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 a model is a tool for simulating reality in a simplified form 

 a mathematical description of the physical reality can already 

be considered as a mathematical model  

 a mathematical model can be solved or computed 

analytically or numerically

 ‘Any type of modeling includes subjective decisions and 

simplifying assumptions because the true complexity of a 

natural system is never fully represented and data about 

properties and variables include uncertainties’ 

A model ?

(Fienen 2013)

(Wang and Anderson 1982)
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… all is relative, any model is always a simplification of the 

reality, 

- ‘black box’

- ‘grey box’

- physically based but not spatially distributed

- spatially distributed but not physically based

- spatially distributed and physically consistent

Terminology

Black-box model: a set of mathematical equations is developed by 

empirical or statistical fitting of parameters to reproduce historical 

records of the main variable (‘data driven’ model) (Anderson et al. 2015)

Various possibilities

for catchment scale models
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Aquifer parameters

p 1, p 2, ...,p i,... p k

x 1,x 2,..., x j,... x n
independent variables

Stress factor

Reaction/answer

y 1,y 2,..., y i,... y n
dependent variables

pumping, 

recharge, 

change in stress,…

contaminations,

Geometrical characteristics, 

properties of the considered domain 

piezometric heads, pressures, concentrations, …  

Deterministic 

Terminology

Stochastic/probabilistic using Monte Carlo multiple simulations, the 

same schema can be used with multiple equally likely sets of parameters, 

independent variables, and dependent variables. (Konikow and Mercer, 1988, Dassargues 2018)
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Deterministic models versus Stochastic/Probabilistic models:

Deterministic Model: the answer (reaction) of the 

simulated system, under a set of considered stress factors, 

is unique and defined in a pure deterministic process (even 

if the new simulated scenario is out of the stress range of 

the calibration)

Stochastic/Probabilistic Model: in addition, the possible 

uncertainties on the parameters, on the initial conditions, on 

the BC’s,  … 

combined resolution (can be very heavy)

most often, n resolutions of n equiprobable cases, 

and then statistics for estimating results 

dispersion and confidence intervals

allows to take into account ‘soft-data’

Terminology
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Sources of uncertainty are multiple and of different types: 

1) associated to subjective conceptual choices made 

to simplify the reality into a model

2) embedded in parameters data uncertainty 

3) highly parameterized models, where parameters 

value determination represents an ill-posed 

problem 

4) from initial and boundary conditions

…more about stochastic modeling

(Cooley 2004, Rojas et al. 2008, Wildemeersch et al. 2014 and many others)

(de Marsily et al. 2005, Brunner et al. 2012 and many others)

(among others: Carrera and Neuman 1986a, Moore and Doherty 2005, Hill 

and Tiedeman 2007, Beven 2009)

Terminology
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For predictions, the uncertainty of the stress factors linked to each 

simulated scenario can be integrated 

A formal stochastic formulation in the partial differential equations for 

flow and solute transport can be used

In practice, the most commonly-used : Monte Carlo simulations with 

multiple equally-likely realizations of the model parameter 

sets that are conditioned on the existing data 

Multiple simulations multiple responses statistically treated 

assuming (most often) Gaussian behavior

results in statistical distributions

probability distribution for each response based on the 

statistical distribution of data, parameters and stress factors

…more about stochastic modeling

(e.g. Rojas et al. 2010c, Sulis et al. 2012, Goderniaux et al. 2015 

and many others)

(see many books, among others: Dagan 1989, Gelhar 1993, 

Kitadinis 1997, Zhang 2002, Rubin 2003)

(e.g. Vecchia and Cooley 1987, Deutsch and Journel 1998, Huysmans 

and Dassargues 2006, Tonkin et al. 2007 and many others)

Terminology
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 clear definition of the final aim

 conceptual model

 mathematical model

 numerical model, development or choice of an existing code

 data input

 calibration and then validation

 sensitivity analysis

 application (use) of the model

 results analysis with regards to the initial question

 redaction of a report 

Different steps of a groundwater 

numerical model :

General methodology 
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General methodology

► Definitions, terminology, aims

► Methodology

► Conceptual model

► Choice of a software & numerical main 

characteristics

► Data needs and model implementation

► Model calibration and sensitivity

► Evaluation/reporting
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General methodology: conceptual model

…  the way in which reality is translated in a model 

be careful to coupled processes

Groundwater flow

Thermal effects Physico-chemical effects

and reactions

Geomechanical effects Contaminant transport

(Rosbjerg and Madsen 2005, Dassargues 2018)

(Anderson et al. 2015)
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 scale level

 steady state or transient analysis

 model dimensionality: 1D, 2D vertical, 2D horizontal, quasi-3D, 

3D

 boundary geometry and location, boundary conditions 

 geological media (porous / fissured / double porosity / …) 

 homogeneity/heterogeneity, isotropy/anisotropy, properties 

changes in function of time 

 initial conditions within the domain

 …

… ‘poorly justified assumptions can potentially discredit an entire 

groundwater model’

Conceptualisation of an hydrogeological problem consists in a 

fundamental step where the main assumptions of the modelling 

are chosen:

(Peeters 2017)

General methodology: conceptual model
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– Steady state 
• it does not exist in the reality 

• Res = 0 and Qin = Qout

• when piezometric heads and fluxes can be considered as relatively 
stable

• when transient data are lacking (first guess, …)

• with data allowing to deduce a ‘mean behaviour’ of the system : Rmean, 
Qmean, Hmean…

• for starting with a problem, before going to transient conditions

• adopted for simplification, considering extreme conditions and being on 
the ‘security side’

can be difficult to converge when data are not realistic or when 
non linearities are not considered 

 transient simulation with constant conditions + time step increasing 

General methodology: conceptual model
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– Transient simulation 

• requires generally more data

• takes more CPU time

• sometimes needed in function of the context

– transient character of the gw flow conditions  

– transient transport (it is generally the case) on a 

supposed steady gw flow

General methodology: conceptual model
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• Initial conditions: initial values of the main variable  

(generally piezometric head h ) in each node of the mesh

• 1st used values for a steady state computation (1st

approximation)

– influence the convergence process and the CPU time for 

reaching the steady state equilibrium 

– if the convergence is not ideal, results can be affected

• actual initial state of the sytem at time t0 for starting 

a transient simulation

– if hi are not consistent with BC’s and stress factors, then 

Δh calculated can be completely strange 

– very often: starting with a steady state and continuing 

with a transient simulation

General methodology: conceptual model
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• pseudo-3D or quasi-3D

– multi-layers system with 2D gw flow in each of them 

– strictly vertical flow in aquitards calculated by applying 

the Darcy’s law

2D horizontal

2D horizontal

1D vertical

Aquifère

Aquifère

Aquitard

Extension and dimensionality

General methodology: conceptual model
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Parsimony or complexity: merits and pitfalls 

 any process-based model becomes complex and remains 

uncertain

 complexity could be considered through the use of stochastic 

approaches conditioned on the available data

 complexity could be introduced in a stepwise fashion, from simple 

to complex

 preserve refutability and transparency

 to determine if a simple model provides reliable results, its results 

should be compared to results from a more complex one

(Hill 2006, Gómez-Hernández 2006, Wildemeersch 2012, )

(Beven and Freer 2001, Gómez-Hernández 2006, Beven and Binley 1992,

Hoeting et al. 1999, Neuman 2003, Rojas et al. 2008 and 2010a )

each chosen hypothesis can be tested

modelled processes remain understandable

(Ward 2005, Schwartz et al. 2017, Kurtz et al. 2017)

(de Marsily et al. 2005)

General methodology: conceptual model
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choice of a software 

 if a new code is developed: it must be validated for the same kind 

of processes

 choose your code in function of your conceptual model

 many existing codes for different purposes

Do not use a hammer to drive a screw 

or do not use a screwdriver to drive a nail !

General methodology: 
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 study area represented by a mesh of elements or cells to which 

nodal points (or nodes) are associated

 in those subdomains (cells, elements, volumes) the medium is 

assumed homogeneous

 the continuous variable by a discrete variable (the solution will be 

found at discrete points of the spatio-temporal domain)

 a finer spatial discretization means a better approximation of the 

solution 

 partial differential equations are replaced by a system of algebraic 

equations 

 the state variables are the unknown

 a solution obtained for each specified set of parameter values 

 …

General methodology: numerical models main

characteristics
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 iterative procedures more efficient than direct matrix 

inversion methods

 solution = values at discrete locations in the simulated 

domain generated from the spatial discretization

 if transient problem, the time scale is also discretized in time 

steps

 solution at the n discrete nodes and for all time steps, then 

interpolations at any location in space and time

General methodology: numerical models main

characteristics (2)

(Wang and Anderson 1982)
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General methodology: numerical models main

characteristics (3)

For an iterative solution,

Convergence = computed values converge towards the exact values, in 

particular when the spacing between nodes is decreasing

Stability = the numerical errors (truncation + roundoff) should not increase in 

the solution computation within one time step or from a time step to the next 

ones

(Volume, mass or energy) conservation is preserved (i.e. the numerical 

solutions must preserve and satisfy balance equations at the local as at the 

global scales)
(Bear and Cheng 2010, Diersch 2014)
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Physical consistency is dependent on the conceptual choices to simplify 

the reality for an efficient modelling

Numerical consistency is ensured if truncation errors tend to zero for 

decreasing mesh increments and time steps

Accuracy = describing the (lowest as possible) modeling errors (truncation 

and roundoff errors + conceptual and calibration errors)

Resolution = the smallest increment or decrement of the considered 

variable value that can be calculated by the model

REV concept  = considered volume of geological medium for quantifiying

properties at the appropriate scale (by averaged equivalent values)

a very useful concept that implicitly assumes a 

continuum and a porous medium

(Paniconi and Putti 2015)

(Bachmat et Bear 1986, Bear et Verruijt 1987, de Marsily, 

1986, Dagan, 1989)

(Molz 2015)

General methodology: numerical models main

characteristics (4)
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 conceptual errors (linked to main conceptual choices, systematic)

 approximation errors (linked to the chosen spatial/temporal 

resolution)

 numerical errors (linked to the numerical method adopted for 

solving the system of equation, truncation and roundoff errors, …)

 measurement errors (implicitly introduced during the calibration 

process, see next section)

Scale issue: measurement scale is

very different model scale

General methodology: modeling errors



General methodology

► Definitions, terminology, aims

► Methodology

► Conceptual model

► Choice of a software & numerical main 

characteristics

► Data needs and model implementation

► Model calibration and sensitivity

► Evaluation/reporting
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General methodology: data needs

Summary and generalization: only 4 kinds of data

 1D, 2D or 3D geometry of the modelled zone (geology, 

topography, hydrology, concerned problem, scale, … )

 values for the properties (parameters) playing a role in the 

modeled processes (i.e. for gw flow: K and Ss or T and S, for 

solute transport ne, aL, aT, R, …)

 stress factors applied on the modelled domain (i.e. for gw

flow: recharge, pumping, injections, for solute transport mass 

injection or removal)

 historical (measured) data concerning the main problem 

variable (i.e. for gw flow: piezometric heads, for solute 

transport: concentrations) or its first derivative (i.e. for gw flow: 

flow rates or fluxes, for solute transport advective or 

dispersive mass fluxes) … distributed data in the domain that 

will be used for calibration (or inverse modeling) procedure
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 Spatial discretisation                    grids with cells

 Time discretisation time steps

 Boundary Conditions (BC’s) 

 Sink /source terms

 Initial values for the main variable

 Initial values for possible useful other state variables

General methodology: model implementation

discretisation, parameters, stress-factors and 

historical data 

Conceptual model  translated in a usable form 

for modelling:



General methodology

► Definitions, terminology, aims

► Methodology
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► Model calibration and sensitivity

► Evaluation/reporting





31

General methodology: model calibration

Change (adaptation) of the parameters values and 

distribution … for a better simulation of the reality 

… this reality is considered as represented by 

historical data sets

 Objective function formulation (be careful: any objective 

function is subjective !)

 Sensitivity analysis

 Change in parameters values (inverse problem);

 Validation using another data set (most often another time 

period, for transient modelling)

How to quantify objectively the good fit ? 

Different steps :

accounting for the discrepancies between observed 

and computed values of the main variables and/or one 

or more of their derived variables
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General metodology: performance criteria 

for calibration

weighted least 

square

weighting factors

for different kind

of data  

𝜑 𝒃 = 

𝑖=1

𝑛

𝑤𝑖  𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑠𝑖𝑚(𝒃
2

for the relevant process to answer the initial 

question !

If the aim is to simulate the baseflow evolution in 

a watershed:

𝜑𝑁𝑆 𝒃 = 1 −
 𝑡=1
𝑛𝑡  𝑞𝑡

𝑜𝑏𝑠 − 𝑞𝑡
𝑠𝑖𝑚(𝒃

2

 𝑡=1
𝑛𝑡 𝑞𝑡

𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠
2 ∈ −∞, 1

(Beven and Binley 1992, Refsgaard and Henriksen 2004, Rojas et al. 2010b and 2010c, Wildemeersch 2012)

(Nash and Sutcliffe 1970, Wildemeersch 2012)
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General methodology: model calibration 

= inverse modeling

(Carrera et al. 2005, Hill and Tiedeman 2007, Carrera and Neuman 1986b)

 manual trial-and-error procedure

 automatically non-linear regression methods = 

inverse modelling

 main issues : the non-uniqueness of the solution

 introduce prior information on the parameter values to 

avoid as far as possible an ill-posed inversion

could be helpful to gain a full 

understanding of the physical 

behavior of the simulated system

more efficient to produce useful statistics
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General methodology: sensitivity analysis 

= calibration tool

(Hill 1992, Anderman et al. 1996, Hill et al. 1998, Hill and Tiedeman 2007)

 simple sensitivities

 dimensionless scaled sensitivities (dss)

 composite scaled sensitivities (css)

 calculated using inverse modeling 

codes as PEST and UCODE

 + parameter correlation coefficients

the amount the simulated value would change

given a change in the parameter value

the amount the simulated value would change 

given a 1% change in the parameter value

the importance of 

observations as a whole

to a single parameter

the degree of correlation 

between couple of 

parameters and/or 

stress factors

(example in Goderniaux et al. 2015)

(Doherty 2005, Skahill and Doherty 2006, Poeter et al. 2005)



General methodology

► Definitions, terminology, aims

► Methodology

► Conceptual model
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General methodology: evaluation & reporting

very important to analyse and evaluate the reliability of model 

results and adopted conceptual choices with regards to the 

question to be answered …

Reporting

modelling study realised step by step … these steps must be 

described in the final report to establish clearly the reliability 

of the results despite the simplifying assumptions of the 

conceptual model

the reader must be able to understand the justification of the 

conceptual choices and the rigour of the followed approach
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Groundwater flow equation in steady state

terms  are kg/(m3s )

in indicial notation

if density is assumed constant and the principal anisotropy 

directions of the K tensor are known and aligned with the 

selected coordinate system – terms are in s-1

𝛻 ∙ 𝜌 𝑲 ∙ 𝛻ℎ + 𝜌𝑞′ = 0

𝜕

𝜕𝑥𝑖
𝜌𝐾𝑖𝑗

𝜕ℎ

𝜕𝑥𝑗
+ 𝜌𝑞′𝑖 = 0

𝜕

𝜕𝑥
𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝐾𝑦𝑦

𝜕ℎ

𝜕𝑦
+

𝜕

𝜕𝑧
𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
+ 𝑞′ = 0

𝜕

𝜕𝑥
𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑧
𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
+ 𝑞′ = 0

if 2D vertical flow, terms are in s-1

𝜕

𝜕𝑥
𝑇𝑥𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝑇𝑦𝑦

𝜕ℎ

𝜕𝑦
+ 𝑞′′ = 0

if 2D horizontal flow, terms are in m/s
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confined aquifer 

(horizontal flow)

2D groundwater flow equations in 

transient conditions

𝛻 ∙ 𝑻 ∙ 𝛻ℎ + 𝑞′′ = 𝑆
𝜕ℎ

𝜕𝑡
𝜕

𝜕𝑥𝑖
𝑇𝑖𝑗

𝜕ℎ

𝜕𝑥𝑗
+ 𝑞′′𝑖 = 𝑆

𝜕ℎ

𝜕𝑡

𝜕

𝜕𝑥
𝑇𝑥𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝑇𝑦𝑦

𝜕ℎ

𝜕𝑦
+ 𝑞′′ = 𝑆

𝜕ℎ

𝜕𝑡

in indicial notation

unconfined aquifer

principal anisotropy directions aligned 

with the selected coordinate system

terms are in m/s

𝛻 ∙ 𝑻(ℎ) ∙ 𝛻ℎ + 𝑞′′ = 𝑛𝑒
𝜕ℎ

𝜕𝑡
= 𝑆𝑦

𝜕ℎ

𝜕𝑡
𝜕

𝜕𝑥𝑖
𝑇𝑖𝑗

𝜕ℎ

𝜕𝑥𝑗
+ 𝑞′′𝑖 = 𝑛𝑒

𝜕ℎ

𝜕𝑡
= 𝑆𝑦

𝜕ℎ

𝜕𝑡

𝜕

𝜕𝑥
𝑇𝑥𝑥

𝜕ℎ

𝜕𝑥
+

𝜕

𝜕𝑦
𝑇𝑦𝑦

𝜕ℎ

𝜕𝑦
+ 𝑞′′ = 𝑆

𝜕ℎ

𝜕𝑡

in indicial notation

principal anisotropy directions 

aligned with the selected coordinate

system

terms are in m/s
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with water pressure head as main variable

Groundwater flow equations including the 

partially saturated zone

𝛻 ∙ 𝜌 𝑲 ℎ𝑝 ∙ 𝛻ℎ𝑝 +𝑲 ℎ𝑝 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌𝐶 ℎ𝑝
𝜕ℎ𝑝
𝜕𝑡

terms  are kg/(m3s )

(Celia et al. 1990)

𝛻 ∙ 𝜌 𝑲 𝜃 ∙ 𝛻ℎ𝑝 +𝑲 𝜃 ∙ 𝛻𝑧 + 𝜌𝑞′ = 𝜌
𝜕𝜃

𝜕𝑡

in a mixed way as a function of the water content and the 

pressure head

(Richards 1931)

needs relations between

- 𝜃 and hp

- 𝜃 and K
…

… van Genuchten relations and others
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Flow Boundary Conditions 

 Dirichlet conditions: prescribed piezometric head

 Neumann conditions: prescribed flux

 Cauchy or mixed conditions: flux depending on 

piezometric head 
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Prescribed piezometric head 

(Dirichlet condition)  

Prescribed piezometric head on the concerned boundary:

'f can vary in space and time  

(one value per node and per time step)  

a flux will be computed per concerned node

Flow BC’s

)ℎ 𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′(𝑥, 𝑦, 𝑧, 𝑡
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Prescribed flux (Neumann condition)

The first derivative of the piezometric head is 

prescribed on the concerned boundary:

piezometric gradient normal to the concerned boundary, 

its value can vary in space and time 

(one value per concerned node and per time step)  

Applying the Darcy’s law, it is a way of prescribing the water 

flux through the boundary:

''f

: precribed flux through the boundary (m/s)''q

0'' fparticular case:

Flow BC’s

 𝛻ℎ ∙ 𝒏 =
𝜕ℎ

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑓′′ 𝑥, 𝑦, 𝑧, 𝑡

 𝐾
𝜕ℎ

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑞′′(𝑥, 𝑦, 𝑧, 𝑡)
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Prescribed flux (Neumann condition)Flow BC’s

(Dassargues, 2018)
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Prescribed flux (Neumann condition)Flow BC’s

(Dassargues, 2018)
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A combination (linear relation) of the piezometric head

and its first derivative is prescribed on the boundary:

Flux depending on the piezometric head

(mixed condition or Cauchy condition)

),,,('''),,,(.),,,(. tzyxftzyxhbtzyx
n

h
a 




'''f can vary in space and in time

(one value per concerned node and per time step)

 interactions between surface water bodies and 

groundwater

 interactions between different aquifers

Flow BC’s
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Flux depending on the piezometric head

(mixed condition or Cauchy condition)
Flow BC’s

 𝑞′′ = −𝐾
𝜕ℎ

𝜕𝑛
=
𝐾′

𝑏′
(ℎ𝑟 − ℎ

 𝑞′′ = −𝐾
𝜕ℎ

𝜕𝑛
=
𝐾′

𝑏′
(ℎ𝑠 − ℎ

conductance

conductance
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Flux depending on the piezometric head

(mixed condition or Cauchy condition)
Flow BC’s

 𝑞′′ = −𝐾
𝜕ℎ

𝜕𝑛
=
𝐾′

𝑏′
(ℎ𝑏 − ℎ

 𝑞′′ = −𝐾
𝜕ℎ

𝜕𝑛
=
𝐾′

𝑑′
(ℎ𝑟 − ℎ

conductance

conductance

prescribing an ‘external head’ (i.e. not on the true boundary but outside the 

modelled zone) so that a groundwater flux across the boundary is computed 

from the difference between this ‘external head’ and the piezometric head on 

the model boundary using a given conductance
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Flux depending on the piezometric head

(mixed condition or Cauchy condition)
Flow BC’s

conductance

 𝑞𝐸𝑣𝑇 =
𝑅𝐸𝑣𝑇
𝑑𝑒𝑥𝑡

(ℎ 𝑥, 𝑦, 𝑧, 𝑡 − ℎ𝑐𝑟𝑖𝑡 𝑥, 𝑦, 𝑧, 𝑡

represent an evapotranspiration flux leaving the model but dependent on the ‘depth 

to water’ (i.e. the land surface elevation minus piezometric head). An extinction 

depth 𝑑𝑒𝑥𝑡 corresponding to a critical head ℎ𝑐𝑟𝑖𝑡 can be defined so that EvT occurs 

only if the water table is higher 

(Anderson et al. 2015) 

in arid and semi-arid zones
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Introduction to solving methods: FD 

𝜕ℎ

𝜕𝑥
≈

)ℎ 𝑥 + ∆𝑥 − ℎ(𝑥

∆𝑥

𝜕ℎ

𝜕𝑥
≈

)ℎ 𝑥 + ∆𝑥 − ℎ(𝑥 − ∆𝑥

2∆𝑥

𝜕2ℎ

𝜕𝑥2
≈
ℎ𝑖+1𝑗 − 2ℎ𝑖𝑗 + ℎ𝑖−1𝑗

∆𝑥 2

1D spatial approximation of the gradient 

by a finite difference:

Forward FD

Central FD

In 2D, with a 2nd order accurate FD:

𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
≈

ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗

∆𝑚 2 = 0
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Introduction to solving methods: BCFD

𝑇𝑒𝑞𝑖+ =
2𝑇𝑖+1𝑗𝑇𝑖𝑗

𝑇𝑖𝑗 + 𝑇𝑖+1𝑗
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Introduction to solving methods: time 

integration scheme 

𝜕ℎ

𝜕𝑡
=

)ℎ 𝑡 + ∆𝑡 − ℎ(𝑡

∆𝑡

ℎ𝑖𝑗 𝑡 + ∆𝑡 = ℎ𝑖𝑗 𝑡 +
𝑄𝑖𝑗∆𝑡

𝑆
+

𝑇∆𝑡

∆𝑚 2𝑆
 ℎ𝑖+1𝑗(𝑡) + ℎ𝑖−1𝑗(𝑡) + ℎ𝑖𝑗+1(𝑡) + ℎ𝑖𝑗−1(𝑡) − 4ℎ𝑖𝑗(𝑡

𝑇

∆𝑚 2
ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆

 ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡

∆𝑡

𝑇
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
≈ 𝑇

ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗

∆𝑚 2
= S

𝜕ℎ

𝜕𝑡

Explicit 

at what time do we consider the piezometric head values? 

CstT 

Cstmyx 

 physically: not so accurate 

 numerically: stability problem when the time step becomes larger 

 respect a stability criterion 



Explicit method

Example:

- squared island

- initial value h = 10 m

- BC’s : h = 10 m

- infiltration: 0.002 m/day

- S = 0.4 ; T = 100 m2/day

- t =10 days m =50m

 
 )(4)()()()(.

.

..
)()( 11112

ththththth
Sm

tT

S

tI
thtth ijjijijijiijij 







 

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

05.0
.




S

tI

 
25.0

.

.
2






Sm

tT

… computation:

- 1st time step;

- 2nd time step;

- 3rd time step;

- …

10.05 10.05 10.05 

10.05 10.05 10.05 

10.05 10.05 10.05 

10.075 10.09 10.075 

10.075 10.09 10.075 

10.09 10.10 10.09 

10.10 10.12 10.10 

10.10 10.12 10.10 

10.12 10.14 10.12 

… no problem



Explicit method

… now with a t = 40 days

 
 )(4)()()()(.

.

..
)()( 11112

ththththth
Sm

tT

S

tI
thtth ijjijijijiijij 







 

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

2.0
.




S

tI

 
1

.

.
2






Sm

tT

… computation:

- 1st time step;

- 2nd time step;

- 3rd time step;

- …

10.2 10.2 10.2 

10.2 10.2 10.2 

10.2 10.2  10.2  

10.0 10.2  10.0 

10.0  10.2  10.0  

10.2  10.4  10.2  

10.6  10.0  10.6  

10.6  10.0  10.6  

10.0 9.8 10.0  

… numerically not stable

time



Explicit method: stability criterion (example)

… worst case   

 
 )(4)()()()(.

.

..
)()( 11112

ththththth
Sm

tT

S

tI
thtth ijjijijijiijij 







 

… for obtaining the stability :

10 - 

10 + 

10 + 

10 + 10 +  )8(0)10()(   tthij

0
.




S

tI

 






Sm

tT

.

.
2

)10()( thij

 )18(10)(  tthij

  )18(

4/1

 
4/1

.

.
2







Sm

tT
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… at the time tt 

implicit equation

Introduction to solving methods: time 

integration scheme 
Implicit

ℎ𝑖𝑗 𝑡 + ∆𝑡 1 + 4𝛼 = ℎ𝑖𝑗 𝑡 +
𝑄𝑖𝑗∆𝑡

𝑆

+
𝑇∆𝑡

∆𝑚 2𝑆
 ℎ𝑖+1𝑗(𝑡 + ∆𝑡) + ℎ𝑖−1𝑗(𝑡 + ∆𝑡) + ℎ𝑖𝑗+1(𝑡 + ∆𝑡) + ℎ𝑖𝑗−1(𝑡 + ∆𝑡

 physically: not so accurate (error increases with time step)

 numerically:  unconditional stability

 mathematically: more complex/heavy

the unknown cannot be deduced from one equation

you need the whole system to be solved

(Bear and Cheng 2010) 



Implicit method

 
S

tI
thtth ijij




.
)(.41).( 

 )()()()(. 1111 tthtthtthtth jijijiji  
10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

10 10 10 10 10

… even with a t = 40 days

2.0
.




S

tI

 
1

.

.
2






Sm

tT

… computation:

- 1st time step;

- 2nd time step;

- …

10.125 10.135  10.125 

10.125  10.135  10.125  

10.135  10.158  10.135  

10.2 10.2 10.2 

10.2 10.2 10.2 

10.2 10.2  10.2  

… numerical stability



Implicit method: stability can be proven 

 
S

tI
thtth ijij




.
)(.41).( 

 )()()()(. 1111 tthtthtthtth jijijiji  

for obtaining stability : 

… the worst case    

10 - 

10 + 

10 + 

10 + 10 + 

)10(40)10()41)((   tthij

0
.




S

tI

 






Sm

tT

.

.
2

)10()( thij

)41(

)10(4)10(
)(








 tthij

 10)( tthij










10

)41(

)10(4)10(

 4401044010 
…always the case   
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Crank-Nicholson method

 physically: more accurate  

 numerically: implicit procedure, unconditional stability

… at the time  2tt 

Galerkin method

… at the time 32 tt 

 physically: most accurate 

 numerically: implicit procedure, unconditional stability

Introduction to solving methods: time 

integration scheme 
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Introduction to solving methods: time 

integration scheme 

𝑇

∆𝑚 2 ℎ𝑖+1𝑗 + ℎ𝑖−1𝑗 + ℎ𝑖𝑗+1 + ℎ𝑖𝑗−1 − 4ℎ𝑖𝑗 + 𝑄𝑖𝑗 = 𝑆
 ℎ𝑖𝑗 𝑡 + ∆𝑡 − ℎ𝑖𝑗(𝑡

∆𝑡

𝑇

∆𝑚 2 (1 − 𝜃)  ℎ𝑖+1𝑗(𝑡) + ℎ𝑖−1𝑗(𝑡) + ℎ𝑖𝑗+1(𝑡) + ℎ𝑖𝑗−1(𝑡) − 4ℎ𝑖𝑗(𝑡

+
𝑇

∆𝑚 2 𝜃 ℎ𝑖+1𝑗(𝑡 + ∆𝑡) + ℎ𝑖−1𝑗(𝑡 + ∆𝑡) + ℎ𝑖𝑗+1(𝑡 + ∆𝑡) + ℎ𝑖𝑗−1(𝑡 + ∆𝑡) − 4ℎ𝑖𝑗(𝑡 + ∆𝑡

0

1

2/1

3/2

Full explicit time integration

Full implicit time integration

Crank-Nicholson implicit 

Galerkin implicit

stability criterion only for explicit schemes  2/1

time integration schemas used in all numerical techniques
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Introduction to solving methods: FD practical 

recommendations 

 an initial field of values for the main unknown variable (piezometric head) 

needed for initiating the iterative solving

 accuracy increases with the number of cells but portability (i.e. computing 

efficiency) decreases 

 use smaller cells where a steep gradient of the main variable is expected.

 spatial discretization: nodes located at pumping wells and observation 

piezometers 

 avoid distances between nodes greater than 1.5 the previous one

 avoid ratios greater than 1/10 for the cell dimensions (bad numerical 

conditions for solving the system of equations)

 boundaries with a prescribed head should correspond to nodes (central 

points of the cells, if BCFD)

 boundaries with a prescribed flux should correspond to sides of the cells 

(where the flux condition is calculated) if BCFD.

 …
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Introduction to solving methods: FE

- discrete elements, unstructured 

FE mesh

- better for irregular boundaries, 

spatial variations, and exact 

locations for stress-factors and 

observation measurements

- optimized mesh generation to 

reduce the needed memory 

space
(refs among others: Narasimhan et al. 1978, Huyakorn and Pinder 1983, Bear and 

Verruijt 1987, Wang and Anderson 1982, Fitts 2002, Rausch et al. 2005, Bear and 

Cheng 2010, Anderson et al. 2015, Diersch 2014, Pinder and Celia 2006, Dassargues 

2018) 



62

Introduction to solving methods: FE
- the continuous field of the variable (i.e. 

piezometric head) approximated typically 

by interpolation functions (here also 

referred to as basis functions)

- piezometric field described in each finite 

element by a plane

- the discrete unknowns are the nodal 

values

- an integral approach expressing the weak 

formulation (i.e. a variational form 

integrating the governing partial differential 

equation of the process with its BCs and 

initial conditions) for obtaining a global 

continuum balance statement

- two ways: 

(1) minimum of a natural variational

functional (when it exists)

(2) method of weighted residuals 

(applicable to all types of partial 

differential equations)
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Introduction to solving methods: FV
- common features with FD and FE

- FD for unstructured grids 

- if triangles: similarities with triangle FE

- as for FE, FV approximates the main 

variable using basis functions in the 

triangular element 

- Finite Volume refers to the volume 

surrounding each node point in a mesh 

with nodal basis function = 1 only at the 

considered node and 0 at all others 

- conservation law is satisfied locally for a 

given control volume with respect to its 

neighboring volumes (similar to FD not to 

FE)

- balance relies on evaluation of surface 

integrals on the boundaries (i.e. the 

conservation must be satisfied across the 

boundaries of the adjoining control 

volumes)

(refs among others: Patankar 1980, Baliga and Patankar 1983, Chung 2002, Diersch 

2014, Narasimhan and Witherspoon 1976, Rausch et al. 2005, Fletcher 1988, 

Idelsohn and Onate 1994, Forsyth et al. 1995, Therrien and Sudicky 1996, Pinder

and Celia 2006, Therrien et al. 2010) 
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Solute transport equations

Remarks and assumptions:

 degradation occurs in both the mobile mass phase as well as 

the sorbed phase

 𝑅 = 1 +
𝜌𝑏

𝑛𝑚
𝐾𝑑 and 𝑛𝑚 is the mobile water porosity for 

transport, isothermal linear relation for adsorption/desorption

 source/sink term represented by 𝑀𝑣 in kg/m3s [ML-3T-1]

(a) source/sinks of solute mass linked to a groundwater flow 

rate exchanged with the external world = 𝑞𝑠𝐶𝑠
𝑣

(b) source/sinks of solute mass resulting from chemical 

reactions and immobile water effects/matrix diffusion

𝑅
𝜕𝐶𝑣

𝜕𝑡
= −𝛻 ⋅ (𝒗𝒂𝐶

𝑣) + 𝛻 ⋅ (𝑫𝒉 ∙ 𝛻𝐶
𝑣) − 𝑅𝜆𝐶𝑣 +

𝑀𝑣

𝑛𝑚
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Solute transport equations 

where 𝑆𝑖𝑗 = source/sink term representing the effect of reactions (kg/m3s)[ML-3T-1], 

𝜃𝑖= groundwater specific volume fraction of the REV where species 𝑖 is located

There are as many equations as species being considered in the reaction system: 𝑁𝑠, 
which are coupled through the 𝑆𝑖𝑗(𝐶1

𝑣, … , 𝐶𝑛
𝑣) terms. If all reactions occur in the water 

phase, 𝜃𝑖 are all equal to 𝑛𝑚 and the components of 𝒗𝒂𝒊 are all equal to 𝒗𝒂 (i.e. the 

advection velocity), which is defined as a homogeneous reaction system. On the 

contrary, if a part of the involved species is on the solid matrix or in the immobile water, 

the reaction system is defined as heterogeneous, 𝒗𝒂𝒊 and 𝑫𝒉 being equal to zero for the 

species in those immobile phases. (Kinzelbach 1992, Rausch et al. 2005, Dassargues 2018)

𝑅𝑖
𝜕𝐶𝑖

𝑣

𝜕𝑡
= − 𝒗𝒂𝒊𝛻𝐶𝑖

𝑣 + 𝛻 ⋅ 𝑫𝒉 ∙ 𝛻𝐶𝑖
𝑣 − 𝑅𝑖𝜆𝑖𝐶𝑖

𝑣 −
𝑞𝑠
𝜃𝑖

𝐶𝑖
𝑣 − 𝐶𝑠𝑖

𝑣

+
1

𝜃𝑖
 

𝑗=1

𝑁𝑠

 𝑆𝑖𝑗(𝐶1
𝑣 , … , 𝐶𝑛

𝑣 𝑖 = 1,… ,𝑁𝑠

multi-species reactive transport in mobile groundwater

can be solved separately

by PREEQC (for example)
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 Prescribed concentration  

(Dirichlet condition)

 First derivative of the concentration is 

prescribed (Neumann condition)

 A relation between the concentration and its 

first derivative is prescribed (Cauchy or 

mixed condition)

Full analogy with gw flow problem, 3 kinds of BC’s:

Transport Boundary Conditions 
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Prescribed concentration (Dirichlet BC)

'g can vary in space and timevarier dans l’espace et le temps  

(one value per concerned node and per time step)

in some cases, a non zero prescribed  concentration is used 

for simulating a continuous (long term) source of contamination 

however, for numerical reasons, it induces large numerical 

dispersion

a huge concentration gradient is prescribed abruptly 

to the system inducing artificial (numerical) dispersion

BC’s for a solute transport problem

)𝐶 𝑥, 𝑦, 𝑧, 𝑡 = 𝑔′(𝑥, 𝑦, 𝑧, 𝑡
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Typical case: a zero (or background) concentration 

prescribed upwards to the problem 

Prescribed concentration (Dirichlet BC)

BC’s for a solute transport problem

also used for a source of contaminant 

prescribing 𝐶𝑚𝑎𝑥
𝑣 in place of 𝑀𝑠 = 𝑞𝑠𝐶𝑠

𝑣
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• main discussion point: how to translate in the model the 

actual source of contaminant corresponding to the 

pollution ?

• through the sink/source term ? or through prescribed 

concentrations ?

• conceptually, 3 periods in a pollution event

– First release … recent contamination

– Possible stable period

– Decline period … old contamination

BC’s for a solute transport problem
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In practice, this kind of condition is often used with a zero value 

for the diffusion-dispersion mass flux through the boundary:

the advective component of the mass flux is computed

on the boundary by the code 

… a way of prescribing the dispersion mass flux 

(hydrodynamic dispersion) on the boundary

''g the concentration gradient normal to the boundary can vary 

in space and in time (one value per node and per time step)

0'' g

Prescribed first derivative of the concentration 

(Neumann BC)

BC’s for a solute transport problem

𝛻𝐶𝑣 ∙ 𝒏 =
𝜕𝐶𝑣

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑔′′ 𝑥, 𝑦, 𝑧, 𝑡
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nhD ,

diffusion-dispersion mass flux prescribed on the

concerned boundary (kg/(m2.s))

normal (to the boundary) component of the 

hydrodynamic dispersion tensor

Prescribed first derivative of the concentration 

(Neumann BC)

BC’s for a solute transport problem

 𝒏 ∙ −𝑛𝑚𝑫𝒉 ∙ 𝛻𝐶
𝑣 = −𝑛𝑚𝐷ℎ,𝑛

𝜕𝐶𝑣

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 = 𝑞′′ 𝑥, 𝑦, 𝑧, 𝑡

)𝑞′′(𝑥, 𝑦, 𝑧, 𝑡
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example:

  0... Cvn ebut

Prescribed first derivative of the concentration 

(Neumann BC)

BC’s for a solute transport problem
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a linear combination of the concentration and its first derivative

is prescribed on the concerned boundary:

can vary in space and time

(one value per concerned node and per time step)
'''g

a  combination (most often the sum) of advection 

and hydrodynamic dispersion mass fluxes is 

prescribed

Prescribed relation linking concentration and its first 

derivative (Cauchy or mixed Neumann BC)

BC’s for a solute transport problem

 𝑎
𝜕𝐶𝑣

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡 + 𝑏 𝐶𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 𝑔′′′ 𝑥, 𝑦, 𝑧, 𝑡
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total prescribed mass flux (advection + diffusion-

dispersion) normal to the concerned boundary 

(kg/(m2.s))

advection + diffusion-dispersion : 

… mostly used for prescribing a zero total flux on a boundary:

0''' g

Prescribed relation linking concentration and its first 

derivative (Cauchy or mixed Neumann BC)

BC’s for a solute transport problem

𝒏 ∙ 𝒒𝐶𝑣 − 𝑛𝑚𝑫𝒉 ∙ 𝛻𝐶
𝑣 = 𝑞𝑛𝐶

𝑣 𝑥, 𝑦, 𝑧, 𝑡 − 𝑛𝑚𝐷ℎ,𝑛
𝜕𝐶𝑣

𝜕𝑛
𝑥, 𝑦, 𝑧, 𝑡

)= 𝑞′′′(𝑥, 𝑦, 𝑧, 𝑡

)𝑞′′′(𝑥, 𝑦, 𝑧, 𝑡
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… equivalent to a zero flux (Neumann) gw flow BC associated with a 

transport zero Neumann BC:

no advection and no diffusion-dispersion through the boundary

a totally impervious boundary

Prescribed relation linking concentration and its first 

derivative (Cauchy or mixed Neumann BC)

BC’s for a solute transport problem
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 Introduction

 Pe and Cr numbers

 Eulerian methods

 Eulerian-Lagrangian methods

 Multi-reactive transport

Introduction to solute transport solving methods 

 numerical dispersion

 artificial oscillations

 more memory 

 more CPU

… solving the transport equation is never a simple operation ...

partial derivatives of the 1st and 2nd order in the same equation 

(parabolic and elliptic equation)



77

Introduction to solute transport solving methods 

 numerical dispersion

 artificial oscillations

 more memory 

 more CPU

… solving the transport equation is never a simple operation ...

partial derivatives of the 1st and 2nd order in the same equation 

(parabolic and elliptic equation)



78

Introduction to solute transport solving methods 

… solving the transport equation is never a simple operation ...

partial derivatives of the 1st and 2nd order in the same equation 

(parabolic and elliptic equation)

 Pe and Cr numbers

 Eulerian methods

 Eulerian-Lagrangian methods

 Multi-reactive transport

with regards to a fixed axis 

system

with regards to a moving 

axis system (referential) at 

va /R velocity along a 

streamline
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Numerical Peclet and Courant numbers

 dimensionless Peclet number = ratio between 

advection and dispersion

simplified in 

∆𝑥 < 2𝑎𝐿 to avoid oscillations when using 

classical grid-based numerical methods

 dimensionless Cr number = ratio between 

advection travel during a time step and the grid 

dimension                          𝐶𝑟 =
𝑣𝑎∆𝑡

∆𝑥

𝐶𝑟 < 1 to allow the transfer of information 

from a grid cell (element) to the next without 

losing information

𝑃𝑒 =
𝑣𝑎∆𝑥

𝐷

𝑃𝑒 =
𝑣𝑎𝑥∆𝑥

𝑎𝐿𝑣𝑎𝑥
=
∆𝑥

𝑎𝐿

(Price et al. 1966)

(Daus and Frind 1985, Rausch et al. 2005)
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Time integration schemes

 explicit integration schemes (θ < 0.5) : conditionally stable

 time integration on the implicit side (θ ≥ 0.5): unconditionally stable 

 Crank-Nicolson scheme (θ = 0.5) provides 2nd order accuracy (i.e. 

proportional to (∆t)2) and is just unconditionally stable

the reduction of the time step by a factor of 2 reduces 

the approximation error by a factor of 4. 

 time weighting can be combined to different spatial weighting (i.e. 

upstream weighting) for a variety of different methods

 in general, weighting more toward the implicit side will produce less 

oscillations but more numerical dispersion

 Crank-Nicolson scheme is often adopted as a compromise 

 with spatial and temporal discretizations adequately chosen in 

relation to Peclet and Courant constraints
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Introduction to solute transport solving methods 
Eulerian methods

concentration calculated at a given node should be more influenced by 

the concentration at the upstream node (i.e. with respect to the 

advective transport) than by concentrations at the other neighboring 

nodes

 more weight should be given to upstream values in the finite 

difference or finite element approximations of the advective term

 other terms of the solute transport PDE are treated by the standard 

approximations (i.e. similarly to what is done for solving the flow 

equation

 a series of upwind or upstream numerical techniques to decrease 

oscillations but at the cost of creating numerical dispersion (using 

upstream information artificially smooths the simulated gradients, 

which corresponds to numerical dispersion)

 Note: in many numerical books, oscillations = ‘dispersive error’ 

and numerical dispersion = ‘diffusive error’
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Introduction to solute transport solving methods 
Eulerian methods
 similar when applied to FDM, FVM and FEM

 upwind or upstream techniques require to compute beforehand the 

advection direction (i.e. groundwater flow direction) for the time step

 two types of upwind techniques: central-in-space upwind weighting and 

upstream weighting

 combined with different time integration schemes gives rise to a series of 

different methods

 for FD with uniform grid:

where 𝛼 is the upwind coefficient, 𝛼 ∈ 0,1

𝛼 must be chosen larger than 0.5 to create an upwind weighting

𝜕𝐶

𝜕𝑥
≈ 1 − 𝛼

𝐶 𝑥 + ∆𝑥 − 𝐶 𝑥

∆𝑥
+ 𝛼

𝐶 𝑥 − 𝐶 𝑥 − ∆𝑥

∆𝑥

𝜕𝐶

𝜕𝑥
≈

)1 − 𝛼 𝐶 𝑥 + ∆𝑥 − 𝐶 𝑥 + 𝛼𝐶(𝑥 − ∆𝑥

∆𝑥

central-in-space
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Introduction to solute transport solving methods 
Eulerian methods: combined with different time integration 

schemes

nodal contributions to the approximated C(x,t+∆t) with a central-in-space 

upwind weighting combined with 

 (a) an explicit 

 (b) an implicit 

 (c) a Crank-Nicolson time integration scheme

The weight of each nodal contribution is not mentioned for implicit schemes as it depends on the 

combination of the spatial with the temporal weighting.

central-in-space
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Eulerian methods: higher order upstream weighting

Spatial weighting

2nd order 3rd order Time scheme

Explicit θ =0

Implicit θ = 1

Crank-Nicolson θ =0.5

1st order BDF implicit θ = 1

3rd order BDF partially explicit 𝜃 =
1

3

BDF = Backward

Differentiation

Formula  (family of

implicit methods
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Eulerian methods: higher order upstream weighting

 these upstream techniques reduce oscillations 

but create numerical dispersion

 wise to apply them only if Pe < 2 and Cr < 1

 an additional check about sensitivity to changes 

in longitudinal and transverse dispersivities

good way to assess the relative parts 

of numerical and physical dispersion 

in the simulated results
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 can be implemented in FDM-, FVM- and FEM-based models to solve 

advection dominated transport

 known as more accurate than standard central-in-space weighting 

and upstream methods for simulating sharp concentration variations

 wise to apply them only if Pe < 2 and Cr < 1

 in a FD regular grid, considering only 1D advection:

 point found by interpolation from the concentrations at the 4 

neighboring nodes: a 3rd order polynomial is used

Introduction to solute transport solving methods 

Eulerian methods: TVD method (Total Variation Diminishing)
(Cox and Nishikawa 1991, Zheng 1990, Zheng and Bennet 1995, Zheng and Wang 1999)

)𝐶 𝑥, 𝑡 + ∆𝑡 = 𝐶(𝑥 − 𝑣𝑎𝑡, 𝑡
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 may lead to oscillations in advection dominated problems

 a ‘flux limiter’ is activated when the spatial concentration profile does 

not show a monotonic evolution

 TVD scheme is explicit, subject to stability constraints

 other terms of the solute transport equation solved by an explicit or an 

implicit procedure

 mostly mass conservative ! 

Eulerian methods: TVD method (Total Variation Diminishing)

(Leonard and Niknafs 1990 and 1991, Zheng and Wang 1999)

𝐶𝑗 𝑡 + ∆𝑡 = 𝐶𝑗 𝑡 − 𝐶𝑟[
 𝐶𝑗+1(𝑡

3
+

 𝐶𝑗(𝑡

2
− 𝐶𝑗−1(𝑡) +

 𝐶𝑗−2(𝑡

6

−𝐶𝑟
𝐶𝑗+1 𝑡 − 2𝐶𝑗 𝑡 + 𝐶𝑗−1 𝑡

2

+ 𝐶𝑟2
𝐶𝑗+1 𝑡 −3𝐶𝑗 𝑡 +3𝐶𝑗−1 𝑡 −𝐶𝑗−2(𝑡)

6
]

𝐶𝑟 =
𝑣𝑎∆𝑡

∆𝑥
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the left hand side is Lagrangian while the right hand side remains 

Eulerian

Eulerian Lagrangian methods

(Zheng 1990, Bear and Cheng 2010)

Introduction to solute transport solving methods 

 
𝜕𝐶𝑣

𝜕𝑡
= −

𝒗𝒂
𝑅
⋅ 𝛻𝐶𝑣 +

1

𝑅
𝛻 ⋅ 𝑫𝒉 ∙ 𝛻𝐶

𝑣 − 𝜆𝐶𝑣 −
𝑞𝑠

𝑅 𝑛𝑚
(𝐶𝑣 − 𝐶𝑠

𝑣

 
𝑑𝐶𝑣

𝑑𝑡
=
1

𝑅
𝛻 ⋅ 𝑫𝒉 ∙ 𝛻𝐶

𝑣 − 𝜆𝐶𝑣 −
𝑞𝑠

𝑅 𝑛𝑚
(𝐶𝑣 − 𝐶𝑠

𝑣

in a Lagrangian approach:

𝑑𝐶𝑣

𝑑𝑡
=

𝜕𝐶𝑣

𝜕𝑡
+

𝒗𝒂

𝑅
⋅ 𝛻𝐶𝑣

PDE

ODE
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𝐶𝑣∗ = ‘intermediate’ concentration at time (𝑡 + ∆𝑡)

1) Solving advection by a ‘characteristic’ method

2) Solving the 2nd term by classical method with explicit, implicit, Crank-

Nicolson or Galerkin time integration 

Eulerian Lagrangian methods

(Zheng 1990)

Introduction to solute transport solving methods 

𝑑𝐶𝑣

𝑑𝑡
≈

)𝐶𝑣 𝑡 + ∆𝑡 − 𝐶𝑣∗(𝑡 + ∆𝑡

∆𝑡

𝐶𝑣 𝑡 + ∆𝑡

≈ 𝐶𝑣∗ 𝑡 + ∆𝑡 + ∆𝑡  
1

𝑅
𝛻 ⋅ 𝑫𝒉 ∙ 𝛻𝐶

𝑣 − 𝜆𝐶𝑣 −
𝑞𝑠

𝑅 𝑛𝑚
(𝐶𝑣 − 𝐶𝑠

𝑣
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… can be calculated by a particle tracking or a

method of characteristics  

 ‘Method Of Characteristics’ MOC

 ‘Modified Method Of Characteristics’ MMOC

 ‘Hybrid Method Of Characteristics’ HMOC

Eulerian Lagrangian methods

Introduction to solute transport solving methods 

𝐶𝑣∗ = ‘intermediate’ concentration at time (𝑡 + ∆𝑡)
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‘Method Of Characteristics’ MOC

Eulerian Lagrangian methods

(Garder et al. 1964, Konikow and Bredehoeft 1978, Zheng 1990)

 initial ‘set’ of particles: an initial position and a concentration given 

to each of them

 small time step, particles moving along streamlines

 at the end of the time step, concentration computed by counting the 

arrived particles in the concerned cell

 nearly no numerical dispersion but time consuming and memory 

consuming with many particles

 if too few particles: mass conservation problems

 𝐶𝑖
𝑣∗ 𝑡 + ∆𝑡 =

1

𝑛𝑝𝑖
 

𝑘=1

𝑛𝑝𝑖

)𝐶𝑘
𝑣(𝑡

𝐶𝑖
𝑣∗ 𝑡 + ∆𝑡 = 𝜔  𝐶𝑖

𝑣∗ 𝑡 + ∆𝑡 + (1 − 𝜔) 𝐶𝑖
𝑣 𝑡
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‘Method Of Characteristics’ MOC

Eulerian Lagrangian methods

(Garder et al. 1964, Konikow and Bredehoeft 1978, Zheng 1990)

 no numerical dispersion even for large Pe number

 errors coming from the interpolation of the velocity field from the 

groundwater flow model

 discrete nature of the particles (and counting of them in each 

cell/element after each time step) induces local mass conservation 

problems

 more particles increasing rapidly the computing load and 

memory storage

 too heavy for highly heterogeneous and complex non linear 

problems

 𝐶𝑖
𝑣∗ 𝑡 + ∆𝑡 =

1

𝑛𝑝𝑖
 

𝑘=1

𝑛𝑝𝑖

)𝐶𝑘
𝑣(𝑡

𝐶𝑖
𝑣∗ 𝑡 + ∆𝑡 = 𝜔  𝐶𝑖

𝑣∗ 𝑡 + ∆𝑡 + (1 − 𝜔) 𝐶𝑖
𝑣 𝑡

(Zheng and Wang 1999, Rausch et al. 2005)
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Eulerian Lagrangian methods

(Ewing et al. 1983, Cheng et al. 1984, Molz et al. 1986, Zheng and Wang 1999)

 𝐶𝑣(𝑝𝑥𝑦𝑧 𝑡 , 𝑡) is calculated using a linear (bilinear in 2D or trilinear in 

3D) interpolation of neighboring nodal values at time 𝑡

 reduced memory requirements if lower order interpolation scheme

 faster than MOC but same mass conservation problem than MOC

 main issue = numerical dispersion with lower order interpolations

 higher order interpolation schemes lead to better results but induce 

oscillations when simulating sharp concentration gradients

MMOC

𝑝𝑥𝑦𝑧 𝑡 = 𝑝𝑖 𝑡 + ∆𝑡 − 𝑣𝑎(𝑝𝑖 𝑡 + ∆𝑡 )∆𝑡

 𝐶𝑖
𝑣∗ 𝑡 + ∆𝑡 = 𝐶𝑣(𝑝𝑥𝑦𝑧 𝑡 , 𝑡

Backward unique 

particle tracking
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Eulerian Lagrangian methods

(Neuman 1981 and 1984, Zheng and Wang 1999)

 optimizing the choice between MOC and MMOC 

 an automatic change of the technique as function of the local 

concentration gradients

 MOC applied in regions of the domain with steep concentration 

gradients

 MMOC applied elsewhere

HMOC



References
► Anderman, E., Hill, M. and E. Poeter. 1996. Two-dimensional advective transport in ground-water flow parameter estimation, 

Ground Water 34(6) : 1001-1009. 

► Anderson,M.P., Woessner, W.W. and R.J. Hunt. 2015. Applied groundwater modeling – Simulation of flow and advective

transport. Academic Press Elsevier.

► Bachmat, Y. and J. Bear. 1986. Macroscopic modelling of transport phenomena in porous media, part 1 : The continuum 

approach Transport in Porous media (1) 213-240.

► Baliga, B.R. and S.V. Patankar. 1983. A control volume finite-element method for two-dimensional fluid flow and heat transfer, 

Numerical Heat Transfer 6(3) : 245-261.

► Bear, J. and A.H.D. Cheng. 2010. Modeling groundwater flow and contaminant transport. Springer.

► Bear, J. and A. Verruijt. 1987. Modeling groundwater flow and pollution. Dordrecht: Reidel Publishing Company.

► Beven, K.J. 2009. Environmental modelling: an uncertain future? An introduction to techniques for uncertainty estimation in 

environmental prediction. Routledge.

► Beven, K. and A.M. Binley. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrol. 

Process 6 : 279-298. 

► Beven, K. and J. Freer. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex 

environmental systems, Journal of Hydrology 249 : 11-29.

► Brunner, P., Doherty, J. and C.T. Simmons. 2012. Uncertainty assessment and implications for data acquisition in support of 

integrated hydrologic models, Water Resources Research 48 : W07513.

► Carrera, J. Alcolea, A., Medina, A. Hidalgo, J. and L. Slooten. 2005. Inverse problem in hydrogeology, Hydrogeology Journal

13(1) : 206-222.

► Carrera, J. and S.P. Neuman. 1986a. Estimation of aquifer parameters under transient and steady state conditions: 1. 

Maximum likelihood method incorporating prior information, Water Resources Research 22(2)°: 199-210.

► Carrera, J. and S.P. Neuman. 1986b. Estimation of aquifer parameters under transient and steady state conditions: 2. 

Uniqueness, stability, and solution algorithms, Water Resources Research 22(2)°: 211-227.

► Celia, M.A., Bouloutas, E.T. and R.L. Zarba. 1990. A general mass-conservative numerical solution for the unsaturated flow 

equation. Water Resources Research, 26(7) : 1483-1496.

► Cheng, R.T., Casulli, V. and S.N. Milford. 1984. Eulerian-Lagrangian solution of the convection-dispersion equation in natural 

coordinates. Water Resources Research 20(7) : 944-952.

► Chung, T. 2002. Computational fluid dynamics. Cambridge University Press.

► Cooley, R.L. 2004. A theory for modeling groundwater flow in heterogeneous media. USGS Professional Paper 1679.



References (2)
► Cox, R.A. and T. Nishikawa. 1991. A new Total Variation Diminishing scheme for the solution of advective-dominant solute 

transport, Water Resources Research 27(10) : 2645-2654.

► Dagan, G. 1989. Flow and transport in porous formations, New York: Springer.

► Dassargues A., 2018. Hydrogeology: groundwater science and engineering, 472p. Taylor & Francis CRC press. 

► Daus, A.D. and E.O. Frind. 1985. An alternating direction Galerkin technique for simulation of contaminant transport in 

complex groundwater systems, Water Resources Research 21(5) : 653-664.

► de Marsily, G. 1986. Quantitative hydrogeology : groundwater hydrology for engineers. San Diego: Academic Press.

► de Marsily, G., Delay, F., Gonçalvès, J., Renard. Ph., Teles, V. and S. Violette. 2005. Dealing with spatial heterogeneity, 

Hydrogeology Journal 13 : 161-183.

► Deutsch, C.V. and A.G. Journel. 1998. GSLIB geostatistical software library and user’s guide. New-York :Oxford University 

Press.

► Diersch, H-J.G. 2014. Feflow – Finite element modeling of flow, mass and heat transport in porous and fractured media. 

Springer.

► Doherty, J. 2005. PEST – Model-independent parameter estimation – User manual – 5th Edition. Watermark Numerical 

Computing.

► Ewing, R.E., Russell, T.F. and M.F. Wheeler. 1983. Simulation of miscible displacement using mixed methods and a modified 

method of characteristics. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 12241. Dallas (TX).

► Fienen, M.N. 2013. We speak for the Data, Groundwater 51(2): 157.

► Fitts, Ch. R. 2002. Groundwater science. Academic Press.

► Fletcher, C. 1988. Computational techniques for fluid dynamics. Vol.1 and Vol.2, New York: Springer.

► Forsyth, P.A., Wu, Y.S. and K. Pruess. 1995. Robust numerical methods for saturated-unsaturated flow with dry initial 

conditions in heterogeneous media, Advances in Water Resources 18(1) : 25-38.

► Garder Jr, A.O., Peaceman, D.W. and A.L. Pozzi Jr. 1964. Numerical calculation of multidimensional miscible displacement by 

the method of characteristics, Society of Petroleum Engineers Journal 4(01), 26-36.

► Gelhar, L.W. 1993. Stochastic subsurface hydrology. Englewood Cliffs (NJ): Prentice Hall.

► Goderniaux, P., Wildemeersch, S., Brouyère, S., Therrien, R. and A. Dassargues. 2015. Uncertainty of climate change impact 

on groundwater reserves, Journal of Hydrology 528: 108-121.

► Gómez-Hernández, J.J. 2006. Complexity. Ground Water 44(6) : 782-785.

► Hill, M. 1992. A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water 

flow model using nonlinear regression. Open-File Report 91-484, USGS.



► Hill, M. 2006. The practical use of simplicity in developing ground water models. Ground Water 44(6) : 775-781.

► Hill, M., Cooley, R. and D. Pollock. 1998. A controlled experiment in ground-water flow model calibration uinsg nonlinear 

regression, Ground Water 44(6) : 775-781.

► Hill, M.C. and C.R. Tiedeman. 2007. Effective groundwater model calibration: With analysis of data, sensitivities, predictions, 

and uncertainty. John Wiley & Sons.

► Hoeting, J., Madigan, D., Raftery, A. and C. Volinsky. 1999. Bayesian model averaging: a tutorial, Statistical Science 14(4) : 

382-417.

► Huyakorn, P.S. and G.F. Pinder. 1983. Computational methods in subsurface flow. Academic Press.

► Huysmans, M. and A. Dassargues. 2006. Stochastic analysis of the effect of spatial variability of diffusion parameters on 

radionuclide transport in a low permeability clay layer, Hydrogeology Journal 14 :, 1094-1106.

► Idelsohn, S. and E. Onate. 1994. Finite volumes and finite elements: two ‘good friends’. International Journal for Numerical 

Methods in Engineering 37(19) : 3323-3341.

► Kinzelbach, W. 1992. Numerische methoden zur modellierung des transports von schadstoffen im grundwasser (in German). 

Schriftenreihe GWF Wasser, Abwasser, Bd. 21, -2 Aufl., Munchen: Oldenbourg

► Kitadinis, P.K. 1997. Introduction to geostatistics: application in hydrogeology. Cambridge University Press.

► Konikow, L.F. and J.D. Bredehoeft. 1978. Computer model of two-dimensional solute transport and dispersion in ground water. 

Washington : US Government Printing Office.

► Konikow, L.F. and J.M Mercer. 1988. Groundwater flow and transport modelling, Journal of Hydrology 100(2) : 379-409. 

► Kurtz, W., Lapin, A., Schilling, O.S., Tang, Q., Schiller, E., Braun, T., Hunkeler, D., Vereecken, H., Sudicky, E., Kropf, P., 

Franssen, H-J. H. and P. Brunner. 2017. Integrating hydrological modelling, data assimilation and cloud computing for real-time 

management of water resources, Environmental Modelling & Software 93 : 418-435. 

► Leonard, B.P. and H.S. Niknafs. 1990. Cost-effective accurate coarse-grid method for highly convective multidimensional 

unsteady flows, In: Computational Fluid Dynamics Symposium on Aeropropulsion. NASA Conference Publication 3078.

► Leonard, B.P. and H.S. Niknafs. 1991. Sharp monotonic resolution of discontinuities without clipping of narrow extrema, 

Computer & Fluids 19(1) : 141-154.

► Molz, F. 2015. Advection, dispersion and confusion. Groundwater, published online, DOI: 10.1111/gwat.12338

► Molz III, F.J. 2017. The development of groundwater modelling: The end of an era, Groundwater 55(1) : 1. 

► Molz, F.J., Widdowson, M.A. and L.D. Benefield. 1986. Simulation of microbial growth dynamics coupled to nutrient and 

oxygen transport in porous media, Water Resources Research 22(8) : 1207-1216.

► Moore, C. and J. Doherty. 2005. Role of the calibration process in reducing model predictive error, Water Resources Research

41(5) : W05020.

References (3)



► Narasimhan, T.N. and P.A. Witherspoon. 1976. An integrated finite difference method for analyzing fluid flow in porous media, 

Water Resources Research 12(1): 57-64.

► Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal 

of Hydrology 10(3): 282–290.

► Neuman, S.P. 1981. A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-

time grids, Journal of Computational Physics 41(2) : 270-294.

► Neuman, S.P. 1984. Adaptive Eulerian–Lagrangian finite element method for advection-dispersion, International Journal for 

Numerical Methods in Engineering 20(2) : 321-337.

► Neuman, S. 2003. Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Environmental 

Research and Risk Assessment 17(5) : 291-305.

► Paniconi, C. and M. Putti. 2015. Physically based modeling in catchment hydrology at 50: Survey and outlook, Water 

Resources Research 51 :7090-7129.

► Patankar, S. 1980. Numerical heat transfer and fluid flow. CRC Press.

► Peeters, L.J.M. 2017. Assumption hunting in groundwater modeling: Find assumptions before they find you, Groundwater : 

doi:10.1111/gwat.12565

► Pinder, G.F. and M.A. Celia. 2006. Subsurface hydrology. Hoboken, New Jersey: Wiley & Sons.

► Poeter, E., Hill, M., Banta, E. and S. Mehl. 2005. UCODE_2005 and six other computer codes for universal sensitivity analysis, 

calibration and uncertainty evaluation. Techniques and Methods 6-A11. USGS

► Price, H.S., Varga, R.S. and J.R. Warren.1966. Application of oscillation matrices to diffusion-convection equations, Journal of 

Mathematical Physics 45: 301-331.

► Rausch, R., Schäfer, W., Therrien, R. and Chr. Wagner. 2005. Solute transport modelling – An introduction to models and 

solution strategies. Berlin-Stuttgart: Gebr.Borntraeger Verlagsbuchhandlung Science Publishers.

► Refsgaard, J.C. and H.J. Henriksen. 2004. Modelling guidelines - terminology and guiding principles. Advances in Water 

Resources 27 : 71-82. 

► Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics 1(5) : 318-333.

► Rojas, R., Feyen, L. and A. Dassargues. 2008. Conceptual model uncertainty in groundwater modeling: Combining 

generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resources Research 44 : W12418

► Rojas, R., Batelaan, O., Feyen, L. and A. Dassargues, A. 2010a. Assessment of conceptual model uncertainty for the regional 

aquifer Pampa del Tamarugal – North Chile, Hydrol. Earth Syst. Sci. 14 : 171-192.

References (4)



► Rojas, R., Feyen, L., Batelaan, O. and A. Dassargues. 2010b. On the value of conditioning data to reduce conceptual model 

uncertainty in groundwater modelling, Water Resources Research 46(8) : W08520.

► Rojas, R., Kahundeb, S., Peeters, L., Batelaan, O. and A. Dassargues. 2010c. Application of a multi-model approach to 

account for conceptual model and scenario uncertainties in groundwater modelling, Journal of Hydrology 394 : 416-435.

► Rosbjerg, D. and H. Madsen. 2005. Concept of hydrologic modelling. In: Encyclopedia of Hydrological Sciences, M.G. 

Anderson (Ed.), John Wiley & Sons.

► Rubin, Y. 2003. Applied stochastic hydrogeology. New York: Oxford University Press.

► Schwartz, F.W., Liu, G., Aggarwal, P. and C.M. Schwartz. 2017. Naïve simplicity: The overlooked piece of the complexity-

simplicity paradigm, Groundwater : doi:10.1111/gwat.12570

► Skahill, B.E. and J. Doherty. 2006. Efficient accommodation of local minima in watershed model calibration. Journal of 

Hydrology 329: 122-139.

► Sulis, M., Paniconi, C., Marrocu, M., Huard, D. and D. Chaumont. 2012. Hydrologic response to multimodel climate output 

using a physically based model of groundwater/surface water interactions, Water Resources Research 48 : W12510.

► Therrien, R. and E.A. Sudicky. 1996. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-

fractured porous media, Journal of Contaminant Hydrology 23(1-2) : 1-44.

► Therrien, R., McLaren, R.G., Sudicky, E.A. and S.M. Panday. 2010. HydroGeoSphere: A three-dimensional numerical model 

describing fully-integrated subsurface and surface flow and solute transport. User manual. Université Laval & University of 

Waterloo.

► Tonkin, M.J., Tiedeman, C.R. Ely, M.D. and M.C. Hill. 2007. OPR-PPR, a computer program for assessing data importance to 

model predictions using linear statistics. USGS, Techniques and MethodsTM-6E2.

► Vecchia, A.V. and R.L. Cooley. 1987. Simultaneous confidence and prediction intervals for nonlinear regression models with 

application to a groundwater flow model, Water Resources Research 23(7) : 1237-1250.

► Wang, H.F. and M.P. Anderson. 1982. Introduction to groundwater modelling: finite difference and finite element methods, San 

Diego (CA)°: Academic Press.

► Ward, D. 2005. The simplicity cycle: Simplicity and complexity in design, Defense Acquisition, Technology, and Logistics

34(6) : 18-21.

► Wildemeersch, S. 2012. Assessing the impacts of technical and structure choices on groundwater model performance using a 

complex synthetic case. PhD thesis, University of Liège. Belgium.

► Wildemeersch, S., Goderniaux, P., Orban, P., Brouyère, S. and A. Dassargues. 2014. Assessing the effects of spatial 

discretization on large-scale flow model performance and prediction uncertainty, Journal of Hydrology 510: 10-25.

References (5)



► Zhang, D. 2002. Stochastic methods for flow in porous media. San Diego (CA): Academic Press.

► Zheng, C. 1990. MT3D, A Modular Three-Dimensional Transport model for simulation of advection, dispersion and chemical 

reactions of contaminants in groundwater systems, Report to the U.S. Environmental Protection Agency Robert S. Kerr 

Environmental Research Laboratory, Ada, Oklahoma.

► Zheng, C. and G.D. Bennett. 1995. Applied contaminant transport modeling: Theory and practice, New York: John Wiley & 

Sons.

► Zheng, C. and P.P. Wang. 1999. MT3DMS A modular three-dimensional multispecies transport model for simulation of 

advection, dispersion and chemical reactions of contaminants in groundwater systems (Release DoD_3.50.A) Documentation 

and User’s guide. Tuscaloosa, Alabama: University of Alabama 35487-0338.

References (6)


