
Blockchain: A novel approach for the consensus
algorithm using Condorcet Voting procedure

David Vangulick
University of Liège,

Liège, Belgium
david.vangulick@skynet.be

Bertrand Cornélusse, Damien Ernst
University of Liège,

Liège, Belgium
{bertrand.cornelusse, dernst}@uliege.be

Abstract—The blockchain technology allows interested parties
to access a common register, the update, and integrity of which
are collectively managed in a decentralized manner by a network
of actors. It is the consensus protocol that ensures a common
and unambiguous update of transactions by creating blocks of
transactions for which integrity, veracity, and consistency are
guaranteed through geographically distributed nodes. Bitcoin, the
first popular blockchain concept, introduced the Proof of Work
consensus based on work validation, and has been extended to
thousands of participants. Despite its success and its large use in
other crypto-currencies, Proof of Work’s disadvantages are a high
latency, a low transaction rate, and a high energy expenditure,
making it a less-than-perfect choice for many applications. In
addition the validation of transactions is not carried out with a
definite temporality. For Bitcoin, it takes on average 10 minutes
to create a block. However, for certain use cases such as auctions
or the exchange of energy, there is a need for this temporality.
The purpose of this article is to propose a new type of consensus
that is faster, less energy-consuming and that can be synchronized
with a time reference. The core of the reflection is the use of the
Condorcet voting mechanism to determine the miner.

Index Terms—Blockchain, consensus protocol, Condorcet vot-
ing, Independence of Irrelevant Alternatives

I. INTRODUCTION

Blockchains can be regarded as decentralized and dis-
tributed ledgers that keep track of any type of transaction.
A blockchain is maintained and developed by a set of actors
called nodes. Since the arrival of Bitcoin [1] and its success as
a cryptocurrency, the blockchain has emerged as a disruptive
factor in many areas, starting with banking transactions.

Blockchain systems can be either open, i.e. without permis-
sion, or private. Open systems such as Bitcoin and Ethereum
allow anyone to access the chain, any node can perform
transactions and participate in the consensus process to build
up the blockchain. Authorized platforms such as Hyperledger
are intended for consortia with no open participation. While
clients are allowed to submit transactions, the blockchain’s
progress is limited to a fixed set of peering nodes executed by
consortium members. In a permission-less configuration, the
number of nodes should be large, these nodes are anonymous
and can be untrustworthy. The consensus mechanism for such
a configuration must be robust to malicious nodes.

This paper covers the scope of open blockchains. It is struc-
tured as follows. Section II recalls some important concepts
regarding blockchain and the Proof of Work (PoW) consensus

method. Then, Section III states the problems addressed in this
paper. Section IV presents the new consensus model using
a Condorcet voting procedure. Section V analyzes how the
proposed consensus method fulfils the requirements described
in Section II and presents some simulation results. Section VI
concludes.

II. CONSENSUS USING PROOF OF WORK

Table I gives a general view of the blockchain consensus
algorithm. This algorithm aims to define the correct transac-
tions and to seal those digitally into a a reference or canonical
block of information. Some nodes are candidates to create this
block. In order to add blocks to a blockchain using "Proof of
Work", at step 3, each candidate node must demonstrate that
it has done some work. It is useful to introduce the concept
of the hash function to describe the Proof of Work algorithm.

A. Hash Functions

Hash functions are largely used in communication protocols
to ensure that a transmitted message is still exactly the same
as the original one. They are also widely used in cryptography
to verify that the message has not been tampered with. A hash
function Hash(i) = o maps every type of data to a fixed size
of other data, called hash value, hash code, or simply hash.

The standard Hash function in blockchain applications is
the SHA 256. To be used in blockchain, a hash function must
be deterministic, for the same i, the output o is the same;
uniform, all possible values of o are generated with the same
probability; non-invertible it is impossible to trace back i from
o; collision-free, for two different inputs i and j the probability
to find the same output o is almost zero.

TABLE I
BLOCKCHAIN CONSENSUS ALGORITHM.

1. New transactions are broadcast to all nodes (there are put in a so
called Mem Pool);
2. Each candidate node creates a block with the valid new transactions;
3. A candidate node is randomly selected and broadcasts its block;
4. Other nodes check the validity of the block and, if they agree,
increment their chain;
5. If the majority of nodes agree, the block is definitively approved.

B. The Proof of work algorithm

In Bitcoin and other cryptocurrencies from the same root
(Monero, Dash, etc.), the candidate node must find a hash
value less than a reference value, known as the "difficulty
level". This process is called "mining" and therefore, the can-
didates are called "miners". The difficulty level is dynamically
set by the consensus protocol, which aims at the production
of a block every ten minutes on average for Bitcoin. The
computed hash value could be the result of different elements:
the block reference (blockheader) of the previous block; all
the transactions that are in the proposed block; a timestamp
of the approximate time of the block creation; a nonce, i.e.
a counter for PoW. Given the uniformity characteristic of the
hash function, the only way for a miner to find a hash required
by the difficulty level is to try all the possible nonces. The
hash rate indicates the number of nonces a miner can test
every second. Current standard hash rates for a candidate
are approximatively 18 TH/s (e.g. Antminer S9). The first
candidate node that finds a winning hash must add its proposed
block to the blockchain and claim the mining reward (12.5
tokens for the Bitcoin). To do so it broadcasts its block to the
other nodes.

C. Illustrative example

The following illustrative use case provides a common
thread for the remainder of this article:
• Alice and Bob want to make a bet about a competition

that is running right now (e.g. American Football 2018-
2019). Alice thinks that San Francisco 49ers will win.
Bob thinks the Pittsburgh Steelers will win.

• They place their bets with a well-known bookmaker using
a BlockChain token (BCT). To obtain their tokens, both
have exchanged US$ on a specific platform. These tokens
are available in their digital wallet.

• From now on, they have only 30 minutes to place their
bets. During this time, watching the match on TV, they
can bet any amount of BCT from their digital wallet.

In blockchain terms, Alice and Bob first need to create their
public address and to protect it with a private key. The
combination of these two elements can be seen as the digital
wallet, for the moment these are empty. When Alice and
Bob exchange their US$ to BCTs, the platform, that has a
stock of BCT, credits the equivalent value to their individual
wallets. To do so, the platform performs two transactions send
x BCT from address 0 to address 1 and send x BCT from
address 0 to address 2 (where address 0 is the address of
the platform, address 1 is the public address of Alice and
address 2 is Bob’s public address). We now consider that
that Alice has 100 BCT and Bob 150 BCT. During the 30
minutes prior to the closure of bets, Alice and Bob perform the
transactions as shown in Table II with the bookmaker. These
operations are equivalent to send x BCT from address 1 to
address 3 and send x BCT from address 2 to address 3, where
address 3 is the public address of the bookmaker. Transactions
also contain additional data such as the competition and the

TABLE II
ALICE AND BOB BETS TIMELINE.

Time Alice’s bet Bob’s bet
1 20 20
5 20

12 30 10
15 50 30
23 40
25 4
28 10 5

winning team. These transactions are broadcast to all the
blockchain participants. Assume we have a pool of potential
verifiers: George, Henry, Edward, John, and Richard. Their
role is to check if all transactions are correct, i.e. according
to the generally used terminology, they are miners. All of
them reject the last transaction of Alice (cf. Table II) because
it exceeds the amount of BCTs in her wallet. The valid
transactions are sealed in a block that is added to the block
chain. A block can be assimilated to a page of an accountant’s
register where each line corresponds to a transaction, and the
blockchain is the ledger of the accountant. Among the miners,
according to the algorithm defined in Table II, George is
chosen to be the holder of the reference block (which we will
call the canonical block). In this illustrative example, when
George broadcasts his block, the other miners and the other
participants (amongst them Alice and Bob) consider that the
block thus mined is correct, and add it to their own chain.
The resolution/settlement of the bet itself is not in the scope
of this paper.

III. PROBLEMS STATEMENT

Blockchain can be used in various ways. For instance, it
can be used to register an Internet auction or a sports bet on a
permanent and immutable way. It can also be used to register
energy exchange in peer to peer local energy communities [2],
[3]. This section describes the desired features of a blockchain
implementation for such applications.

A. Synchronicity

For the applications mentioned in the introduction of this
section, a strong guarantee on the time when a block is created
(that we will call market period) is required. PoW consensus
algorithm cannot offer this guarantee, since it creates a block
when a nonce is found, but there is only a probabilistic average
time to create a block, which is set by the difficulty level.

In the illustrative example, the market period is the 30
minutes period to place the bets. The proposed consensus will
then make it possible.

B. Failure to reach consensus

The ability to reach consensus in every situation is not
obvious for every consensus algorithm. For instance, it could
be difficult to select a candidate between different competing
nodes with the same score. In PoW, the score is the time
stamp that proves that a miner is the first one to find the good
nonce. We will call this situation a tie. PoW proves to be good

at reaching a consensus. Any proposed method must also have
this capability.

In our illustrative example, whatever the possible ties that
could be between miners, George is the only one to have been
selected.

C. Sybil Attack

The open blockchain can be considered as a peer-to-peer
system for which the main threat is the Sybil attack [4]. This
is an attack wherein the system is subverted by forging false
identities. To succeed with their attack, the malicious user
creates a huge number of false independent nodes and selects
some of them in order to force or to disrupt the consensus
model (e.g. accepting double-spend transaction, or creating
a false block). The PoW consensus model solves this issue
owing to the significant amount of energy needed to create a
block. It is simply too costly to run multiple false identities
when compared to the chances of success of such an attack.
Other consensus methods like Proof of Stake (PoS) could
suffer from this attack because there is insufficient barrier to
prevent the launch of multiple identities [5]. This problem is
known as a "Nothing at Stake" issue. The newly proposed
consensus has to provide the same level of resistance as PoW
to such an attack.

In our illustrative example, if John wants to cheat by
creating clones of himself so that one of these clones is chosen
instead of George, it must cost him a sufficient number of
money/tokens or amount of energy to discourage him, and/or
if George is the best candidate (according to criteria to be
specified), he remains the one who will be designated.

D. Dominance: Concentration of decision-making power

The core concept of blockchain technology is decentraliza-
tion. The main idea is that a group of interested parties are
less vulnerable than a single trusted party. In blockchain, there
is no "chief of the staff", but the consensus protocol ensures a
good balance between different parties with different interests
such as miners, transaction makers, smart contract promoters,
etc. With the recent development of the "oldest" blockchain
(Bitcoin and Ethereum), it should be noted that this balance
could be endangered by the concentration of decision-making
power due to the concentration of the miners. For Bitcoin, as of
August 19th 2018, only four miners pools share 54.7% of the
hash-rate computation power (BTC.com, AntPool, BTC.TOP,
and SlushPool). If they make an agreement, they can force the
evolution of the consensus algorithm, can approve (or not ap-
prove) certain kind of transactions, etc. For private blockchain,
the consensus methods chosen are mainly "Proof of Authori-
ties" or "Proof of Cooperation" where only trusted and well-
selected nodes could stand as a candidate. By definition, it
gives the decision-making power to a relatively small group
of agents. For such a blockchain with relativly few nodes,
practical Byzantine Fault Tolerance (pBST) [6] is probably
the most suitable method to ensure the block consensus. The
proposed new consensus has to ensure that the risk of such
dominance is low. Therefore, we pose also as a requirement

for openness that the candidate miner must not have to be
authorized to stand for the role of the miner by other parties
(aka permission-less blockchain). Considering this openness
requirement and the possible large number of nodes, we decide
to compare our proposed algorithm with PoW (and not, for
instance, with pBST). In our illustrative example, if George
has been selected for this period, ideally each of the other
candidates must see their chances of being selected for the
next round increase. This tends to maintain the number of
verifiers and therefore the quality of the verifications.

E. Sustainability: energy consumption

The energy consumption is one of the most cited flaws of
the PoW method, because it requires a very high hash-rate.
The AntMiner S9 consumes 1273 W and must be powered
continuously to expect to become a winning node. In 2014, the
total energy consumption of Bitcoin per year was comparable
to the total electricity consumption of Ireland [7]. Other
sources estimate that electricity consumption in Bitcoin is 826
kWh/transaction [8], while banking systems such as Visa use
between 1,500 and 2,000 kWh per million transactions. The
proposed consensus must be of the same order of consumption
as the traditional banking system.

IV. CONSENSUS DESIGN USING CONDORCET

A. Previous work

In [2], a blockchain using an evolution of the Proof of Stake
(PoS) algorithm that can be synchronized with market periods
was proposed. Candidate miners k place their service offers in
the form of voting tokens sent to the previously selected miner
(this miner cannot be a candidate for this block anymore). As
shown in Figure 1, they may do this for a period of time
between two instances called "candidates gate opening" for
the launch of the selection and "candidates gate closure" for
the end. It is a sort of auction. The period of time called
"Selection" is used to select the winner and to broadcast the
result. From a transactional perspective, it is important to note
that, in order to guarantee that the future canonical block
contains all the transactions for one market period, every can-
didate miners progressively creates its own block during the
market period. With this procedure, the selected miner can be
revealed shortly after the market period without endangering
the completeness of the information. For the selection of the
miner who will generate the canonical block, the stake used
in PoS is replaced by a wealth indicator Wt,k computed from
voting tokens Ek

Ti−1
∈ N sent by each candidate k, the age

of the last block mined by the candidate Ak
Ti−1

∈ N, and the
reputation of the candidate miner Rk

Ti−1
∈ N. The notation

Ti−1 denotes that these values are set prior to the creation of
the block at Ti. A random number Uk ∈]0, 1] is also used.
Considering the risk of decision-making power concentration,
we proposed that each wealth parameter would have a specific
relative weight namely βAk

Ti−1 > αEk
Ti−1 > γRk

Ti−1 (all
these weights are in R+). The general consensus algorithm and
the miner selection algorithm of [2] is described in Table III.

Figure 1. Relation between market period, transaction and miner selection.

TABLE III
MINER SELECTION ALGORITHM PROPOSED IN [2].

Let K be the set of nodes willing to support the chain at time Ti.
1. Determine the wealth of each candidate miner. We choose the
following wealth criteria to define the wealth of a node k, for a given
K (k/inK) and for a time step Ti, as

Wk
Ti

= αEk
Ti−1

+ βAk
Ti−1

+ γRk
Ti−1

(1)

where we define
• Ek

Ti−1
as the voting token set by candidate k

• Ak
Ti−1

is a measure of the age. It corresponds to the difference
between the number of the last block of the (current) chain also
called height of the chain and the number of the last canonical
block mined by this candidate. If the candidate has never been
chosen, the corresponding age will be equal to the height of the
chain.

• Rk
Ti−1

is a reputation measure: At most a candidate k has been
selected for the creation of canonical blocks, the more he is
trustworthy, the greater his chances of being selected again. It
is computed as the sum of canonical blocks that candidate k has
mined.

Ak
Ti−1

and Rk
Ti−1

are computed from the data directly contained in
the chain, so these can be controlled by every participant. Ek

Ti−1
are

put in a special transaction so all the participants can trace it.
2. Randomize. Generate a random number Uk for every candidate k
with a uniform distribution in]0, 1].
3. Output. The selected node has the maximum ratio Wk/Uk:

ksTi
= argmax

k∈K

Wk

Uk
(2)

There are several possible ways to create a voting token.
A token is a digital asset with a value ∈ N (a sort of digital
"coin") that can be transferred without duplication between
two players on the Internet, without the need for a third-party
agreement. Tokens are largely used in the Initial Coin Offering
(ICO) mechanism. During this offering, a number of tokens
are issued and sold to investors to finance the launch and
development of a blockchain project. When the blockchain
is up and running, investors can use or exchange these tokens.
The tokens can also be created and used to reward a node for
its supporting activities. In Bitcoin, 12.5 tokens are created
when a block is mined as a fee for the miner. It is also
possible to issue some token when transactions are made.

All these ways to manage the creation and the evolution of
the number of tokens can be combined. Generally, the total
amount of tokens that will be issued is known in advance and
cannot be changed, and tokens are distributed progressively. It
is out of the scope of this paper to describe the advantages or
inconvenients of each token creation. We make the assumption
that tokens are available to remunerate the miners and that the
number of tokens distributed increase linearly.

The formulation of Equations 1 and 2 can be improved in
three directions.

1) The number of tokens sent by one candidate can be
much higher than the age of the last block or reputation
of a candidate. If the volume of token sends by a
candidate is an absolute value, the age of the last
block and reputation have to be seen relative to other
candidates. This introduces an implementation difficulty.

2) As time passes, the number of voting token increases
constantly. As a consequence, in order to maintain the
initial balance, α, β and γ have to constantly be adapted.
In a blockchain environment, such an adaptation has to
be consensually agreed by the miners’pool. This is also
an implementation issue.

3) More importantly, to find a good weighting factor be-
tween the parameters, we simulated different possible
configurations among which the most important were:
• Calculate Ebal the total volume of voting tokens

sent by each candidate, and use Ek
Ti−1/Ebal instead

of Ek
Ti−1

• Calculate Etot the total volume of voting tokens
in the full ledger, and use Ek

Ti−1/Etot instead of
Ek

Ti−1
• Limit the number of voting tokens that a candidate

may send
To analyze these configurations, we recorded which
parameter determines the winning candidate. It could
be Ek

Ti−1 (i.e. the winning candidate is the one that
submitted the most voting tokens), Ak

Ti−1 (i.e. the
winner is the one with the oldest mined block among
the candidates), Rk

Ti−1 (i.e. among the candidates, the
winner is the one who was most frequently a miner) but
also Uk (i.e. ignoring the other criteria, the winner is
chosen only as a consequence of the value of random
Uk). As this factor intervenes in the denominator of
Formula (2) and can take any value between]0 : 1],
it appears that whatever the chosen configuration, in at
least 80% of cases, this random number determines the
winner. This consideration raises the following question:
for a rational candidate, what would be the number of
voting tokens they should send to become an official
block miner? In game theory, as explained in [9], we can
consider that this problem is equivalent to the imperfect
information Bayesian game and this question can be
analysed in that way. The conclusion of this analysis is
that rational candidates (Nash equilibrium) should send
as few tokens as possible, which is incompatible with the

very principle of solving the Nothing at Stake problem.
Therefore, a new consensus algorithm is needed.

B. New consensus algorithm

The selection of the next miner based on the computation of
a wealth index is replaced by a vote among candidates inspired
by the theory of social choices and voting procedures1. Each
candidate challenges the other candidates to be selected as
winner for the canonical block by a ballot of voters. We use
the term duel-pair when we describe a confrontation between
two candidates (e.g. a duel-pair is George against Richard).
As it was foreseen in Section IV-A, the previously designed
miner will manage and coordinate the selection. We define the
following elements:
• Im is a committee of voters, as a set of size m ≥ 1.
• K = {1, .., g, h, ..., k, ..., n} is a set of N = |K| candi-

dates. In our illustrative example, the set of candidates is
composed of the set of our five verifiers: George, Henry,
Edward, John and Richard.

• Ri is a weak ordering function on K called preference
ordering, and has the following characteristics:

– Ri :�→ x �i y means that voter i prefers x over y
– Ri :≡→ x ≡i y voter i is indifferent between x and
y

– Reflexive: ∀x ∈ K, xRix is true
– Transitive: if x � y and y � z then x � z
– Complete: ∀x, y ∈ K, x 6= y → xRiy ∨ yRix

• πm is the set of all possible ordering with respect to K
• For each voter i ∈ Im, there is a weak ordering Bi ∈ πm

on K called ballot
• B = B1, ..., Bm is the set of ballots
• The voting procedure is a function vmn → vmn(B) =
{k}, i.e. vmn selects in each ballot of B the elected
candidate k ∈ K.

There is no indisputable choice process that allows a coher-
ent hierarchy of preferences [11], [12]. We propose that vmn

needs to fulfil the following requirements.
a) Condorcet winner: any alternative which is preferred

to any other by the majority of voters should be selected [13]
b) Monotonicity: If vmn(B) = {k}, k is still the winner

when k has been up-ranked but h 6= k will not become the
winner if h is down-ranked [14].

c) Independence of Irrelevant Alternatives (IIA): We will
use the formulation of Independence of Smith-dominated alter-
native which is less demanding than the full "IIA" requirement
[15]: vmn is IIA when vmn(B) = {k} if k ∈ S is a subset of
B, vmn(S) = {k}

d) Independence of Clones (IC): In the context of
blockchain, this requirement is very important to resist to a
Sybil attack. [16] defined that there are clones if ∀c ∈ C,∀n ∈
J → c �i n or c �i n s.t.
• a subset C ⊂ K, called "subset of clones", containing two

or more candidates,

1The reader can find some theoretical notions in [10], Chapter 4.

• J ⊂ K, subset of non-clone candidate
• J ∪ C = K and J ∩ C = ∅

In other words, if there are clones, c ≡ n is not possible. vmn

is IC if the winner does not change with the addition of a
non-winning candidate who is similar to a candidate already
present in the ballot. One of the two conditions required to
fulfil this criterion (as described in [16]) is very useful in our
context:

• The winner is not a clone if it also wins when the
set of candidates is reduced to the subset of non-clone.
vmn(B) = n = vmn(B∗) s.t. /∈ C) and B∗ is a set of
ballots on J .

e) Resolvability: if the first round of voting rules gener-
ates a tie among candidates, a second round generates a unique
winner amongst the tied candidates [16].

f) Voting Procedure Efficiency: For implementation rea-
sons, if a Condorcet winner exists, it has to be selected by a
single round of votes.

Owing to these requirements, and in particular IIA, clas-
sical positional-scoring-rule voting mechanisms like majority,
plurality or Borda count ([17]) are not valid. There are only
two voting mechanisms that fulfil all of our requirements: the
Condorcet with Decreasing Ranked (Duel-)Pairs is also called
the Tideman Method [16] and the Schulze Method [18] (that
is also a Condorcet voting mechanism). [19] demonstrated that
the Schulze method is more vulnerable to coalition destructive
manipulation (defined as a coalition of voters casting false
votes to make a potential winner less favourable). For the
Tideman Method, this paper also describes that this sort of
attack can be classified as NP-hard using the computational
complexity theory. For this reason, we decided to implement
the Tideman Method.

In our design, the voters are not human being but the criteria
voting token, age of the last block, reputation, and random
instead. The question about the weight of α, β, and γ presented
in [2] and described at Section IV-A is now transferred to the
number of votes that corresponds to each parameter including
a new factor η ∈ R+).

In other words, the committee Im comprises:

• Voter E with α votes for the criterion voting token
• Voter A with β votes for the criterion age of the last

block
• Voter R with γ votes for the criterion reputation and
• voter U with η votes for the criterion random

One should also note that the generation of the U has to be
transparent in order that all nodes can redo the computation
and come to the same conclusion and thus avoid manipulation.
To achieve this, as an example, the random number for each
candidate can be the ratio between the hash value of their
public address divided by the sum of the hashes of all the
candidates.

As a procedure to elect the canonical miner, we thus propose
to adapt the procedure presented in [16] as described in the
next subsection.

TABLE IV
ILLUSTRATION DUEL-PAIRS MATRIX MTOT WITH CYCLE

George Henry Edward
George 0 7 -5
Henry -7 0 6
Edward 5 -6 0

C. Election procedure

1) Tally: For g and h, two distinct elements of K, let us
define M i

gh = +1 if the candidate g �i h, M i
gh = −1 if

h �i g, M i
gh = 0 if g ≡i h. To give an illustration of this rule,

if candidate g has submitted Eg voting tokens and candidate h
has submitted Eh tokens, then MEgh = 1 if Eg > Eh, MEgh =

−1 if Eg < Eh and MEgh = 0 if Eg = Eh.
We can create a duel-pairs matrixMi, of dimensions NxN ,

with all the combinations for voter i:

0 M i
12 . . . M i

1g M i
1h . . . M i

1k . . . M i
1n

M i
21 0 . . . M i

2g M i
2h . . . M i

2k . . . M i
2n

...
...

...
...

...
...

...
...

...
M i

g1 M i
g2 . . . 0 M i

gh . . . M i
gk . . . M i

gn

M i
h1 M i

h2 . . . M i
hg 0 . . . M i

hk . . . M i
hn

...
...

...
...

...
...

...
...

...
M i

n1 M i
n2 . . . M i

ng M i
nh . . . M i

nk . . . 0

It should be noted that M i

gh = −M i
hg . We make a new

duel-pairs matrix called total vote matrix:

Mtot = αME + βMA + γMR + ηMU

It is important to stress that all the elements of theMtot are
public and transparent, hence the canonical block is checked
and could be approved by a majority of nodes if the whole
procedure has been executed correctly:
• There is a transaction of voting tokens from each can-

didate to the previous miner. It is broadcast through the
Mem Pool, and thus visible to all.

• The age of the last block mined by a candidate and its
reputation are computed from information contained in
the chain.

• U is defined to be transparent (cf. Section IV-B).
• α, β, γ and η are also known as there are an important

part of the chain setting.
2) Sort and lock: From the duel-pairs matrix Mtot, it is

possible to rank in descending order each duel-pair by creating
a sorted table. Taking into account the preference to keep duel-
pairs with a higher value M i

gh, the duel-pairs that would create
a cycle are skipped.
For instance, let’s consider the followingMtot (see Table IV)
with three of candidates serving as an illustration. The ranking
duel-pairs matrix is shown in Table V. As the ordering is tran-
sitive, the relationship George > Henry, Henry > Edward
and Edward > George is impossible as it forms a cycle.
Considering the fact that Edward > George is ranked lower
than the other duel-pairs, this relationship is skipped. The

TABLE V
ILLUSTRATION MTOT WITH CYCLE: RANKING OF DUEL PAIRS.

Duel M
George-Henry 7
Henry-Edward 6
Edward-George 5

TABLE VI
ILLUSTRATION MTOT WITH TIES

George Henry Edward John
George 0 -6 -6 -6
Henry 6 0 7 7
Edward 6 -7 0 8
John 6 -7 -8 0

sorted table with no cycle is referred to as being locked. From
this locked table, it is possible to order all the candidates.
In our example, the final order of the candidates is then
George−Henry − Edward and George is the winner.

3) Resolving ties: There are two possible types of tie: the
first one is a tie to define rank in the ranked table that could
endanger the resolution of cycles. The second one is a tie in
the election of the miner.

To resolve the first tie issue, we use the following method:
• Case 1: only two tied relations and no common loser:

The direct duels of the loser are used to separate them.
For instance, if relation a > b is tied with relation c > d,
look at the relation between b and d. If b > d, take the
convention that the relation c > d is ranked higher than
a > b (and the other way if d > b).

• Case 2: only two tied relations and a common loser:
We will use the direct confrontations of the winners. For
instance, if relation a > b is tied with c > b, and if a > c,
we will consider that c > b will be ranked before a > c.

• Case 3: more than two tied relations and no common
loser: The different direct confrontations between losers
are analysed to create a relative order between them. To
do that, the previous relations (highest ranked) are used
first. The rank is set from the weakest to the strongest.

• Case 4: more than two tied relations and common losers:
Using the same logic as before, the direct confrontations
of the winners creates a relative order. The rank is also
set from the weakest to strongest.

To illustrate the first type of tie, we will useMtot as presented
in Table VI where only four candidates are standing for the
canonical block: If it is obvious that the first duel-pair in the
ranking table will be Edward > John (score = 8), there is
a first tie between two relationships: Henry > Edward and
Henry > John with Mtot = 7. Observing that candidate
John loses against Edward, we will consider, by convention,
that the duel Henry > John is stronger (higher ranked)
than Henry > Edward. For the next tie Henry > George,
Edward > George and John > George. From the previous
duels, it is possible to determine the relative order between
these candidates, namely Henry > Edward > John. The
tied duels can now be ranked (from the duel with the weakest
candidate to the duel with strongest): John > George,

TABLE VII
ILLUSTRATION OF A TIE BETWEEN POSITIVE ROWS

Value for: George Henry Edward John Richard
Age 2 4 3 5 5

Reputation 3 1 1 5 4
Voting tokens 4 1 1 5 5

TABLE VIII
ILLUSTRATION OF Mtot TIE BETWEEN ROWS

George Henry Edward John Richard
George 0 0 0 -4 -4
Henry 0 0 2 -2 -2
Edward 0 -2 0 -2 -4
John 4 2 2 0 0
Richard 4 2 4 0 0

Edward > George, and Henry > George. Note that in this
example, there is no cycle (Henry > Edward > John >
George) and thus the sorted table is equal to the locked table
and Henry becomes the canonical miner (as pure Condorcet
winner). To avoid these complications, the proposed algorithm
must check if there is a pure Condorcet winner prior to
launching this procedure. Henry is the only candidate with
non-negative values for his row (see the corresponding row in
Table VI).

For the second type of tie, there is more than one row with
no negative value. Therefore choosing from tied candidates
with equal probability (as a purely random) would reward the
creation of clones and thus not fulfil the IC requirement. Ties
can be resolved in a way that does not reward or penalize
clones by choosing a voter who selects the only candidate
among those who are tied. This voter can be considered
dictatorial as defined by [11]. Considering that the choice of
the miner is mostly a question of trust, we decided to select
R reputation as this voter to solve the issue. In practice, if
there are candidates who are tied, the best-placed candidate
regarding reputation among the tied candidates is selected. If,
in this selection, there are still candidates with the exact same
reputation, then the selection is made among them by the voter
A age of the last mined block. If there is still a tie, E can
be used, and finally U . If there is still a tie, a Sybil attack
is probably occurring. In this case, the winner will be the
Condorcet winner after elimination of all the tied candidates
from ballots.

As an example, for this last rule, Table VII presents
different criteria of each of the five miners. The result of the
random number U is : George= 0.11, Henry =0.61, Edward
= 0.37, John=0.24, and Richard=0.51. With α=β=γ=η=1,
Table VIII shows the corresponding Mtot.

Upon examination of Mtot, as two lines have only positive
values, that means that two candidates are possibly Condorcet
winner, John, and Richard. As John has the highest repu-
tation, he is declared the winner.

Table IX summarizes the proposed method.

TABLE IX
PROPOSED CONDORCET-TIDEMAN RESOLUTION

1. Tally: Create the different matrix.
• From the data contained in the blockchain, for every candidate

that has submitted a voting token before gate closure, determine
the different ballots: Age, Reputation and Voting token

• Create the U matrix: attribute a random number to each candidate
• Compute Mtot = αME + βMA + γMR + ηMU

2. Check if there is an immediate Condorcet Winner.
If there is one and only one row with non-negative values in the Mtot

matrix, this row corresponds to the pure Condorcet winner.
3. Check if there are ties between potential Condorcet winners.
In the Mtot matrix, if there is more than one row with only positive
or equal-to-zero values, these rows correspond to the different potential
Condorcet winner. Thus, the dictatorial rule has to be applied.
• Create a new matrix with only the tie candidates with their

respective score in R, A, E , and U
• Check if one candidate has the highest score in R, if so, this

candidate is the winner.
• If there is still a tie, check the same for A, E , and U respectively.

If there is only one candidate that has a higher score, there are
declared the winner.

• If there is still a tie, delete the tied candidates from the ballots
and restart the procedure

4. Apply the full Tideman procedure.
All the rows in Mtot contain at least one value which is strictly
negative.
• Sort: Create a ranked table with the duel-pairs. Stop when you

reach a strictly negative value.
• Lock: Resolve the tie to define rank in the sorted duel pairs table

(see the previous chapter).
• Sub-routine resolving cycles.

– Gradually create a direct graph starting with the first candi-
date of the first-ranked duel-pairs.

– Detect if there is a cycle. If a cycle occurs, go to the next
ranked duel pairs.

• When the bottom of the ranked duel-pairs’list is reached and if
there are no more cycles, the winner is the first-ranked candidate.

V. MAPPING REQUIREMENTS TO PROPOSED APPROACH

In this section we argue and illustrate how the proposed
method solves the issues defined in Section III.

A. Synchronicity

The synchronicity issue is solved by the design of the voting
process itself, namely by the open-closed candidates’gates as
presented in Figure 1. To correctly define these two important
events, a time reference needs to be used. In Bitcoin protocol,
this reference is the UNIX Epoch Time that is used when a
transaction and a block is created. The reason for its use is to
facilitate the ordering of the block (block number) and to avoid
manipulation of this ordering. This reference can also be used
in the context of this paper. UNIX Epoch time corresponds to
the number of seconds that have elapsed since 00:00:00 UTC,
January 1st, 1970. The accuracy of this time reference is to
the second which is also impacted by the leap second which is
the adjustment occasionally applied to UTC with a probability
of 3.2x10−8. If the market period is quite large, while also
considering that it is the time elapsed during the different
moments (gate opening-closing), it is not an issue to use this
time reference. For instance, if the time elapsed between two

gate openings is 100s, the accuracy is 1%. Candidates and
other nodes need to take that inaccuracy into account. Network
Time Protocol (NTP) can be used as well. However, NTP has
encountered severe attacks (Denial of service) and a patch
was issued in August 2018. This is the reason why it is not
recommended here.

B. Failure to reach consensus

This requirement is fulfiled thanks to three different de-
fenses. First, the proposed algorithm is based on the Tideman
method that has the characteristics described in section IV-B
and ensures a proper selection of the Condorcet winner if there
is one. Second, if there is a tie at the first rank of the list of
ranked duels, we introduce a dictatorial selection to separate
candidates and determine a winner. Finally, if there is still a
tie, we make a subset of all the candidates that are not tied
and find the Condorcet winner from this subset.

We ran several simulations of the proposed algorithm by
combining the following factors:
• Change the relation between α, β, γ and : eta: e.g. a

strict equality (i.e. β = α = γ = η), than β = 2α = 3γ
to a ratio of five between them (i.e. β = 5α = 25γ)

• Change the numbers of candidates: from 2 to 10, after-
ward from 100 to 1000 (by increments of 100)

• The age, reputation and voting token ballots were chosen
randomly in a large possibility space.

For every round of the simulations, for which certain results
are shown in Table XII, we recorded how the winner was
chosen: immediate Condorcet (IC), after dictatorial selection
(and in this case which one (Reputation DR, Age DA, Voting
token DE, or random number DU)), or after a full Tideman
procedure (FT). The results in the aforementioned table are
expressed as a percentage of the cases.

It is interesting to see that, when some ordering between
voters (e.g. β > α > γ > η) is implemented, the risk of a tie
and therefore the need to apply the entire Tideman procedure
is largely reduced. This particularity leads to a more efficient
algorithm in these cases. As a further assumption for all the
next simulations, we fix the values of voters to β = 2α =
2γ = 2η. We will explain this choice later on.

Obviously, as we may expect, when the number of can-
didates increases, so does the risk of a tie. In all these
simulations, the algorithm always determines a winner.

C. Sybil Attack

We made the choice of the Tideman procedure because of its
characters’ immunisation against clones. Nevertheless, there
is still a small risk of not having a consensus when all the
candidates are clones of each other. In order to explain this,
we go back to our illustrative case.
Imagine that John agrees with Alice to accept the faulty
last transaction (as shown in Table II). Even if John knows
the other candidates and their relative position for A and R
compared to him, he still doesn’t know the random factor and
how many voting tokens the other candidates will submit.

TABLE X
TYPICAL EXAMPLE A MATRIX WITH TWO NEW IDENTITIES

George ... Richard New 1 New 2
George 0 -1 -1

... -1 -1
Richard 0 -1 -1
New 1 1 1 1 0 0
New 2 1 1 1 0 0

TABLE XI
TYPICAL EXAMPLE R MATRIX WITH TWO NEW IDENTITIES

George ... Richard New 1 New 2
George 0 1 1

... 1 1
Richard 0 1 1
New 1 -1 -1 -1 0 0
New 2 -1 -1 -1 0 0

John has two options: he could make clones of himself or
he could create new false identities.

1) Clones with new false identities: We first define the
consequence of new identities.
New identities are characterized by an age equal to the height
of the chain i.e. they have the highest age score in relation
to other candidates. The reputation is equal to zero as well
(they did not yet create any block). Table X is an example
of a typical A matrix and Table XI is an illustration of an R
matrix for these new identities.

Off course, if the number of new identities is higher than
the number of real candidates (let’s say, for instance, ten new
identities in our case), these drastically increase their chance to
win as the random U is equally distributed. So, it is important
that there is a cost associated with the use of or creation of
these identities. There are several ways to implement such a
cost e.g. one or a combination of the following :
• Impose a minimum value for voting tokens that a candi-

date must send to be approved as a valid candidate
• Fix the maximum number of candidates that can stand for

a specific block (e.g the first 100 to submit a voting token
between the opening/closing of the candidates’ gate)

• Fix the absolute number of candidates (e.g. 10 000 but
probably as a function of the chain height)

• etc.
The relationship between α, β, γ and η has also an impact

on the success of such an attack.
2) John’s clones: The Tideman method ensures that if

John is not a Condorcet winner, none of his clones will be.
Let’s have a look at our illustration. John’s clones will have
exactly the same value as the "original" John for the criteria
Age and Reputation. If the random method to create U is
the one taken as an example in section IV-B, John’s clones
will have the same U as well. For example, considering the
following ballots (with β = 2α = 2γ = 2η)
• A: George : 3, Henry : 5, John : 0, John1 : 0,
John2 : 0, Richard : 1, and Edward : 2

• R: George : 1, Henry : 1, John : 1, John1 : 1,
John2 : 1, Richard : 2, and Edward : 1

• E : George : 16, Henry : 5, John : 5, John1 : 998,
John2 : 16, Richard : 997, and Edward : 47

• U : George : 0.78, Henry : 0.55, John : 0.82, John1 :
0.82, John2 : 0.82, Richard : 0.67, and Edward : 0.05

where John1 and John2 are clones of John. It can be proven
that George is declared as the winner for the canonical bock
whatever the number of John’s clones (here two) and even if
John places the biggest bet.

D. Dominance issue

Firstly, regarding the openness requirement, the only con-
dition for a node to stand as a candidate miner is to have
some voting tokens. The whole miner selection procedure
is done by the previous miner. To tackle this issue, it is
interesting to observe the conditions where dominance could
occur. Dominance, as a concentration of decision-power, ap-
pears when candidates with a high stock of voting tokens and
high reputation have the maximum probability of winning the
canonical block designation procedure. To counteract this, we
propose to give a greater probability of winning when the
candidate has not won for a while or is a new candidate (taking
into account the risk of a Sybil attack). It is the age criteria.
Upon that the random number makes the result more uncertain.
The good balance between the four criteria is important to
reach the desired result. As already proposed in [2], β has to
be the highest criteria.

To illustrate this and using our illustrative use case, we
carry out some simulations with our five miners/candidates. In
these simulations,we fixed some specific rules. Each of them
starts with the same fixed number of voting tokens (1000) in
their respective wallet, and we increment the chain, letting the
proposed algorithm play its role. The candidates may not refill
their wallets with new tokens and there is no minimum number
of voting tokens imposed to declare oneself as a candidate.
We do these simulations with different relationships between
α, β, γ, and η. Two results are shown in Figure 2 and 3. It
can be seen that with no difference between the criteria/voters
(Figure 2), dominance occurs very quickly. However, with a
proper choice of these parameters (e.g. α = 1, β = 2, γ = 1
and η = 1, Figure 3), a balance between the candidates takes
place. Using the same simulation, we let the chain expand to
1000 with this criteria relationship (thus with a little benefit
for age). The repartition for the winner between candidates
is quite well balanced: Edward : 28%, Richard : 23%,
George : 19%, Henry : 16% and John : 14%

So we can declare that our proposal fulfils this requirement.

E. Decision map

A consensus algorithm that effectively fulfils all these
requirements passes through, in our case, a good determination
of α, β, γ, and η. We can summarize the decision that we
would like to implement as:
• If a candidate wins against all other candidates regarding

all four- or three-votes/criteria, they become the winner.

Figure 2. Domination with α = β = γ = η = 1.

Figure 3. Domination with α = γ = η = 1 and : β = 2.

• A candidate is designated if they win against all other
candidates for the following combination: Age and Rep-
utation, or Age and Token, or Age and Random

The repartition α = 1, β = 2, γ = 1 and η = 1 fulfils this
decision map.

F. Energy consumption

We would like to compare our algorithm with PoW
used by Bitcoin. By analysing the Bitcoin blockchain (e.g.
www.blockchain.com), we observed that one block (of 1.3
MB) contains up to 2500 transactions (tx). We will take this
number as an assumption for our evaluation. To realise the
consumption estimation, we use a personal computer with the
following characteristics: Intel (4) Core i7 (max core speed
2500 Hz, bus speed 100 MHz) with 10 GB memory. The
algorithm is written in Python 2.7. Different phases need to
be correctly separated:

1) Access to the transactions pool in order to find candi-
dates and their E

2) Search in the chain the value of A and R for each
candidate,

3) Compute U For each candidate,
4) Resolve the Condorcet-Tideman procedure
5) Broadcast the result
6) During this process each candidate creates their own

block in parallel.
As the proposed consensus is not online (and thus it is
not possible to evaluate the energy needed to assess and
examine data from the chain), we will focus our analysis
on the resolution of the Condorcet-Tideman procedure. The
resolution of this procedure depends not only on the number
of candidates but also on the relative weight factor between

TABLE XII
TABLE OF SIMULATION RESULTS FOR REQUIREMENT NO FAILURE TO REACH CONSENSUS

Simulations ref. Beta Alpha Gamma Eta # candidates % IC %DR %DA %DE %DU %FT
1 1 1 1 1 1000 50.00% 22.00% 28.00%
2 2 1 1 1 1000 9.00% 0.02% 90.98%
6 20 10 5 1 1000 100.00%

51 1 1 1 1 500 43.67% 31.33% 25.00%
52 2 1 1 1 500 11.30% 0.10% 88.60%
56 20 10 5 1 500 100.00%
101 1 1 1 1 50 35.8% 57.5% 6.75%
102 2 1 1 1 50 35.90% 0.30% 63.80%
106 20 10 5 1 50 100.00%
151 1 1 1 1 5 54.00% 44.00% 2.00%
152 2 1 1 1 5 83.80% 4.30% 11.90%
156 20 10 5 1 5 100.00%

criteria. As already mentioned, we used the same weight factor
as that used for the previous simulations. For instance, with
these assumptions, we observed that the average time to find
a winner from 5000 candidates was 180 seconds and the
consumption of power was 6 Watts for only one miner (the
previous designated one) during this process. So, this gives us
6W×180s
2500tx = 0.432J/tx = 1.2× 10−7kWh/tx. The evolution

of the resolution time is virtually quadratic to the number of
candidates, there is clearly room for improvement here.

VI. CONCLUSION AND FURTHER WORK

The contribution of this paper takes into account the ob-
servation of the complementary works of [2] and [9] to
propose a more efficient miner selection procedure avoiding
the concentration of decision-making power, consuming less
energy than the PoW, while also providing the same resistance
to a Sybil attack. The criteria Independence of Clones and
Independence of Irrelevant Alternatives are the cornerstone of
the Tideman’s procedure to resolve a Sybil attack. This is the
reason why it has been chosen as the main mechanism to
determine the miner of the canonical block. The good relation-
ship (vote weight) between the different criteria needs to be
further investigated. We discover that a small advantage for the
criteria ’Age’ seems to be enough to avoid the concentration
of decision-power (dominance), and also to avoid the risk of
a tie in the Condorcet procedure and therefore to be more
energy efficient. Further works are also needed to optimize the
energy consumption and the resolution time when the number
of candidates becomes very high.

Regarding further work, as explained in Figure 1, notifica-
tion of the selected miner is done after the market period.
There is a risk that while this information is effectively
broadcast, it can arrive late to some candidates. In order
to prevent information loss, these nodes will broadcast their
own block. Other nodes that do not receive the information
about the canonical block could accept this block and there is
then the creation of a fork. As the miner selection procedure
relies on the previous miner, there is a risk that it could
act incorrectly. Some methods such as the Byzantine Fault
Tolerance [6] can be used to resolve this issue.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] D. Vangulick, B. Cornélusse, and D. Ernst, “Blockchain for peer-to-peer

energy exchanges: design and recommendations,” in Proceedings of the
XX Power Systems Computation Conference (PSCC2018), 2018.

[3] D. Vangulick, B. Cornélusse, T. Vanherck, O. Devolder, and D. Ernst,
“E-cloud, the open microgrid in existing network infrastructure,” in
Proceedings of the 24th International Conference on Electricity Dis-
tribution, 2017.

[4] Z. Trifa and M. Khemakhem, “Sybil nodes as a mitigation strategy
against sybil attack,” Procedia Computer Science, vol. 32, pp. 1135–
1140, 2014.

[5] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
y,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3,
pp. 34–37, 2014.

[6] M. Castro and B. Liskov, “Byzantine fault tolerance,” Dec. 30 2003, uS
Patent 6,671,821.

[7] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,”
2014.

[8] A. de Vries, “Bitcoin’s growing energy problem,” Joule, vol. 2, no. 5,
pp. 801 – 805, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2542435118301776

[9] D. Vangulick, B. Cornélusse, and D. Ernst, “Blockchain for peer-to-
peer energy exchanges: Probabilistic approach of proof of stake,” in
Proceedings of the CIRED WORKSHOP (CIRED 2018), 2018.

[10] S. J. Brams and P. C. Fishburn, “Voting procedures,” Handbook of social
choice and welfare, vol. 1, pp. 173–236, 2002.

[11] K. Arrow, “Individual values and social choice,” Nueva York: Wiley,
vol. 24, 1951.

[12] M. A. Satterthwaite, “Strategy-proofness and arrow’s conditions:
Existence and correspondence theorems for voting procedures and
social welfare functions,” Journal of Economic Theory, vol. 10, no. 2,
pp. 187 – 217, 1975. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0022053175900502

[13] J. A. N. de Caritat Condorcet, “Essais sur l’application de l’analyse à
la probabilité des décisions rendues à la pluralité des voix,” 1785.

[14] D. R. Woodall, “Monotonicity of single-seat preferential election rules,”
Discrete Applied Mathematics, vol. 77, no. 1, pp. 81–98, 1997.

[15] J. H. Smith, “Aggregation of preferences with variable electorate,”
Econometrica: Journal of the Econometric Society, pp. 1027–1041,
1973.

[16] T. N. Tideman, “Independence of clones as a criterion for voting rules,”
Social Choice and Welfare, vol. 4, no. 3, pp. 185–206, 1987.

[17] J. C. de Borda, “Mémoire sur les élections au scrutin,” 1781.
[18] M. Schulze, “A new monotonic, clone-independent, reversal symmetric,

and condorcet-consistent single-winner election method,” Social Choice
and Welfare, vol. 36, no. 2, pp. 267–303, 2011.

[19] D. C. Parkes and L. Xia, “A complexity-of-strategic-behavior compari-
son between schulze’s rule and ranked pairs.” in AAAI, 2012.

