysis of
the human and mouse genomes. The paper is organized as follows. In Section 2, we review previous studies of compositional
strand asymmetries in eukaryotic genomes that define the state of the art in the domain. In Section 3, we elaborate on our
wavelet-based method to detect N-shaped domains in a noisy skew profile. The efficiency and reliability of this method are
tested on artificial home made noisy skew signals. Section 4 is devoted to the application of this method to a comparative
segmentation of the human and mouse genomes. In Section 5, we further develop this method to achieve the ambitious
goal of discriminating between part of the skew associated with transcription and part associated with replication. The
results obtained in the human and mouse genomes are compared and further discussed as providing a new vision of gene
organization in mammalian genomes which integrates transcription, replication and chromatin structure as coordinated
determinants of genome architecture. Concluding remarks and perspectives are given in Section 6.

2. Review of transcription- and/or replication-coupled strand asymmetries in mammalian genomes

2.1. Definitions

Because transcription and replication both require the opening of the DNA double helix, they are likely to induce some
departure from intrastrand equimolarities resulting from asymmetry in mutational and repair events on the two strands. As
indicators of DNA strand-asymmetry, we will mainly use in this study the TA and GC skews computed in non-overlapping
1 kbp windows [8,14]:

STA = nT − nA

nT + nA
, SGC = nG − nC

nG + nC
, (1)

where nA, nC, nG and nT are respectively the numbers of A, C, G and T in the windows. Because of the observed correlation
between TA and GC skews [8,14], we will mainly consider the total skew:

S = STA + SGC. (2)

Sequences and gene annotation data (“knownGene”) were retrieved from the UCSC Genome Browser (May 2004). We
used RepeatMasker to exclude repetitive elements (SINEs, LINEs, . . .) that might have been inserted recently in the genome
and would not reflect long-term evolutionary patterns.

2.2. Transcription-induced square-like skew profiles in mammalian genomes

Asymmetries of substitution rates coupled to transcription have been mainly observed in prokaryotes [30,54,56], with
only recent results in eukaryotes. In the human genome, excess of T was early observed in a set of gene introns [48] and
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Fig. 1. TA (•) and GC ( ) skew profiles in the regions surrounding 5′ and 3′ gene extremities [137]. STA and SGC were calculated in 1 kbp windows starting
from each gene extremities in both directions. In abscissa is reported the distance (n) of each 1 kbp window to the indicated gene extremity; zero values
of abscissa correspond to 5′ (a) or 3′ (b) gene extremities. In ordinate is reported the mean value of the skews over 14 854 intron-containing genes for all
1 kbp windows at the corresponding abscissa. Error bars represent the standard error of the means.

some large-scale asymmetry was observed in human sequences but was attributed to replication [128]. More recently, a
comparative analysis of mammalian sequences demonstrated a transcription-coupled excess of G + T over A + C in the
coding strand [63,136,137]. In contrast to the substitution biases observed in bacteria presenting frequently an excess of
C → T transitions, these asymmetries are characterized by an excess of purine (A → G) transitions relatively to pyrimidine
(T → C) transitions. These might be a by-product of the transcription-associated repair mechanism acting on uncorrelated
substitution errors during replication [131]. In a previous study, we have reported definite evidence for nucleotide com-
positional strand asymmetries in transcribed regions of human sequences [136,137]. First, we have computed the STA and
SGC skews (1) for intronic sequences since, in contrast to exonic sequences, they can be considered as weakly selected se-
quences. For each gene, we have considered only the intronic sequences without changing their positions relative to the TSS
[137]. The distributions of the TA and GC skews, computed on the 14 854 intron-containing genes, present positive mean
values for the (+) genes (7058) which correspond to the reference sequence (“+” strand), namely S̄TA = 4.49 ± 0.01% and
S̄GC = 3.29 ± 0.01%, and nearly opposed values for the (−) genes (7346) which correspond to the sequence of the other
strand (“−” strand). Then we have compared the overall STA and SGC skew profiles in transcribed regions to those in the
neighboring intergenic sequences [136,137]. In Fig. 1 are reported the mean values of STA and SGC skews for all genes as a
function of the distance to the 5′ or 3′ gene ends. At the 5′ gene extremity (Fig. 1(a)), a sharp transition of both skews is
observed from close to zero values in the intergenic regions to finite positive values in transcribed regions ranging between
4 and 6% for STA and between 3 and 5% for SGC. At the 3′ gene extremity (Fig. 1(b)), the TA and GC skews also exhibit a
transition from significantly large positive values inside the gene to very small values in untranscribed regions. However,
in comparison to the steep transition observed at 5′ end, the 3′ end mean profile presents a slightly smoother transition
pattern extending over ∼ 5 kbp and including regions downstream of the 3′ end likely reflecting the fact that transcription
continues to some extent downstream of the polyadenylation site. In pluricellular organisms, mutations responsible for the
observed biases have occurred in germ-line cells. It could happen that gene 3′ ends annotated in the databank differ from
the poly-A sites effectively used in germ-line cells. Such differences would then lead to some broadening of the skew pro-
files. Overall, the results reported in Fig. 1 suggest that the STA and SGC are constant along introns. Since introns amount
for about 80% of gene sequences, this means that skew profiles induced by the transcription process have a characteristic
square-like shape [8,14,136,137]. However, the absence of asymmetries in intergenic regions does not exclude the possibil-
ity of additional replication associated biases. Such biases would present opposite signs on leading and lagging strands that
would cancel each other in our statistical analysis as a result of the spatial distribution of multiple unknown replication
origins.

If there is not doubt that the mean TA and GC skew profiles are different from zero inside the genes likely resulting from
transcription-coupled processes, how many genes actually contribute to these mean profiles or in other words, how many
genes have biased sequences? Since each square-like skew pattern is edged by one upward and one downward jump, the
set of human genes that are significantly biased is expected to contribute to an equal number of �S > 0 and �S < 0 jumps.
This is exactly what we observed when using the WT microscope to detect jumps in the noisy total skew profile S when
exploring the range of scales 10 � a � 40 kbp, typical of human gene size [116]. Out of 20 023 TSS, 36% (7228) were found
to be delineated within 2 kbp by an upward jump of amplitude �S > 0.1. This percentage of biased genes provides a very
reasonable estimate of the number of genes expressed in germ-line cells as compared to the 31.9% recently experimentally
found to be bound to PolII in human embryonic stem cells [90].

This study of strand asymmetries in intronic sequences has been further extended to evolutionary distant eukaryotes
[136]. When appropriately examined, all genomes present transcription-coupled excess of T over A (STA > 0) in the coding
strand. In contrast, GC skew is found positive in mammals and plants but negative in invertebrates suggesting different
repair mechanisms associated with transcription in vertebrates and invertebrates [135,136].
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2.3. Replication-induced N-shaped skew profiles in mammalian genomes

DNA replication is an essential genomic function responsible for the accurate transmission of genetic information through
successive cell generations. According to the so-called “replicon” paradigm derived from prokaryotes [74], this process starts
with the binding of some “initiator” protein to a specific “replicator” DNA sequence called origin of replication. The recruit-
ment of additional factors initiates the bi-directional progression of two divergent replication forks along the chromosome.
One strand is replicated continuously (leading strand), while the other strand is replicated in discrete steps towards the
origin (lagging strand). In eukaryotic cells, this event is initiated at a number of replication origins and propagates until two
converging forks collide at a terminus of replication [31]. The initiation of different replication origins is coupled to the cell
cycle but there is a definite flexibility in the usage of the replication origins at different developmental stages [1,52,58,71,
127]. Also, it can be strongly influenced by the distance and timing of activation of neighboring replication origins, by the
transcriptional activity and by the local chromatin structure [1,52,58,127]. Actually, sequence requirements for a replication
origin vary significantly between different eukaryotic organisms. In the unicellular eukaryote S. cerevisiae, the replication
origins spread over 100–150 bp and present some highly conserved motifs [31]. However, among eukaryotes, S. cerevisiae
seems to be an exception that remains faithful to the replicon model. In the fission yeast Schizosaccharomyces pombe, there is
no clear consensus sequence and the replication origins spread over at least 800 to 1000 bp [31]. In multicellular organisms,
the nature of initiation sites of DNA replication is even more complex. Metazoan replication origins are rather poorly de-
fined and initiation may occur at multiple sites distributed over a thousand of base pairs [60]. The initiation of replication at
random and closely spaced sites was repeatedly observed in Drosophila and Xenopus early embryo cells, presumably to allow
for extremely rapid S phase, suggesting that any DNA sequence can function as a replicator [43,71,126]. A developmental
change occurs around midblastula transition that coincides with some remodeling of the chromatin structure, transcrip-
tion ability and selection of preferential initiation sites [71,126]. Thus, although it is clear that some sites consistently act
as replication origins in most eukaryotic cells, the mechanisms that select these sites and the sequences that determine
their location remain elusive in many cell types [33,61]. As recently proposed by many authors [47,101,102], the need to
fulfill specific requirements that result from cell diversification may have led multicellular eukaryotes to develop various
epigenetic controls over the replication origin selection rather than to conserve specific replication sequence. This might
explain that for many years, very few replication origins have been identified in multicellular eukaryotes, namely around 20
in metazoa and only about 10 in human when we started this study. Since then, about a few hundred replication origins
have been further experimentally identified [39,96,132] on the ENCODE sequences that represent one percent of the human
genome only. Along the line of this epigenetic information, one might wonder what can be learned about eukaryotic DNA
replication from DNA sequence analysis.

The existence of replication-associated strand asymmetries has been mainly established in bacterial genomes [55,95,108,
120,133]. SGC and STA skews abruptly switch sign (over few kbp) from negative to positive values at the replication origin
and in the opposite direction from positive to negative values at the replication terminus. This leads to a square-like skew
pattern characteristic of the replicon model [74]. However, in eukaryotes, the existence of compositional biases is unclear
and most attempts to detect the replication origins from strand compositional asymmetry have been inconclusive. Several
studies have failed to show compositional biases related to replication, and analysis of nucleotide substitutions in the region
of the β-globin replication origin in primates does not support the existence of mutational bias between the leading and
the lagging strands [37,53,108]. Other studies have led to rather opposite results. For instance, strand asymmetries associ-
ated with replication have been observed in the subtelomeric regions of S. cerevisiae chromosomes, supporting the existence
of replication-coupled asymmetric mutational pressure in this organism [59]. In a previous work [35,138], we have investi-
gated the behavior of the (repeat masked) skew profiles around 9 replication origins experimentally identified in the human
genome. As shown in Fig. 2(a) for TOP1 replication origin, most of these origins also correspond to rather sharp (over several
kbp) transitions from negative to positive S (STA as well as SGC) skew values that clearly emerge from the noisy background.
As shown in Fig. 2(b)–(d), sharp upward jumps of amplitude �S � 15%, similar to the ones observed for the known repli-
cation origins (Fig. 2(a)), seem to exist at many other locations along the human chromosomes. This observation led us to
develop an upward jump detection methodology based on the WT microscope [35,138]. By selecting in the WT skeleton,
the maxima lines that still exist at scales a � 200 kbp, i.e. scales larger than the typical gene size (∼ 30 kbp) [35,138],
we not only reduce the effect of the noise but we also reduce the contribution of the upward (5′ extremity) and down-
ward (3′ extremity) jumps associated to the square-like skew pattern induced by transcription (Fig. 1). When applying this
wavelet-based method to the 22 human autosomes, retaining as putative replication origins upward jumps with �S � 12%,
i.e. with an amplitude much larger than the one induced by transcription at the TSS (Fig. 1(a)), we got a set of 1012 can-
didates mainly located in regions with G + C � 42% (as seen in Fig. 2(d), in G + C rich regions the required scale separation
between the characteristic replicon and gene sizes is no longer tractable to our multi-scale methodology) [35,138].

But when examining the behavior of the skews at large distance from the replication origins, one does not observe
a square-like pattern with upward and downward jumps at the origin and termination positions as expected from the
replicon model. Indeed the most striking feature is the fact that in between two neighboring major upward jumps, not only
the noisy S profile does not present any comparable downward sharp transition, but it displays a remarkable decreasing
linear behavior. At chromosome scale, we thus get jagged S profiles that have the aspect of “factory roofs” [14,35,70,138].
Note that the jagged S profiles shown in Fig. 2(a)–(d) look somehow disordered because of the extreme variability in the
distance between two successive upward jumps, from spacing ∼ 50–100 kbp (∼ 100–200 kbp for the native sequences)
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Fig. 2. S profiles along mammalian genome fragments (without repeats) [14,138]. (a) Fragment of human chromosome 20 including the TOP1 origin (red
vertical line). (b and c) Human chromosome 4 and chromosome 9 fragments, respectively, with low GC content (36%). (d) Human chromosome 22 fragment
with larger GC content (48%). In (a) and (b), vertical lines correspond to selected putative origins; yellow lines are linear fits of the S values between
successive putative origins. Black, intergenic regions; red, (+) genes; blue, (−) genes. Note the fully intergenic regions upstream of TOP1 in (a) and from
positions 5290–6850 kbp in (c). (e) Fragment of mouse chromosome 4 homologous to the human fragment shown in (c). (f) Fragment of dog chromosome
5 homologous to the human fragment shown in (c). In (e) and (f), genes are not represented. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

mainly in GC rich regions (Fig. 2(d)), up to 1–2 Mbp (∼ 2–3 Mbp for native sequences) (Fig. 2(c)). But what is important
to notice is that some of these segments between two successive skew upward jumps are entirely intergenic (Fig. 2(a, c)),
clearly suggesting that the observed peculiar N-shape skew profile is characteristic of a strand bias resulting solely from
replication [35,70,138]. Importantly, as illustrated in Fig. 2(e, f), the factory-roof pattern is not specific to human sequences
but is also conserved in homologous regions of the mouse and dog genomes [138]. Hence, the presence of strand asymmetry
in regions that have strongly diverged during evolution further supports the existence of compositional bias associated with
replication in mammalian germ-line cells [14,35,70,138].

2.4. A working model of mammalian “factory roof” skew profiles

According to the results reported just above, we will use as a working model that the overall factory roof profile observed
for mammalian genomes actually results from the superposition of two patterns (Fig. 3) [70]. One decreases steadily from
the 5′ to the 3′ direction and would be attributable to replication in germ-line cells (Fig. 3(a)). To explain this replication-
associated N-shaped pattern, we favor a model in which replication first initiates at origins located at the borders of the
N-shaped skew profile domain, followed by successive activations of secondary origins as replication progresses toward
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Fig. 3. (a) N-shaped replication-associated skew profile. (b) Transcription-associated skew profile showing positive square blocks at (+) gene positions
and negative square blocks at (−) gene positions. (c) Superimposition of the replication- and transcription-associated skew profiles producing the final
factory-roof pattern that defines “N-domains”.

Fig. 4. N-shaped analyzing wavelet ΨN (x) defined in (4).

the center of this domain. The linear decline of the skew would reflect a progressive change in the proportion of center-
and border-oriented forks that itself reveals the dynamic pattern with which secondary initiations would occur within the
domain. The other pattern would result from transcription-associated strand asymmetries that generate square-like profiles
corresponding to (+) and (−) genes (Fig. 3(b)). When the two profiles are superimposed, this leads to the factory roof
pattern (Fig. 3(c)) [70]. Because the typical gene size (∼ 30 kbp) is much smaller than the characteristic distance between
two adjacent putative replication origins, we will define these replication domains as “N-domains” [70] in regards of their
overall qualitative N-shape.

3. Detecting replication N-domains with the continuous wavelet transform

3.1. The continuous N-let transform

The continuous wavelet transform (WT) is a space-scale analysis which consists in expanding a signal S in terms of
wavelets that are constructed from a single function, the analyzing wavelet Ψ , by means of dilations and translations [42,
44,62,64,65,103]:

WΨ [S](b,a) = 1

a

+∞∫
−∞

S(y)Ψ

(
y − b

a

)
dy, (3)

where b and a (> 0) are the space and scale parameters respectively. The analyzing wavelet Ψ is generally chosen to be
well localized in both space and frequency. Usually Ψ is required to be of zero mean for the WT to be invertible. For the
particular purpose of segmenting the human genome, and more generally mammalian genomes, according to the working
model described in Fig. 3, we will use in the following an adapted analyzing wavelet called N-let because of its shape that
looks like the letter N (Fig. 4) [8,24,70]:

ΨN(x) = −xχ[−1,1](x), (4)

where χ[−1,1](x) is the characteristic function of the interval [−1,1].
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Fig. 5. Space-scale representation of the N-let transform of the skew function S(x) = −10−2xχ[−100,100](x) (see (5)). WΨN [S](b,a) is maximum at (b∗,a∗) =
(0,100). WΨN [S](b,a) is color coded from blue (minimum) to red (maximum) through green (intermediate values). The white dashed lines correspond to
the WTMM lines (local negative minimum of WΨN [S](b,a)) LL and L R that point to the extremities of the theoretical N-domains in the limit a → 0+ .
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2. Multi-scale pattern recognition with the continuous N-let transform

Along the line of the working model of mammalian “factory roof” skew profiles defined in Fig. 3, let us compute the
N-let transform of the following theoretical skew profile [114]:

S(x) = (−θ(x − r∗) + h
)
χ[r1,r2](x), (5)

where r1 and r2 are the bordering replication origin positions and r∗ = (r1 + r2)/2. The N-let transform of (5) takes the
following analytical expressions:

WΨN [S](b,a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0,

θ(b−r∗)−h
2 (1 − (r1−b)2

a2 ) + θa
3 (1 − (r1−b)3

a3 ),

2θa
3 ,

θ(b−r∗)−h
2 (

(r2−b)2

a2 − 1) + θa
3 (

(r2−b)3

a3 + 1),

θ(b−r∗)−h
2a2 ((r2 − b)2 − (r1 − b)2) + θ

3a2 ((r2 − b)3 − (r1 − b)3)

for

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b � r1 − a or b � r2 + a,

r1 − a < b � r1 + a and b < r2 − a,

b � r1 + a and b � r2 − a,

b > r1 + a and r2 − a < b < r2 + a,

b < r1 + a and b > r2 − a.

(6)

As an illustration, a space-scale representation of the N-let transform of S(x) for the following parameters values θ =
10−2, h = 0, r1 = −100 and r2 = 100, is shown in Fig. 5. Some 1D cuts corresponding to different scale values a � a∗
are shown in Fig. 6. For a given scale a, WΨN [S](b,a) exhibits a plateau for b ∈ [b∗

1(a),b∗
2(a)], where b∗

1(a) = r1 + a and
b∗

2(a) = r2 − a. When increasing a, this plateau increases linearly with a while the interval [b∗
1(a),b∗

2(a)] shrinks to zero so
that WΨN [S](b,a) presents a local maximum in the (b,a) half-plane at the point (b∗,a∗):

WΨN [S](b∗,a∗) = 2

3
θa∗, (7)

where

b∗ = r∗ = r1 + r2

2
, a∗ = r2 − r1

2
. (8)

The determination of this N-let transform local maximum (the red spot in Fig. 5) therefore provides an estimate of the
mid-point and the size of the support of the function S via (8) and of its linear slope −θ via (7). Note that these results
extend to non-zero values of the offset parameter h (5) provided it remains small as compared to the jump amplitude θa∗ .
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Fig. 6. Horizontal 1D cuts of the N-let transform represented in Fig. 5 for the scales a = 10 (dotted line), 50 (dashed line) and 100 (solid line).

3.3. Numerical method

The method we propose to identify replication N-domains in noisy factory roof like profiles (Fig. 2) involves several steps.

• Step 1: Detecting potential N-domain borders.
We smooth the skew S with a square-like filter of size 20 kbp:

S̃(x) = 1

20
S ∗ χ[−10,10](x). (9)

The amplitude �S(x) at a point x is defined as:

�S(x) = S̃(x + 20) − S̃(x − 20). (10)

On purpose, we do not take into account the nucleotides that are closer than 10 kbp to the jump location for which
a high variability of skew values is observed. Then, along the line of our previous investigation of replication origins
in mammalian genomes [8,24,70], the position xn of an upward jump will be considered as a good candidate for the
location of a putative replication origin if it is a local maximum of �S(x) and satisfies the condition:

S̃(xn − 20) � −ε and S̃(xn + 20) � ε. (11)

This condition not only fixes a threshold (= 2ε) in the jump amplitude but it also imposes the fact that a putative
replication origin must correspond to a jump from negative to positive skew values. In the present work, according to
the histograms of S values obtained from the human and mouse genomes, we will fix the threshold parameter ε to:

ε = 3 10−2. (12)

In this way, for each human and mouse chromosomes, we obtain a dictionary of upward jump locations as potential
candidates for N-domain borders.

• Step 2: Associating pairs of borders to define N-domains.
For each pair of selected upward jumps (x1, x2), we determine the position (bM ,aM ) of the local maximum of the N-
let transform (i.e. red spot in Fig. 5). For each b ∈ [x1, x2], we estimate the range of scales [a1(b),a2(b)] over which
WΨN [S](b,a) behaves linearly with the scale a as predicted by (6). We impose a1(b) to be larger than 40 (kbp) to
minimize bias induced by the noise and the N-let sampling and, using a classical least square fit procedure, we es-
timate a2(b). As illustrated in Fig. 7, for the theoretical example (5), in the absence of noise, a2(b) corresponds to
the scale aM(b) for which WΨN [S](b,a) starts decreasing. For the genomic noisy skew profile, the sharp maximum of
WΨN [S](b,a) vs a turns out to be smoothed out so that a2(b) � aM(b). We estimate aM(b) as the first N-let trans-
form maximum above a2(b), provided aM(b) − a2(b) � a2(b)/10 (if not we set aM(b) = a2(b)). Then, bM is the position
corresponding to the maximal value of aM(b) for b ∈ [x1, x2]. Finally, we check the consistency of associating (x1, x2)
into a N-domain by comparing (bM ,aM ) with (b∗,a∗) (8). The interval [x1, x2] is considered as a N-domain candidate
if (bM ,aM ) corresponds to the expectation (b∗,a∗) (8) within 10% accuracy and allowing for a maximum of 30 kbp
error on domain length. It is retained only if the χ2 obtained by a linear regression fit of S over [x1, x2] is smaller
than a critical threshold. We select between overlapping intervals according to their χ2. For example, if the intervals
I1 = [x1, x2], I2 = [x2, x3] and I3 = [x1, x3] are all three good candidates, we will retain either I1 and I2 or I3 according
to whether χ2

I1
+ χ2

I2
< χ2

I3
or the opposite.

• Step 3: Refining N-domain border locations.
The dictionary of upward jumps generated in Step 1 contains jumps identified at rather small scales (� 20 kbp) as
compared to the mean replication N-domain size we want to detect (see Section 4) and also to the characteristic size
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Fig. 7. Vertical 1D cuts of the N-let transform represented in Fig. 5 for b = 50 (dotted line) and b = b∗ = 0 (solid line). The largest value of aM (b) is obtained
for b = b∗ , a = a∗ (8), i.e. when the analyzing N-let is positioned at the center of the support of S .

Table 1
Replication N-domains detected in the human and mouse genomes.

Number Mean length (Mbp) ± std. dev. Genome coverage (%) Mean number of genes Intergenic coverage (%) GC (%)

Human 678 0.63 ± 0.33 (masked) 33.8 4.93 57.3 (masked) 40.8
1.19 ± 0.62 (native)

Mouse 587 0.54 ± 0.34 (masked) 22.3 4.13 58.2 (masked) 42.4
0.91 ± 0.62 (native)

of mammalian genes that were shown to induce transcription-associated upward jumps in the skew profile at their
promoter (Section 2.2). Consistently with the strategy of detecting putative replication origins pioneered in our previous
work [35,138], we take advantage of the space-scale representation provided by the WT to follow from large scales
a � aM( x1+x2

2 ) to small scales, the blue tongues like the ones shown in Fig. 5 that are likely to point to the jump
positions at the N-domain extremities. Practically, we identify in the WT skeleton the two nearest WTMM lines that
exist at scale aM( x1+x2

2 ) immediately on the left LL and the right L R of the central point (x1+x2)
2 , and that correspond

to the two local negative minima of WΨN [S](b,a) when represented versus b in Fig. 6. In regards to the noise amplitude
and the mean gene size, we reallocate the N-domain extremities x1 and x2, to b1 and b2 respectively, where

b1 ∈ LL(b,a) and b2 ∈ L R(b,a) for a = 40 kbp. (13)

Then, we check that the new domain [b1,b2] still satisfies the consistency condition of Step 2; if not we reject the
interval [b1,b2] as possible N-domain candidate.

3.4. Test application on synthetic skew signals

To test our methodology, we generate synthetic factory roof like profiles of the following simple form [114]:

S(x) =
∑

j

S j(x) + g(x), (14)

where S j(x) are functions similar to the one defined in (5):

S j(x) = (−θ j
(
x − (r j + ρ j/2)

) + h j
)
χ[r j ,r j+ρ j ](x), (15)

where r j = ∑ j−1
i=1 ρi and g(x) is a centered white noise. We choose the parameters to get a numerical S profile similar to

the ones observed in the human and mouse genomes (see Section 4). We fix θ jρ j = 0.14, h j = 0 an the noise standard
deviation σg = 0.08, consistently with the corresponding genomic mean values (see Sections 4 and 5). We generate the
length ρ j of the synthetic N-domains according to a normal law of mean ρ̄ = 550 kbp and standard deviation σρ = 300 kbp
consistently with the size statistics of the human and mouse masked N-domains (see Table 1). Square-like skew profiles of
mean length 30 kbp and amplitude �S = 0.06 (resp. �S = −0.06) for sense (resp. anti-sense) genes are finally added to
mimic the contribution to the skew associated to transcription (Section 2.2).

In Fig. 8 is shown the space-scale representation of a portion of the generated synthetic skew signal provided by the
N-let transform. This representation illustrates the essence of our methodology, namely a multi-scale pattern recognition
in the N-let transform half-plane. As reported in Fig. 9, out of the generated 2201 N-domains, 1997 are identified by
our methodology, i.e. more than 90%. When examining the N-domains that were missed, they mainly correspond to small
domains of length ρ � 200 kbp for which our method fails because of the lack of scale separation between the three
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Fig. 8. (a) Synthetic skew profile (14) generated as explained in the text; the gray line represents the succession of deterministic N-shape functions S j(x).
(b) Space-scale representation of the N-let transform of S(x) using the same color coding as in Fig. 5. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Histogram of skew N-domain length generated as explained in the text and illustrated in Fig. 8(a): (black) theoretical histogram corresponding to a
synthetic skew signal containing 2201 N-domains; (gray) histogram obtained from the 1997 N-domains detected by our N-let based methodology.

components contributing to the total skew, namely the replication- and transcription-associated skews and the noise. When
further analyzing the 1997 detected N-domains, we realize that the extremities of these domains are predicted with an
accuracy of ∼ 15 kbp which is reasonable in regards to the noise amplitude. As experimented in our pioneering study [35,
138], a better accuracy in upward jump detection can be obtained if one uses a smoother analyzing wavelet than the N-let
like the first derivative of the Gaussian function. This leads us to modify Step 3 in our method.

• Step 3: In Step 3, the N-domain extremities b1 and b2 in (13) are now determined from the corresponding WTMM lines
LL and L R in the WT skeleton computed with the first derivative of the Gaussian function G(1)(x) = −x exp(−x2/2).

When reproducing the test application with this new Step 3, similar efficiency is obtained but with a better accuracy in
determining the N-domains edges, the mean error being reduced to 5 kbp [114].
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Fig. 10. (a) Skew profile S of a 9 Mbp repeat-masked fragment of human chromosome 21. (b) N-let transform of S using ΨN (Fig. 4); WΨN [S](n,a) is color-
coded from dark-blue (min; negative values) to red (max; positive values) through green (null values). Light blue and purple lines illustrate the detection of
two replication domains of significantly different sizes. Note than in (b), blue cone-shape areas signing upward jumps point at small scale (top) towards the
putative replication origins and that the vertical positions of the WT maxima (red areas) corresponding to the two indicated replications domains match
the distance between the putative replication origins (1.6 Mbp and 470 kbp respectively). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4. Identifying replication N-domains in the human and mouse genomes

4.1. Human autosomes

When applying the wavelet-based method described in Section 3 to the skew profiles along the 22 human autosomes,
we detect 759 N-domain candidates (Fig. 10). Among these domains, we discard 17 domains that contain stretches of N
(unknown nucleotides) longer than 100 kbp. We also remove from the remaining N-domains those (64) of length L >

2.8 Mbp whose shape is reminiscent of an N but split in half, leaving in the center a region of null skew whose length
increases with domain size. As recently discovered [147], these split-N-domains have a central region corresponding to large
heterochromatic gene deserts of homogeneous composition, i.e. both a null skew and a constant and low GC content. We
end with a library of 678 N-domains bordered by 1062 putative replication origins spanning 33.8% of the genome (Table 1).
As shown in Fig. 11, the size of these N-domains ranges from ∼ 200 kbp (resp. 100 kbp when masked) to 2.8 Mbp (resp.
1.6 Mbp when masked) with a mean length L̄ = 1.19 Mbp (resp. 0.63 Mbp when masked). Most of the 1062 putative
replication origins at the extremities of the detected replication domains are intergenic (78%) and are located near to a gene
promoter more often than would be expected by chance (data not shown). These N-domains contain approximately equal
numbers of genes oriented in each direction (1653 (+) genes and 1690 (−) genes) with a mean gene number per domain
of 4.93. As observed in [70], gene distributions in the 5′ half of N-domains contain more (+) than (−) genes, and vice-versa
for the 3′ half of N-domains. Note that these N-domains have a high intergenic coverage where the skew S is likely to
result from replication only. As reported in Table 1 and Fig. 12, most of the detected N-domains are mainly intergenic with
a mean (masked) coverage of 57.3%. Indeed only a few N-domains (64/678) have a (masked) intergenic coverage less than
20% (Fig. 12(b)).

4.2. Mouse autosomes

When reproducing the same wavelet-based analysis for the 19 mouse autosomes, 634 N-domains candidates are iden-
tified with no domain containing large stretches of unsequenced nucleotides (N). After discarding 47 detected N-domains
of length L > 2.8 Mbp, we end with a library of 587 N-domains that cover 22.3% of the genome, i.e. a percentage slightly
smaller than previously obtained for the human genome. This results from the fact that more small domains are detected
in the mouse genome (Fig. 10) with a mean native (resp. masked) length of 0.91 Mbp (resp. 0.54 Mbp). Consistently with
previous observations that replicon sizes are smaller in GC rich regions (Fig. 2(d)) [8,14,70], the mean GC content of the
mouse N-domains (42.4%) is slightly higher than in the human N-domains (40.8%). Despite these slight quantitative differ-
ences, most of the features concerning gene organization in human N-domains are also observed in mouse N-domains with
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Fig. 11. Normalized histograms of N-domain length detected in the human (black) and mouse (gray) genomes: (a) native sequences; (b) masked sequences.

Fig. 12. Normalized histograms of intergenic regions in N-domains detected in human (black) and mouse (gray) genomes: (a) masked intergenic length;
(b) coverage by masked intergenic regions per N-domain.

a mean number of genes of 4.13 and globally a similar number of genes oriented in each direction (1220 (+) genes and
1204 (−) genes). Like in the human autosomes a majority of the 994 putative replication origins that border the 587 mouse
N-domains are intergenic (71%). Importantly the relative coverage of these N-domains by intergenic regions is important
(58.2%) and statistically very similar to what is observed with the human autosomes (Fig. 12).

5. Disentangling transcription- and replication-associated strand asymmetries

5.1. Method

Our method to disentangle transcription and replication skews is based on the working model shown in Fig. 3. When
superimposing the N-shaped replication profile and the transcription square-like skew profiles, we get the following theo-
retical skew profile in a replication N-domain:

S(x′) = S R(x′) + ST(x′) = −2δ

(
x′ − 1

2

)
+ h +

∑
genes

cgχg(x′), (16)

where position x′ within the domain has been rescaled between 0 and 1, h and δ (> 0) are parameters that define the
replication bias (S5′

R = h + δ at the 5′ N-domain extremity and S3′
R = h − δ at the 3′ extremity), χg is the characteristic

function for the gth gene that belongs to the N-domain (1 when the points is in the gene and 0 elsewhere) and cg is its
transcriptional bias calculated on the (+) strand (likely to be positive for (+) genes and negative for (−) genes). For each
N-domain detected as explained in Section 3 (see Fig. 10), we use a general least-square fit procedure to estimate, from
the noisy S profile the parameters δ, h and each of the cg ’s. The resulting χ2 value is then used to select the N-domain
candidates where the skew is well described by (16). As illustrated in Fig. 13 for a fragment of human chromosome 6 that
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Fig. 13. (a) Skew profile S of a 4.3 Mbp repeat-masked fragment of human chromosome 6; each point corresponds to a 1 kbp window: red, (+) genes; blue,
(−) genes; black, intergenic regions (the color is defined by majority rule); the estimated skew profile (16) is shown in green; vertical lines corresponds
to the locations of 5 putative replication origins that delimit 4 adjacent domains identified by the wavelet-based methodology. (b) Noise component SNoise
obtained by subtracting the estimated total skew (green line in (a)) from the original skew profile in (a). (c) Transcription-associated skew ST obtained by
subtracting the estimated replication-associated profile (green lines in (d)) from the original S profile in (a); the estimated transcription step-like profile
(third term of the rhs of (16)) is shown in green. (d) Replication-associated skew S R obtained by subtracting the estimated transcription step-like profile
(green lines in (c)) from the original S profile in (a); the estimated replication serrated profile (first two terms on the rhs of (16)) is shown in green. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

contains 4 adjacent replication domains (Fig. 13(a)), this method provides a very efficient way to disentangle the square-like
transcription skew component (Fig. 13(c)) from the N-shaped component induced by replication (Fig. 13(d)).

Remark. In the least-square fit procedure, we fix the variance σ 2 of the Gaussian noise to the variance σ 2 = 1
2 σ 2

δS computed

in each N-domain from the probability distribution function of the skew increments δS(n)/
√

2 = [S(n + 1) − S(n)]/√2. As
quantitatively verified a posteriori (Fig. 14), this variance directly estimated from the total skew S (Fig. 13(a)) is a very good
approximation of the noise component of the skew once subtracted our model skew profile (Fig. 13(b)).

5.2. Human autosomes

Among the 678 N-domains detected in the 22 human autosomes, our disentangling methodology fails to provide sat-
isfactory results (prohibitive too large χ2 values) for 14 domains only. We have checked that the main reason for which



164 A. Baker et al. / Appl. Comput. Harmon. Anal. 28 (2010) 150–170
Fig. 14. Semi-log representation of normalized histograms of skew values in: (a) an N-domain of length L = 2.6 Mbp (1.5 Mbp masked) in the human
genome and (b) an N-domain of length L = 2.3 Mbp (1.3 Mbp masked) in the mouse genome. The symbols correspond to the histogram of the skew
component SNoise (•) and of the total skew increments δS/

√
2 (◦). The continuous parabola corresponds to Gaussian distributions of standard deviation

σ = 0.090 (a) and 0.087 (b).

Fig. 15. Normalized histograms of replication parameters S5′
R (a), S3′

R (b) and h (c) estimated in 664 N-domains identified in the 22 human autosomes
(black) and in 585 N-domains detected in the 19 mouse autosomes (gray) (see Table 2).

Table 2
Mean replication parameters (in percent ± SEM) computed with our wavelet-based disentangling method from human and mouse skew profiles (see (16)).

Number of N-domains S̄5′
R S̄3′

R h̄

Human 664 7.2 ± 0.1 −7.4 ± 0.1 (−9.5 ± 8.4)10−2

Mouse 585 6.8 ± 0.2 −6.8 ± 0.2 (−1.8 ± 7.9)10−2

our working hypothesis (16) does not apply is the fact that some regions present anomalous high amplitude skew values.
Hence, in the following, statistical analysis is performed on 664 N-domains.

5.2.1. Replication bias
In Fig. 15 are reported the results of our estimate of the replication parameters S5′

R = h + δ (Fig. 15(a)), S3′
R = h −

δ (Fig. 15(b)), and h (Fig. 15(c)). The normalized histogram of the offset parameter h (vertical shift of the N profile) is
symmetric (Fig. 15(c)), with a mean value h̄ = (−9.5 ± 8.4)10−4 (Table 2), that cannot be distinguished from zero. This
means that the replication N-shaped profile is mainly observed centered at zero with equal statistical probability of upward
and downward vertical shift by a few percent. The histograms of replication bias at the 5′ (Fig. 15(a)) and 3′ (Fig. 15(a))
N-domain extremities are quite symmetric one from each other with mean values S̄5′

R = 7.2 ± 0.1% and S̄3′
R = −7.4 ± 0.1%,

as expected from an antisymmetric N-shaped skew pattern of zero mean. Altogether these results provide some estimate of
the mean replication bias δ̄ = 7.3 ± 0.1%, which corresponds to an upward jump of mean amplitude � 14.6% in the skew
profile at the putative replication origins that border the replication N-domains. These estimations are consistent with those
obtained in our pioneering study of large amplitude upward jumps in human skew profiles [35,138].
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Fig. 16. Test of the consistency of our disentangling methodology: for each N-domain detected in the 22 human autosomes, the replication parameters
computed directly from the intergenic skew only are plotted versus the corresponding parameters derived from the method described in Section 5.1. (a) h
vs hintergenic; (b) δ vs δintergenic . For clarity, only (437/664) N-domains containing more than 200 kbp of intergenic masked sequences are represented such
that the error bars remain small enough.

Fig. 17. Normalized histograms of transcription bias ST computed as explained in the main text for human (black) and mouse (gray) genes of length
� 20 kbp. (a) (+) Genes; (b) (−) genes (see Table 3).

Table 3
Mean transcription skews (in percent ± SEM) computed with our wavelet-based disentangling method from human and mouse skew profiles (see (16)).
S̄(+)

T , S̄(−)
T , S̄ R+

T , and S̄ R−
T are the mean transcription skews computed for (+), (−), R+, and R− genes of length � 20 kbp. For R+ and R− genes, the

transcription skew is computed on the gene strand, and therefore expected to be positive (see Fig. 1).

S̄(+)
T (n(+)) S̄(−)

T (n(−)) S̄ R+
T (nR+) S̄ R−

T (nR−)

Human 5.1 ± 0.2 (726) −5.2 ± 0.2 (731) 5.3 ± 0.1 (942) 4.8 ± 0.3 (309)
Mouse 5.1 ± 0.2 (467) −4.9 ± 0.2 (481) 5.1 ± 0.2 (561) 5.1 ± 0.4 (213)

As a test of the reliability of our methodology, we compare in Fig. 16 the results of our estimates of the replication
parameters h and δ for each N-domain to the corresponding values obtained directly from some fit of the S profile when
considering only the intergenic regions where the observed skew is supposed to result from replication only. As observed
in Fig. 16(a) for the parameter h and in Fig. 15(b) for the parameter δ, a large majority of points fall, up to the numerical
uncertainty, on the diagonal. Thus, except for a small percentage of N-domains where intergenic coverage (Fig. 12) is too
small to allow us to compute the replication parameters directly from the intergenic skew profile, the estimates reported in
Table 2 are quite consistent with the skew values observed genome wide in intergenic sequences.

5.2.2. Transcription bias
To estimate the mean transcription bias of the genes belonging to a given N-domain, we consider the transcription-

associated skew ST obtained after subtracting the estimated N-shaped replication profile as illustrated in Fig. 13(c). Then
as first proposed in [136], the transcription skew of the genes is measured by averaging ST over intron sequences after
removing 490 bp at each intron extremities in order to get rid of the contribution to the skew coming from splicing signals.
In Fig. 17 and Table 3 are reported the transcription bias so estimated for 726 (+) genes and 731 (−) genes of length
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Fig. 18. Mean transcription skew computed on the gene strand for R+ (•) and R− (◦) genes of length � 20 kbp as a function of the (non-masked) distance
to the closest N-domain border: (a) Human genes; (b) mouse genes (see Table 3). Each point corresponds to average over 40 gene promoter positions and
transcriptional skews; vertical error bars represent SEM.

� 20 kbp so that the total intronic coverage is enough to ensure convergence in the estimate of the gene transcription
skew. The histograms of ST values for (+) and (−) genes are remarkably symmetric with means S̄(+)

T = 5.1 ± 0.2% and

S̄(−)
T = −5.2 ± 0.2% respectively. This confirms that the local genic contribution of transcription to the total skew is of

the same magnitude (∼ 5%) than the contribution induced by replication (∼ 7.5%) which can be seen a posteriori as a
justification of the need to develop a methodology capable to disentangle these two skew components. This suggests that
previous estimates [136,137] of total transcription bias (∼ 8%, see Fig. 1) were biased by the presence of a replication-
associated skew. According to the remarkable gene organization evidenced in replication N-domains in [70], we further
focus on R+ genes ((+) genes in the 5′ N-domain half and (−) genes in the 3′ N-domain half) that are transcribed in
the same direction as the putative replication fork progression and R− genes ((−) genes in the 5′ N-domain half and (+)

genes in the 3′ N-domain half) that are transcribed in the opposite direction. Close to the bordering putative origins, R+
genes are more abundant and longer than R− genes. As reported in Table 3, R+ and R− genes have similar transcriptional
skew S̄ R+

T = 5.3 ± 0.1% and S̄ R−
T = 4.8 ± 0.3%. Furthermore, as shown in Fig. 18(a), when plotting their transcriptional skew

versus their distance to their proximal N-domain border, we observe some significant decrease for both R+ and R− genes
from values ∼ 7% close to the putative replication origin to values ∼ 3% (R−) and ∼ 4% (R+). Thus genes lying in a
close neighborhood of the replication origins are more biased by transcription than central genes, a result which seems to
be quite consistent with the recent observation that these putative replication origins correspond to particular chromatin
regions permissive to transcription, that may have been imprinted in the DNA sequence during evolution [27]. In particular,
if according to the size of the error bars, we cannot conclude about the significance of the damped oscillations observed
for the R+ transcription bias in Fig. 18(a), they strikingly resemble to those displayed by the mean density profile of PolII
binding at gene promoter (±2 kbp around TSS) when plotted versus the distance to the closest N-domain border [27].

5.3. Mouse autosomes

Among the 587 N-domains detected in the 19 mouse autosomes, only 2 are discarded by our disentangling methodology
as incompatible with our working model (16). The results presented in this section will thus correspond to a statistical
analysis performed on 585 N-domains.

5.3.1. Replication bias
As shown in Fig. 15, the histograms of replication parameters (S5′

R , S3′
R , h) values computed with our methodology cannot

be statistically distinguished from the ones previously obtained for the human autosomes. The detected N-domains have a
zero mean replication skew (h̄ = (−1.8±7.9)10−4) and an antisymmetric shape with S̄5′

R = 6.8±0.2% and S̄3′
R = −6.8±0.2%

(Table 2) corresponding to an upward jump in the mouse skew profile, at the detected putative replication origins, of
characteristic amplitude ∼ 13.6% similar to the ∼ 14.4% previously observed for the human autosomes.

5.3.2. Transcription bias
Similarly, the estimates of the transcription bias for sense (Fig. 17(a)) and anti-sense (Fig. 17(b)) mouse genes are in

remarkable agreement with those obtained for human genes. As reported in Table 3, we get the following mean values
S̄(+)

T = 5.1 ± 0.2%, S̄(−)
T = −4.9 ± 0.2% for sense and anti-sense genes respectively, and S̄ R+

T = 5.1 ± 0.2%, S̄ R−
T = 5.1 ± 0.4%

for the transcription bias for R+ and R− genes. Interestingly, the transcription bias for R+ and R− genes decrease from
values ∼ 6–8% close to the N-domain borders down to values ∼ 2% when going away from the N-domain center (Fig. 18(b)).
Again we recover some feature previously evidenced with human genes, except that no (damped) oscillatory behavior is
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observed in the decrease of S R+
T as a function of the distance to the nearest N-domain border. This difference will be the

subject of further investigation via a specific comparison of the replication and transcription biases of orthologuous genes
in the human and mouse genomes and also of their relative positioning inside the replication N-domains.

6. Conclusions

In this paper, we developed a multi-scale methodology based on the continuous wavelet transform with an adapted (N-
shaped) analyzing wavelet. The implementation of this method allowed us to perform genome wide analysis of DNA strand
asymmetry profiles with the specific goal to extract from these intrinsically noisy profiles, the contributions associated with
replication and transcription respectively. The application of this methodology to the 22 human and 19 mouse autosomes
provides reliable estimates of the replication and transcription skews for each individual gene that belongs to a replication
N-domain. The quantitative agreement obtained between the human and mouse skew estimates strongly suggest that both
the replication and transcription components of the skew inside the N-domains are conserved in mammalian genomes.
These results open new perspectives in genomic and post-genomic data analysis. In particular, the possibility to correlate
separately the replication-associated and transcription-associated skew components to gene expression data (expression
level, expression breath, . . .), open chromatin markers (DNase I cleavage, DNA hypomethylation, nucleosome free regions)
and other epigenetic data (histone variants, histone tail modifications, . . .) is likely to shed a new light on chromatin-
mediated regulation of replication and transcription processes. The joint analysis of gene transcription bias and expression
data in germ-line cells is in current progress.
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