
1

TNT, Watch me Explode:
A Light in the Dark for Revealing MPLS Tunnels

Yves Vanaubel∗, Jean-Romain Luttringer‡, Pascal Mérindol‡, Jean-Jacques Pansiot‡, Benoit Donnet∗

∗ Montefiore Institute, Université de Liège – Belgium
‡ Icube, Université de Strasbourg – France

Abstract—Internet topology discovery has been a recurrent
research topic for nearly 20 years now. Usually, it works by
sending hop-limited probes (i.e., traceroute) towards a set
of destinations to collect topological data in order to infer the
Internet topology at a given scale (e.g., at the router or the AS
level). However, traceroute comes with multiple limitations, in
particular with layer-2 clouds such as MPLS that might hide their
content to traceroute exploration. Thus, the resulting Internet
topology data and models are incomplete and inaccurate.

In this paper, we introduce TNT (Trace the Naughty Tunnels),
an extension to Paris traceroute for revealing most (if not all)
MPLS tunnels along a path. TNT works in two basic stages.
First, along with traceroute probes, it looks for evidences of
the potential presence of hidden tunnels. Those evidences are
surprising patterns in the traceroute output, e.g., abrupt and
significant TTL shifts. Second, if alarms are triggered due to
the presence of such evidences, TNT launches additional and
dedicated probing for possibly revealing the content of the hidden
tunnel. We validate TNT through emulation with GNS3 and tune
its parameters through a dedicated measurement campaign. We
also largely deploy TNT on the Archipelago platform and provide
a quantification of tunnels, updating so the state of the art vision
of MPLS tunnels. Finally, TNT and its validation platform are
fully and publicly available, as well as the collected data and
scripts used for processing data.

I. INTRODUCTION

For now twenty years, the Internet topology discovery has
attracted a lot of attention from the research community [1],
[2]. First, numerous tools have been proposed to better cap-
ture the Internet at the IP interface level (mainly based on
traceroute) and at the router level (by aggregating IP
interfaces of a router through alias resolution). Second, the
data collected has been used to model the Internet [3], but
also to have a better knowledge of the network ecosystem and
how it is organized by operators.

However, despite the work done so far, a lot of issues still
need to be fixed, especially in data collection processes based
on traceroute. For instance, collecting data about Layer-2
devices connecting routers is still an open question, although
it has been addressed previously with a, nowadays, deprecated
tool (i.e., IGMP-based probing) [4]. Another example is the
relationship between traditional network hardware and the so-
called middleboxes [5], [6]. Finally, MPLS tunnels [7] also
have an impact on topology discovery as they allow to hide
internal hops [8], [9].

This paper focuses on the interaction between
traceroute and MPLS. In a nutshell, MPLS has
been designed to reduce the time required to make forwarding

decisions thanks to the insertion of labels (called Label
Stack Entries, or LSE) before the IP header.1 In an MPLS
network, packets are forwarded using an exact match lookup
of a 20-bit value found in the LSE. At each MPLS hop, the
label of the incoming packet is replaced by a corresponding
outgoing label found in an MPLS switching table. The MPLS
forwarding engine is lighter than the IP forwarding engine
because finding an exact match for a label is simpler than
finding the longest matching prefix for an IP address. Some
MPLS tunnels may be revealed to traceroute because
MPLS routers are able to generate ICMP time-exceeded
messages when the MPLS TTL expires and the ICMP
message embeds the LSE, revealing so the presence of the
tunnel [10], [8]. However, MPLS supports optional features
that make tunnels more or less invisible to traceroute.
Such features modify the way routers process the IP and
MPLS TTL of a packet. By carefully analyzing some MPLS
related patterns like TTLs (e.g., the quoted forward TTL, the
returned TTL of both error and standard replies), one can
identify and possibly discover the L3-hops hidden within an
MPLS cloud. A first attempt has been already proposed for
revealing so-called Invisible tunnels [9]. Here we are going
several steps further by providing new revelation techniques
(in particular for dealing with the ultimate hop popping
feature), and its validation with multiple MPLS and BGP
configurations (by emulating MPLS network through GNS3).

This paper aims at plugging the gaps in identifying and
revealing the content of MPLS tunnels. This is done by
introducing TNT (Trace the Naughty Tunnels), an open-source
extension for Paris traceroute [11] including techniques for
inferring and revealing MPLS tunnels content. Compared
to our previous work [8], [9], this paper provides multiple
contributions:

1) we strongly revise the MPLS tunnel classification
as proposed by Donnet et al. [8]. In particular, when
possible, we subdivide the “Invisible Tunnel” class in two
more accurate categories, “Invisible PHP” and “Invisible
UHP”. We show that actually those tunnels can be sys-
tematically revealed when they are built with basic P2P
LDP [12] or RSVP-TE [13] circuits (and can be at least
detected if constructed with more complex technologies
such as P2MP VPRN [14]). We also explain why most
“Opaque” tunnels content cannot be revealed in practice.

1Although MPLS can also be used with IPv6, we consider only IPv4 in
this paper.



2

Finally, we refine and even correct previous quantifica-
tion of each tunnel class with large-scale measurements
performed in the wild;

2) we complement the state of the art with traceroute-
based measurement techniques able to reveal most (or
at least detect all) MPLS tunnels, even those that were
built for hiding their content. While our previous work [9]
required to target suspect and pre-analyzed zones in
the Internet (i.e., considering high degree nodes and
their neighbors visible in the ITDK dataset [15]), we
provide here measurement techniques fully integrated in
traceroute. We associate with each category of the
classification indicators or triggers that are used to de-
termine, on the fly, the potential presence of a tunnel and
possibly its nature. In particular, in this paper, we are able
to identify the presence of the newly introduced “UHP
Invisible” tunnel class thanks to the duplication of an
IP address in the traceroute output. When a trigger
is pulled during a traceroute exploration, an MPLS
revelation [9] is launched with the objective of revealing
the tunnel content. We validate the indicators, triggers,
and revelations using GNS-3, an emulator running the
actual IOS of real routers in a virtualized environment2,
on a large set of realistic configurations. We also show,
through measurements, that our techniques are efficient
in terms of cost (i.e., the additional amount of probes
injected is reasonable, specially compared to the quality
of new data discovered) and errors (false positives and
false negatives);

3) we implement those techniques within Scamper [16], the
state of the art network measurements toolbox as a Paris
traceroute extension, called TNT, and deploy it on the
Archipelago infrastructure [17]. TNT aims at replacing
the old version of Scamper and is, thus, subject to run
every day towards millions of destinations. As such, we
believe TNT will be useful to study MPLS deployment
and usage over time, increasing so our knowledge and
culture on this technology;

4) we analyze the data collected, the efficiency of TNT
in doing so (for tuning it to its best set of calibration
parameters) and report a new quantification on MPLS de-
ployment in the wild, correcting and updating so previous
results that erroneously underestimated or overestimated
the prevalence of some tunnel classes [8];

5) we work in a reproducibility perspective. As such, all
our code (TNT, GNS-3, data processing and analysis) as
well as our collected dataset are made available.3

The remainder of this paper is organized as follows: Sec. II
provides the required technical background for this paper;
Sec. III revises the MPLS taxonomy initially introduced by
Donnet et al. [8] in the light of newly understood MPLS
behaviors; Sec. IV formally introduces TNT, our extension to
traceroute for revealing the content of all MPLS tunnels;
Sec. V discusses TNT parameters and its calibration, while

2See https://gns3.com/ Note that it is also possible to emulate other router
brands, e.g., Juniper, with GNS-3.

3See http://www.montefiore.ulg.ac.be/~bdonnet/mpls

Router Signature Router Brand and OS
< 255, 255 > Cisco (IOS, IOS XR)
< 255, 64 > Juniper (Junos)
< 128, 128 > Juniper (JunosE)
< 64, 64 > Brocade, Alcatel, Linux

TABLE I: Summary of main router signature, the first initial
TTL of the pair corresponds to ICMP time-exceeded,
while the second is for ICMP echo-reply.

0 19 20 22 23 24 31

Label TC S LSE-TTL

Fig. 1: The MPLS label stack entry (LSE) format.

Sec. VI presents results of the TNT deployment over the
Archipelago architecture; Sec. VII positions our work with
respect to the state of the art; finally, Sec. VIII concludes this
paper by summarizing its main achievements.

II. BACKGROUND

This section discusses the technical background required
for the paper. Sec. II-A explains how hardware brand can be
inferred from collected TTLs. Sec. II-B provides the basics
of MPLS labels and introduces the MPLS control plane while
Sec. II-C focuses on the MPLS data plane and MPLS TTL
processing.

A. Network Fingerprinting

Vanaubel et al. [18] have presented a router fingerprinting
technique that classifies networking devices based on their
hardware and operating system (OS). This method infers
initial TTL values used by a router when forging different
kinds of packets. It then builds the router signature, i.e.,
the n-tuple of n initial TTLs. A basic pair-signature (with
n = 2) simply uses the initial TTL of two different mes-
sages: an ICMP time-exceeded message elicited by a
traceroute probe, and an ICMP echo-reply message
obtained from an echo-request probe. Table I summarizes
the main router signatures, with associated router brands and
router OSes. This feature is really interesting since the two
most deployed router brands, Cisco and Juniper, have distinct
MPLS behaviors and signatures.

B. MPLS Basics and Control Plane

MPLS routers, i.e., Label Switching Routers (LSRs), ex-
change labeled packets over Label Switched Paths (LSPs).
In practice, those packets are tagged with one or more label
stack entries (LSE) inserted between the frame header (data-
link layer) and the IP packet (network layer). Each LSE
is made of four fields as illustrated by Fig. 1: an MPLS
label used for forwarding the packet to the next router, a
Traffic Class field for quality of service, priority, and Explicit
Congestion Notification [19], a bottom of stack flag bit (to
indicate whether the current LSE is the last in the stack [20])4,

4To simplify the presentation we will consider only one LSE in the
remainder of this paper
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and a time-to-live (LSE-TTL) field having the same purpose
as the IP-TTL field [21] (i.e., avoiding routing loops).

Labels may be allocated through the Label Distribution
Protocol (LDP) [12]. Each LSR announces to its neighbors
the association between a prefix in its routing table and a
label it has chosen for a given Forwarding Equivalent Class (a
FEC is a destination prefix by default), populating so a Label
Forwarding Information Table (LFIB) in each LSR. With LDP,
a router advertises the same label to all its neighbors for a
given FEC. LDP is mainly used for scalability reasons (e.g.,
to limit BGP-IGP interactions to edge routers) and to avoid
anomalies for the transit traffic such as iBGP deflection issues.
Indeed, LDP deployed tunnels use the routes computed by the
IGP (without any interest at the first, and naive, glance) as
the LFIB is built on top of the IGP FIB. Labels can also be
distributed through RSVP-TE [13], when MPLS is used for
Traffic Engineering (TE) purposes. In practice, most operators
deploying RSVP-TE tunnels use LDP [9] as a default labeling
protocol.

With LDP, MPLS has two ways of binding labels to
destination prefixes:

1) through ordered LSP control (default configuration of
Juniper routers [22]);

2) through independent LSP control (default configuration
of Cisco routers [23, Chap. 4]).

In the former mode, a LSR only binds a label to a prefix
if this prefix is local (typically, the exit point of the LSR),
or if it has received a label binding proposal from the IGP
next hop towards this prefix. This mode is thus iterative as
each intermediate upstream LSR waits for a proposal of its
downstream LSR (to build the LSP from the exit to the entry
point). Juniper routers use this mode as default and only
propose labels for loopback IP addresses. In the second mode,
the Cisco default one, a LSR creates a label binding for each
prefix it has in its RIB (connected or – redistributed in –
IGP routes only) and distributes it to all its neighbors. This
mode does not require any proposal from downstream LSRs.
Consequently, a label proposal is sent to all neighbors without
ensuring that the LSP is enabled up to the exit point of the
tunnel. LSP setup takes less time but may lead to uncommon
situations in which an LSP can end abruptly before reaching
the exit point (see Sec. III for details.)

The last LSR towards a FEC is the Egress Label Edge
Router (the Egress LER – PE2 in Fig. 2). Depending on
its configuration, two labeling modes may be performed. The
default mode [9] is Penultimate Hop Popping (PHP), where
the Egress advertises an Implicit NULL label (label value of
3 [20] – see Table III for details on reserved MPLS label
values). The previous LSR (Penultimate Hop LSR,PH – P3 in
Fig. 2) is in charge of removing the LSE to reduce the load on
the Egress. In the Ultimate Hop Popping (UHP), the Egress
LER advertises an Explicit NULL label (label value of 0 [20]
– see Table III for details on reserved MPLS label values).
The PH will use this Explicit NULL label and the Egress
LER will be responsible for its removal. Labels assigned by
LSRs other than the Egress LER are distinct from Implicit or
Explicit NULL labels. The Ending Hop LSR (EH) is the LSR
in charge of removing the label, it can be the PH in case of

Acronym Meaning IP
LSR Label Switching Router

RouterPH LSR Penultimate Hop LSR
EH Ending Hop LSR
LER Label Edge Router Border Router
LSP Label Switching Path Tunnel
LSE Label Sack Entry Header
LSE-TTL LSE Time-to-Live IP-TTL
LDP Label Distribution Protocol SignalingRSVP-TE ReSerVetation Protocol – Traffic Engineering (control plane)
LIB Label Information Base RIB
LFIB Label Forwarding Information Base FIB
PHP Penultimate Hop Popping DecapsulationUHP Ultimate Hop Popping
FEC Forwarding Equivalent Class QoS Class

TABLE II: MPLS terminology with its matching in the classic
IP world.

PHP, the Egress LER in case of UHP or possibly another LSR
in the case of independent LSP control.

Table II provides a summary of main acronyms used by
MPLS and their corresponding concept in the classic IP world.

C. MPLS Data Plane and TTL processing
Depending on its location along the LSP, a LSR applies one

of the three following operations:
• PUSH (Sec. II-C1). The first MPLS router, i.e., the tunnel

entry point pushes one or several LSEs in the IP packet
that turns into an MPLS one. The Ingress Label Edge
Router (Ingress LER) associates the packet FEC to its
LSP.

• SWAP (Sec. II-C2). Within the LSP, each LSR makes a
label lookup in the LFIB, swaps the incoming label with
its corresponding outgoing label, and sends the MPLS
packet further along the LSP.

• POP (Sec. II-C3). The EH, the last LSR of the LSP,
deletes the LSE, and converts the MPLS packet back
into an IP one. The EH can be the Egress Label Edge
Router (the Egress LER) when UHP is enabled or the PH
otherwise.

Fig. 2 (above part) illustrates the main vocabulary associated
to MPLS tunnels.

1) LSP Entry Behavior: When an IP packet enters an
MPLS cloud, the Ingress LER binds a label to the packet
thanks to a lookup into its LFIB, depending on the packet
FEC, e.g., its IP destination prefix. Prior to pushing the LSE
into the packet, the Ingress LER has to initialize the LSE-
TTL (see Fig. 1). Two behaviors can then be configured:
either the Ingress LER resets the LSE-TTL to an arbitrary
value (255, no-ttl-propagate) or it copies the current
IP-TTL value into the LSE-TTL (ttl-propagate, the
default behavior). Operators can configure this operation using
the no-ttl-propagate option provided by the router
manufacturer [21]. In the former case, the LSP is called a
pipe LSP, while, in the latter case, a uniform one.

Once the LSE-TTL has been initialized, the LSE is pushed
on the packet and then sent to an outgoing interface of the
Ingress LER. In most cases, except for a given Juniper OS (i.e.,
Olive), the IP-TTL is decremented before being encapsulated
into the MPLS header.
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Invisible UHP

Explicit Implicit

Invisible PHP

Fig. 2: Illustration of MPLS vocabulary and relationship between MPLS and traceroute. The figure is made of three parts.
The upper part represents the network topology we use, throughout the paper to illustrate concepts. In particular, with respect
to MPLS, P1 is the LSP First Hop (FH), while P3 is the Penultimate Hop (PH). In case of PHP, P3 is the Ending Hop (EH)
and is responsible for removing the LSE. In case of UHP, the LSE is removed by the Egress LER (PE2). The middle part
of the figure presents the MPLS Tunnel classification, as observed with traceroute (this classification is a revision of the
original one proposed by Donnet et al.) Finally, the bottom part of the figure provides triggers and indicators of an MPLS
tunnel presence when probing with TNT. The relationship between the trigger/indicator and the observation made with probing
is provided in red. Additional information (such as time-exceeded path length) are provided. This is used in Sec. IV for
illustrating TNT.

2) LSP Internal Behavior: Upon an MPLS packet arrival,
an LSR decrements its LSE-TTL. If it does not expire, the
LSR looks up the label in its LFIB. It then swaps the top LSE
with the one provided by the LFIB. The operation is actually a
swap only if the outgoing label returned by the LFIB is neither
Implicit NULL nor empty5. Otherwise, it is a POP operation
as described in the next subsection. Finally, the packet is sent
to the outgoing interface of the LSR with a new label, both
according to the LFIB.

If the LSE-TTL expires, the LSR, in the fashion of any IP
router, forges an ICMP time-exceeded that is sent back
to the packet originator. It is worth to notice that a LSR may
implement RFC 4950 [24] (as it should be the case in all
recent OSes). If so, it means that the LSR will quote the
full MPLS LSE stack of the expired packet in the ICMP
time-exceeded message.

ICMP processing in MPLS tunnels varies according to the
ICMP type of message. ICMP Information messages (e.g.,
echo-reply) are directly sent to the destination (e.g., origi-
nator of the echo-request) if the IP FIB allows for it (oth-
erwise no replies are generated). On the contrary, ICMP Error

5In practice the actual label used for the forwarding is then greater than
or equal to 0 (this specific value being reserved for Explicit NULL tunnel
ending, i.e. for UHP) but excluding by design the reserved value 3 that is
dedicated for Implicit NULL.

Value Meaning Mechanism

0 IPv4 Explicit NULL
downstream LSR should pop label
immediately (UHP – popped packet
is an IPv4 datagram)

1 Router Alert deliver to control plane, do not forward

2 IPv6 Explicit NULL
downstream LSR should pop label
immediately (UHP – popped packet
is an IPv6 datagram)

3 Implicit NULL
pop immediately and treat as an IPv4
packet (PHP)

TABLE III: Reserved label values in MPLS and their mean-
ings.

messages (e.g., time-exceeded) are generally forwarded
to the Egress LER that will be in charge of forwarding the
packet through its IP plane [8]. Differences between Juniper
and Cisco OS and configurations are discussed in details in
Sec. IV-D.

3) LSP Exit Behavior: At the MPLS packet arrival, the EH
decrements the LSE-TTL. If this TTL does not expire, the
EH then pops the LSE stack after having determined the new
IP-TTL.

Applying PHP comes with the advantage of reducing the
load on the Egress LER, especially if it is the root of a
large LSP-tree. This means that, when using PHP, the last
MPLS operation (i.e., POP) is performed one hop before the



5

Egress LER, on the PH. On the contrary, UHP is generally
used only when the ISP implements more sophisticated traffic
engineering operations or wants to make the tunnel content
and semantics more transparent to the customers.6

When leaving a tunnel, the router has to decide which
is the correct TTL value (IP-TTL or LSE-TTL) to copy
in the IP header. If the Ingress LER has activated the
no-ttl-propagate option, the EH should pick the IP-
TTL of the incoming packet while the LSE-TTL should be
selected otherwise. This way, the resulting outgoing TTL
cannot be greater than the incoming one: in the former case,
internal hops are not counted because the tunnel is hidden
while they are for the latter case. In both cases, the TTL
behavior remains monotonic. In order to synchronize both ends
of the tunnel without any message exchange, two mechanisms
might be used for selecting the IP-TTL at the EH:

1) applying a MIN(IP-TTL, LSE-TTL) operation (solution
implemented for Cisco PHP configurations [23]);

2) assuming the Ingress configuration (ttl-propagate
or not) is the same as the local configuration (solution
implemented by some JunOS and also in some Cisco
UHP configuration).

Applying the MIN(IP-TTL, LSE-TTL) is the best option be-
cause it correctly supports heterogeneous ttl-propagate
configurations in any case while, at the same time, mitigating
forwarding loop without exchanging signalization messages.

This MIN(IP-TTL, LSE-TTL) behavior might be used for
detecting the presence of hidden MPLS tunnels [9]. Indeed, it
is likely that the EH generating the ICMP time-exceeded
message will use the same MPLS cloud back to reply to the
vantage point. In that case, when the reply will leave the MPLS
cloud, the returning EH (P1 in Fig. 2) will choose to copy the
LSE-TTL in the IP-TTL, as the IP-TTL has been initialized at
its maximum value on the Egress of the forward tunnel (255
for a Cisco router – see Sec. II-A). As a consequence, while
the forward path hides the MPLS cloud because the MIN(IP-
TTL, LSE-TTL) operated on the forward PH (P3) selects the
IP-TTL which is lower, the return path indicates its presence
because the returning PH (P1), on the contrary, selects the
LSE-TTL. In general, a sufficient condition for this pattern
to occur is if the returning Ingress, which is the forward EH,
re-uses the MPLS cloud back.

In practice, it is interesting to mention that this MPLS
behavior is strongly dependent on the implementation and
the configuration. For instance, on some Juniper OS routers
(at least with JunOS Olive) or when the UHP option is
activated on some Cisco IOS (at least with the 15.2 ver-
sion), the MIN(IP-TTL, LSE-TTL) operation is not – sys-
tematically – applied. The EH assumes that the propaga-
tion configuration is homogeneous among LERs. When it is
not the case (ttl-propagate at one end of the tunnel
and no-ttl-propagate at the other end), the PH (for
PHP routers without MIN(IP-TTL, LSE-TTL)) or the Egress
LER (for the Cisco UHP configuration) will use the IP-

6The UHP feature has been recently made available on Juniper routers
when LSPs are set with LDP. However, PHP remains the rule on Juniper [25,
Chap. 1].

TTL instead of the LSE-TTL, leading so to a so-called jump
effect with traceroute (i.e., as many hops as the LSP
length are skipped after the tunnel). Except when explicitly
stated, we will consider homogeneous configurations (e.g.,
ttl-propagate on the whole tunnel) in the remainder
of the paper. Finally, it is worth noticing that mixing UHP
and PHP (hybrid configurations) can also result in uncommon
behaviors.7

III. REVISITING MPLS TUNNELS TAXONOMY

According to whether LSRs implement RFC4950 or not
(Sec. II-C2) and whether they activate the ttl-propagate
option or not (Sec. II-C1), MPLS tunnels can be revealed to
traceroute following Donnet et al. [8] taxonomy.

Explicit tunnels are those with RFC4950 and the
ttl-propagate option activated (this is the default config-
uration). As such, they are fully visible with traceroute,
including labels along the LSP. Implicit tunnels activate the
ttl-propagate option but do not implement the RFC4950.
No IP information is missed but LSRs are viewed as or-
dinary IP routers, leading to a lack of “semantic” in the
traceroute output. Opaque tunnels are obscured from
traceroute as the ttl-propagate option is disabled
while the RFC4950 is implemented and, more decisive, the EH
that pops the last label has not received an Explicit or Implicit
NULL proposal for the given FEC (making the LSP end in
a non controlled fashion). Consequently, the EH can be seen
while the remainder of the tunnel is hidden. Finally, Invisible
tunnels are hidden as the no-ttl-propagate option is
activated (RFC4950 may be implemented or not).

As illustrated in Fig. 2 (middle part), Explicit tunnels are
the ideal case as all the MPLS information comes natively
with traceroute. For Implicit tunnels, Donnet et al. [8]
have proposed techniques for identifying the tunnel based
on the way LSRs process ICMP messages (see Sec. II-C2
– the so-called UTURN) and the IP-TTL quoted in the
time-exceeded message (the so-called qTTL) that is in-
creased by one at each subsequent LSR of the LSP due to
the ttl-propagate option (ICMP time-exceeded are
generated based on the LSE-TTL while the IP-TTL of the
probe is left unchanged within the LSP and, thus, quoted as
such in the ICMP time-exceeded).

Opaque tunnels are only encountered with Cisco LSPs and
are a consequence of the way labels are distributed with
LDP (see Sec. II-B). Indeed, a label proposal may be sent
to all neighbors without ensuring that the LSP is enabled up
to the Egress LER, leading so to Opaque tunnels because
an LSP can end abruptly without reaching the Egress LER
(where the prefix is injected in the IGP) that should bind an
Explicit (UHP) or Implicit NULL label (PHP). As illustrated
in Fig. 2, Opaque tunnels and their length can be identified
thanks to the LSE-TTL. These LSPs end without a standard
terminating label (Implicit or Explicit NULL) and so they
break with the last MPLS header of the neighbor that may
not be an MPLS speaker. Thanks to our large scale campaign

7Those behaviors are described and discussed in details in the Appendix,
at the end of this paper.
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and cross-validation with our emulation platform, we realized
that the vast majority of Opaque tunnels seems to be caused by
Carrier-of-Carriers VPN [26] or similar technologies. Indeed,
they provoke an abrupt tunnel ending (the bottom label is
necessarily carried up to the end of the tunnel to determine
the correct outgoing VPN), and unfortunately lead to non
revealable tunnels as we will show later.

The traceroute behavior, for Invisible tunnel, is differ-
ent according to the way the LSE is popped from the packet
(i.e., UHP or PHP), as illustrated in Fig. 2. Invisible tunnels
are problematic, as they lead to a false vision of the Internet
topology, creating false links, and spoiling graph metrics, such
as the node degree distribution [9]. In this paper, we revisit
the original taxonomy by doing a clear distinction between
Invisible tunnels produced with PHP and UHP. In Donnet et
al. [8], the class “Invisible” only covered PHP. Vanaubel et
al. [9] have since proposed techniques for revealing the content
of Invisible MPLS tunnels only in the case of PHP.

With Invisible UHP tunnels, the behavior is clearly different,
at least for Cisco routers using the 15.2 IOS8. Upon reception
of a packet with IP-TTL of 1, the Egress LER does not
decrement this TTL, but, rather, forwards the packet to the
next hop (CE2 in the example), so that the Egress does not
show up in the trace. In contrast, the next hop will appear
twice: once for the probe that should have expired at the Egress
and once at the next probe. UHP indeed provokes a surprising
pattern, a duplicated IP at two successive hops, illustrated as
“Invisible UHP” in Fig. 2. This duplicated IP addresses might
be misunderstood as a forwarding loop.

On the contrary, PHP moves the POP function at the PH,
one hop before the tunnel end. This PH does not decrement
the IP-TTL whatever its value is. Except for some JunOS, the
packet is still MPLS switched because the LSE-TTL has not
expired on it. It is somehow surprising because for Explicit
and Implicit tunnels, the PH replies on its own. It is because,
in this cases, the LSE-TTL has also expired. In Fig. 2, we
can see that there is no more asymmetry in path length for
router P3 proving so its reply does not follow a UTURN via
the Egress. On the contrary, any other LSR on the LSP builds a
time-exceeded message when the LSE-TTL expires and
then continues to MPLS switch their reply error packet to
the Egress LER unless the mpls ip ttl-expiration
pop <stack size> command has been activated for Cisco
routers. It seems to be just an option for Juniper routers with
the icmp-tunneling command.

Note that Opaque and Invisible UHP tunnels are Cisco tun-
nels (signature < 255, 255 >) due to specific implementations.
Invisible PHP are Juniper (signature < 255, 64 >), Linux
boxes (signature < 64, 64 >), or Cisco tunnels but they do
not behave exactly the same as we will explain later.

Sec. IV extends techniques for revealing MPLS tunnels
by proposing and implementing integrated measurement tech-
niques for all tunnels (i.e., Explicit, Implicit, Opaque, and both
UHP and PHP Invisible ones) in a single tool called TNT.

8While it is now possible to enable UHP with Juniper for LDP, TNT is not
able to make a distinction between the two because the visible and revealed
patterns are the same.

IV. TNT DESIGN AND REPRODUCIBILITY

This section introduces our tool, TNT (Trace the Naughty
Tunnels), able to reveal MPLS tunnels along a path. TNT
is an extension to Paris Traceroute [11] so that we avoid
most of the problems related to load balancing. TNT has been
implemented within Scamper [16], the state-of-the-art network
measurements toolbox, and is freely available.3 Sec. IV-A
provides an overview of TNT, while Sec. IV-B and Sec. IV-C
focus on techniques for revealing hidden tunnels and how
those techniques are triggered. Finally, Sec. IV-D explains how
we validated TNT on a GNS-3 platform2, an emulator running
the actual OS of real routers in a virtualized environment.

A. Overview

Listing 1: Pseudo-code for TNT
1 Codes := 0 , None ; 1 , LSE ; 2 , qTTL ; 3 , UTURN ; 4 , LSE−TTL ;
2 5 , FRPLA ; 6 , RTLA ; 7 , DUP_IP .
3 t r a c e _ n a u g h t y _ t u n n e l ( t a r g e t ) :
4 prev_hop , cur_hop , nex t_hop = None
5

6 f o r ( t t l =STARTING_TTL , ! h a l t ( t t l , t a r g e t ) , t t l ++)
7 s t a t e , t u n _ c o d e = None
8 nex t_hop = t r a c e _ h o p ( t t l )
9

10 # f i r s t check un i fo rm t u n n e l e v i d e n c e wi th i n d i c a t o r s
11 t u n _ c o d e = c h e c k _ i n d i c a t o r s ( cur_hop )
12 # p o s s i b l y f i r e s TNT wi th t r i g g e r s o r opaques t u n n e l s
13 i f ( t u n _ c o d e == None )
14 t u n _ c o d e = c h e c k _ t r i g g e r s ( prev_hop , cur_hop ,

nex t_hop )
15 # check i f cur_hop does n o t be lon g t o a un i fo rm LSP
16 i f ( t u n _ c o d e != None )
17 # p o t e n t i a l h id de n t u n n e l t o r e v e a l
18 s t a t e = r e v e a l _ t u n n e l ( prev_hop , cur_hop ,

t u n _ c o d e )
19 e l i f ( t u n _ c o d e == LSE−TTL )
20 # p o t e n t i a l opaque t u n n e l t o r e v e a l
21 s t a t e = r e v e a l _ t u n n e l ( prev_hop , cur_hop , t u n _ c o d e )
22

23 #hop by hop and t u n n e l d i s p l a y
24 dump ( cur_hop , tun_code , s t a t e )
25

26 # s l i d i n g p a i r o f IP a d d r e s s e s
27 prev_hop = cur_hop # c a n d i d a t e i n g r e s s LER
28 cur_hop = nex t_hop # c a n d i d a t e e g r e s s LER

TNT is conceptually illustrated in Listing 1. At the macro-
scopic scale, the trace_naughty_tunnel() function is
a simple loop that fires probes towards each processed target.
TNT consists in collecting, in a hop-by-hop fashion, inter-
mediate IP addresses (trace_hop() function) between the
vantage point and the target. Tracing a particular destination
ends when the halt() function returns true: the target has
been reached or a gap has been encountered (e.g., five con-
secutive non-responding hops). TNT uses a moving window of
two hops such that, at each iteration, it considers a potential
Ingress LER (i.e., prev_hop) and a potential Egress LER
(i.e., cur_hop) for possibly revealing an Invisible tunnel
between them. Indicators allow to check if the current hop
does not belong to a uniform tunnel, i.e., a visible one (see
line 11).

For each pair of collected IP addresses with
trace_hop(), TNT checks for the presence of tunnels
through so called indicators and triggers. The former
provides reliable indications about the presence of an MPLS
tunnel without necessarily requiring additional probing.
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Generally, indicators correspond to uniform tunnels (or to
the last hop of an Opaque tunnel), and are, mostly, basic
evidence of visible MPLS presence such, as LSEs quoted
in the ICMP time-exceeded packet (see Sec. IV-B for
details). Triggers are mainly unsigned values suggesting
the potential presence of Invisible tunnels through a large
shifting in path length asymmetry (see Sec. IV-B for details).
When exceeding a given threshold T , such triggers fire
path revelation methods (function reveal_tunnel())
between the potential Ingress and Egress LERs as developed
in Sec. IV-C. If intermediate hops are found, they are stored
in a global stack structure named revealed_lsrs.
STARTING_TTL is a parameter used to avoid tracing

repeatedly the nodes close to the vantage point [27], usually
STARTING_TTL ∈ [3, 5].

Finally, at each loop iteration, the collected data is dumped
into a warts file, the Scamper file format for storing IPv4/IPv6
traceroute records. This job is performed by the dump()
function. It writes potential revealed hops (available in the
global stack structure revealed_lsrs), and any useful
information, such as tags, identifying the tunnel’s type, and
revelation method, if any.

B. Indicators and Triggers

Listing 2: Pseudo-code for checking indicators
1 code c h e c k _ i n d i c a t o r s ( hop ) :
2 #hop must e x i s t
3 i f ( hop == None )
4 re turn None
5

6 i f ( i s _ m p l s ( hop ) )
7 i f (TLSE_TTL < hop . l s e _ t t l < 255)
8 # opaque t u n n e l a r e bo th i n d i c a t o r s and t r i g g e r s
9 re turn LSE−TTL

10 e l s e
11 # e x p l i c i t t u n n e l
12 re turn LSE
13

14 i f ( hop . q t t l > 1 )
15 # i m p l i c i t t u n n e l
16 re turn qTTL
17

18 # r e t r i e v e p a t h l e n g t h from raw TTLs
19 LTE

R = p a t h _ l e n ( hop . t t l _ t e )
20 LER

R = p a t h _ l e n ( hop . t t l _ e r )
21

22 #UTURN w i l l be t u r n e d i n t o RTLA f o r junOS s i g n a t u r e s
23 i f ( | LTE

R − LER
R | > TUTURN && ! s i g n a t u r e _ i s _ j u n O S ( hop ) )

24 # i m p l i c i t t u n n e l
25 re turn UTURN
26

27 re turn None

Tunnels indicators are pieces of evidence of MPLS tunnel
presence and concern cases where tunnels (or parts of them)
can be directly retrieved from the original traceroute.
They are used for Explicit tunnels and uniform/visible tunnels
in general. Explicit tunnels are indicated through LSEs directly
quoted in the ICMP time-exceeded message – See line 12
in Listing 2 and traceroute output on Fig. 2. It is worth
noting that Fig. 2 highlights the main patterns TNT looks for
firing or not additional path revelation in a simple scenario
where forward and return paths are symmetrical.

The indicator for Opaque tunnels consists in a single hop
LSP with the quoted LSE-TTL not being equal to 1, due to the

way labels are distributed within Cisco routers (see Sec. II-B)
or the way Cisco routers deal with VPRN tunnel ending.9 This
is illustrated in Fig. 2 where we get a value of 252 because
the LSP is actually 3 hops long. This surprising quoted LSE-
TTL is an evidence in itself. It is illustrated in lines 7 to 9
in Listing 2, where a hop is tagged as Opaque if the quoted
LSE-TTL is between a minimum threshold, TLSE_TTL(see
Sec. V for fixing a value for the threshold) and 254 (LSE-
TTL is initialized to 255 [21]). Note that this pattern resulting
from an Opaque tunnel is both an indicator and a trigger: TNT
passively understands the tunnel is incomplete and try to reveal
its content with new active measurements.

Implicit tunnels are detected through qTTL and/or UTURN
indicators [8]. First, if the IP-TTL quoted in an ICMP
time-exceeded message (qTTL) is greater than one, it
likely reveals the ttl-propagate option at the Ingress LER
of an LSP. For each subsequent traceroute probe within
the LSP, the qTTL will be one greater, resulting in an increas-
ing sequence of qTTL values. This indicator is considered in
line 14 in Listing 2. Second, the UTURN indicator relies on
the fact that, by default, LSRs send ICMP time-exceeded
messages to the Egress LER which, in turns, forwards the
packets to the probing source. However, they reply directly
to other kinds of probes (e.g., echo-request) using their
own IP forwarding table, if available. As a result, return paths
are generally shorter for echo-reply messages than for
time-exceeded replies. Thereby, UTURN is the signature
related to the difference in these lengths. This is illustrated in
Fig. 2 (Implicit and Explicit tunnels follow the same behavior
except for RFC4950 implementation). On P1, we have UTURN
(P1) = LTE

R - LER
R = 9 - 3 = 6. With a symmetric example, one

can formalize the UTURN pattern for an LSR Pi in an LSP of
length LL as follows:

UTURN(Pi) = 2× (LL− i+ 1). (1)

Due to the iBGP path heterogeneity (the IGP tie-break
rule in particular), the BGP return path taken by the ICMP
echo-reply message can be different from the BGP return
path taken by the time-exceeded reply. This is illustrated
in Fig. 3a where the two return paths in blue and red can differ
even outside the AS (L”TE

R can be distinct from L”ER
R ). As a

result, and because it may differ at each intermediate hop, the
UTURN indicator does not necessarily follow exactly Eqn. 1.
A small variation may then appear in practice. In particular, a
value of 0 can hide a true Implicit hop.

For JunOS routers, the situation is quite different. It
turns out that, by default (i.e., without enabling the
icmp-tunneling feature – see Appendix II for details),
these routers send time-exceeded replies directly to the
source, without forwarding them to the egress LER. The
UTURN indicator becomes then useless. Moreover, for routers
having the JunOS signature, the UTURN indicator and the
RTLA trigger are computed in the same way. Thus, to avoid
any confusion, TNT introduces an exception for such OS sig-
natures (line 23 in Listing 2), and first considers the difference

9Juniper routers never lead to Opaque indicators because they behave
differently as discussed in Sec. IV-D
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as a trigger, and then falls back to an indicator if the revelation
fails (not shown in Listing 1 for clarity). In addition, when
icmp-tunneling is enabled, time-exceeded replies
start with a TTL of 254, implying a bigger difference
with echo-request replies, as it can be seen in Fig. 2:
UTURN(P1) =LJER

R -LJTE
R = 10 − 3 = 7 instead of 6 if P1

runs a Cisco OS.

Listing 3: Pseudo-code for checking triggers
1 code c h e c k _ t r i g g e r s ( prev_hop , cur_hop , nex t_hop ) :
2 # prev_hop and cur_hop must e x i s t
3 # d u p l i c a t e IP checked on cur_hop and nex t_hop
4 i f ( p rev_hop == None or cur_hop == None or prev_hop ==

cur_hop )
5 re turn None
6

7 i f ( cur_hop == nex t_hop )
8 # i n v i s i b l e UHP t u n n e l
9 re turn DUP_IP

10 # r e t r i e v e p a t h l e n g t h from raw TTLs
11 LTE

R = p a t h _ l e n ( cur_hop . t t l _ t e )
12 LER

R = p a t h _ l e n ( cur_hop . t t l _ e r )
13 LT = cur_hop . p r o b e _ t t l
14

15 i f ( s i g n _ i s _ j u n O S ( cur_hop ) )
16 # f o r t h e JunOS s i g n a t u r e
17 i f ( LTE

R − LER
R ≥ TRTLA )

18 # i n v i s i b l e PHP t u n n e l w i th JunOS
19 re turn RTLA
20 e l s e
21 # f o r o t h e r s i g n a t u r e s ( raw TTLs a r e i n i t i a l i z e d t h e

same )
22 i f ( LTE

R − LT ≥ TFRPLA )
23 # i n v i s i b l e PHP t u n n e l w i th o t h e r known OS
24 re turn FRPLA
25

26 re turn None

Indicators are MPLS passive pieces of evidence that can
also prevent TNT from firing new probes (with the exception
of LSE-TTL that is also a trigger for Opaque tunnels). On the
contrary, triggers are active patterns suggesting the presence of
Invisible tunnels (both PHP and UHP) that could be revealed
using additional probing (see Sec. IV-C). Listing 3 provides
the pseudo-code for checking triggers.

First, we look for potential Invisible UHP tunnel (line 7).
As explained in Sec. III, Invisible UHP tunnels occur with
Cisco routers using IOS 15.2. When receiving a packet with
an IP-TTL of 1, the Egress LER does not decrement the TTL
but, rather, forwards it directly to the next hop. Consequently,
the Egress LER does not appear in the trace while, on the
contrary, the next hop (CE2 in Fig. 2) appears twice (duplicate
IP address in the trace output).

The two remaining triggers, RTLA (Return Tunnel Length
Analysis [9] – see Table IV for a summary of acronyms used
by TNT) and FRPLA (Forward/Return Path Length Analy-
sis [9]), work by using three path lengths, which are LTE

R

(the time-exceeded path length), LER
R (the echo-reply

path length), and LT (the forward traceroute path
length). More precisely, RTLA is the difference between the
time-exceeded and the echo-reply return path lengths,
while FRPLA is the difference between the forward and the re-
turn path lengths (obtained based on traceroute probe and
reply messages). TNT tries to capture significative differences
between these lengths to infer the presence of MPLS tunnels,
relying on two common practices of LSRs, in particular the
EH, developed in the previous subsection. Both triggers are

based on the idea that replies sent back to the vantage point
are also likely to cross back the MPLS cloud, which will apply
the MIN(IP-TTL, LSE-TTL) operation at the EH of the return
tunnel. These triggers respectively infer the exact (RTLA) or
approximate (FRPLA) return path length. Indeed, FRPLA is
subject to BGP path asymmetry (and so, to false positives
or negatives) in opposition to RTLA when it applies (it may
produce some false alarms but only due to ECMP). In the
absence of Invisible tunnel, we expect those triggers to have
a value equal or close to 0. Indeed, in such a case, we should
have L’ER

R = L’TE
F = L’TE

R = 1 if BGP does not interfere
(see Fig. 3). Therefore, any significant deviation from this
value is interpreted as the potential presence of an Invisible
MPLS cloud, and thus, brings TNT to trigger additional path
revelation techniques (see Sec. IV-C). In practice (look at
Fig. 3b), we expect to have L’ER

R = L’TE
F = 1 (due to the

MIN for the echo-reply return tunnel and the pipe mode
for the forward tunnel) while L’TE

R directly provides the actual
return tunnel length (with a value ≥ 1). It is due to the MIN
operation applied by the EH of the return tunnel, which selects
the LSE-TTL of the time-exceeded reply, and keeps the
IP-TTL for the echo-reply packet. Indeed, in the case of
the time-exceeded message, the return Ingress LER (i.e.,
the forward Egress LER) initializes the LSE-TTL with the
same value as the IP-TTL, meaning 255. For echo-reply
packets, the IP-TTL is set to 64. RTLA is not subject to any
BGP asymmetry because we have L”ER

R = L”TE
R , i.e. BGP

return paths have the same length. Indeed, the two messages
use the same physical path, the only difference being the MIN
operation applied at the EH of the return tunnel, if any.

To check for those triggers, we first extract the three key
distances thanks to the reply IP-TTLs received by the vantage
point (lines 11 to 13 in Listing 3). As explained by Vanaubel
et al. [9], RTLA only works with JunOS routers, while FRPLA
is more generic. Therefore, prior to estimate the triggers, TNT
uses network fingerprinting (see Sec. II-A) to determine the
router brand of the potential Egress LER (line 15 in Listing 3).

In the presence of a JunOS hardware, LTE
R is compared

to LER
R , as in case of an Invisible tunnel, LTE

R is supposed
to be greater than LER

R . Indeed, with this routing platform,
time-exceeded and echo-reply packets have different
initial TTL values (see Table I), and the RTLA trigger can
exploit the TTL gap between those two kinds of messages
caused by the MIN(IP-TTL, LSE-TTL) behavior at the Egress
LER (the LER

R appears longer than LTE
R as the MIN operation

results in a different pick). This difference represents the
number of LSRs in the return LSP, and is compared to a pre-
defined threshold TRTLA(line 17 in Listing 3). This threshold
(see Sec. V for the parameter calibration) filters all the LSPs
shorter than the limit it defines. In the case depicted in Fig. 2:
RTLA(PE2) := LER

R - LTE
R =L’ER

R − L’TE
R = 6 − 3 = 3.

Indeed, for the echo-reply message, we have

IP-TTL = 64

= MIN(IP-TTL = 64,LSE-TTL = 252)

instead of

IP-TTL = 252

= MIN(IP-TTL = 255,LSE-TTL = 252)

for the time-exceeded reply. Note that an invisible
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(a) Implicit tunnels. (b) Invisible tunnels.

Fig. 3: Indicators and triggers illustration for Implicit and Invisible tunnels. Notations L’x
y and L”x

y refer to a given sub-length
of an ICMP packet x on the y path (y being the forward or return path and x being a echo-reply or traceroute ICMP
packet, see Fig. 2). For example, L’TE

R gives the return path of the time-exceeded within the MPLS cloud, while L”TE
R

is the return path of the time-exceeded between the MPLS cloud and the vantage point. Consequently, we have LTE
R =

L’TE
R + L”TE

R .

shadow effect also applies for RTLA after the Invisible tunnel,
as the trigger will still be positive for a few nodes after the
egress LER.

FRPLA is more generic and applies thus to any configu-
ration. FRPLA allows to compare, at the AS granularity, the
length distribution of forward (i.e., LT ) and return paths (i.e.,
LTE
R ). Return paths are expected to be longer than forward

ones, as the tunnel hops are not counted in the forward paths
while they are taken into account in the return paths (due
to the MIN(IP-TTL, LSE-TTL) behavior at the return Egress
LER).Then, we can statistically analyze their length difference
and check if a shift appears (see Line 22 in Listing 3). This is
illustrated in Fig. 2 (“Invisible PHP”) in which LT is 3 while
LTE
R is equal to 6, leading so to an estimation of the return

tunnel length of 3. In general, when no IP hops are hidden, we
expect that the resulting distribution will look like a normal
distribution centered in 0 (i.e., forward and return paths have,
on average, a similar length). If we rather observe a significant
and generalized shift towards positive values, it means the
AS makes probably use of the no-ttl-propagate option.
In order to deal with path asymmetry, TNT uses a threshold,
TFRPLA(see Sec. V for calibrating this parameter), greater than
0 to avoid generating too much false positives (revelation
attempt with no tunnel). The MIN effect also results in an
invisible shadow after the hidden LSP: FRPLA(CE2) = 2 and
FRPLA(CE3) = 1, etc until the situation returns to normal.
Note that the RTLA and FRPLA shadows are the reasons why
TNT does not look for consecutive Invisible tunnels in a trace.
Finally, for Invisible UHP, one can observe that no MIN shift
applies on the return path, as only the duplicate effect is
visible.

Threshold calibration will be discussed in details in Sec. V.
The optimal calibration can provide a 80/20 % success/error
rates (errors being due to the BGP and ECMP noises). More-
over, the order in which TNT considers indicators and triggers,
their codes, reflects their reliability, and so, their respective
success rates (and their resulting states): the lower the code
(i.e. the higher its priority), the more reliable (and higher the

Acronym Meaning Usage
FRPLA Forward/Return Path Length Analysis TriggerRTLA Return Tunnel Length Analysis
DPR Direct Path Revelation Path RevelationBRPR Backward Recursive Path Revelation

TABLE IV: Summary of acronyms used by TNT.

revelation success rate). Thus, if a hop matches simultaneously
multiple triggers (RTLA and FRPLA for example), it is tagged
with the one having the highest priority (i.e., RTLA in our
example).

C. Hidden Tunnels Revelation

Listing 4: Pseudo-code for revealing Invisible tunnels
1 s t a t e r e v e a l _ t u n n e l ( i n g r e s s , e g r e s s , t u n _ c o d e ) :
2 # i n g r e s s and e g r e s s hops must e x i s t
3 i f ( i n g r e s s == None or e g r e s s == None )
4 re turn None
5 b u d d y _ b i t = F a l s e
6 # s t a n d a r d traceroute t o w a r d s t h e c a n d i d a t e e g r e s s
7 t a r g e t = e g r e s s
8 r o u t e = t r a c e (REV_STARTING_TTL , t a r g e t )
9

10 i f ( l a s t _ h o p ( r o u t e ) != e g r e s s )
11 # t h e t a r g e t does n o t r e s p o n d ( r e v e l a t i o n i s n o t

p o s s i b l e )
12 re turn TARGET_NOT_REACHED
13 e l s e i f ( i n g r e s s /∈ r o u t e )
14 # t h e f o r w a r d i n g p a t h d i f f e r s ( r e v e l a t i o n i s n o t

p o s s i b l e )
15 re turn ING_NOT_FOUND
16 e l s e i f ( d i s t a n c e ( i n g r e s s , e g r e s s , r o u t e ) > 1 )
17 # p a t h segment r e v e l a t i o n wi th \ dpr
18 p u s h _ s e g m e n t _ t o _ r e v e l a t i o n _ s t a c k ( i n g r e s s , e g r e s s , r o u t e

)
19 re turn DPR
20 e l s e
21 t t l = i n g r e s s . p r o b e _ t t l + 1
22 r e v e a l e d _ i p = e x t r a c t _ h o p ( t t l , r o u t e )
23

24 f o r iTR = 0 ; ;
25 i f ( r e v e a l e d _ i p == t a r g e t )
26 i f ( t u n _ c o d e != DUP_IP | | b u d d y _ b i t )
27 #no more p r o g r e s s i o n i n t h e r e v e l a t i o n
28 break
29 e l s e
30 # t r y wi th t h e buddy f o r t h e DUP_IP t r i g g e r
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31 t a r g e t = buddy ( r e v e a l e d _ i p )
32 b u d d y _ b i t = True
33 e l s e
34 # a new hop has been r e v e a l e d
35 iTR++
36 p u s h _ h o p _ t o _ r e v e l a t i o n _ s t a c k ( r e v e a l e d _ i p )
37 t a r g e t = r e v e a l e d _ i p
38 b u d d y _ b i t = F a l s e
39

40 r e v e a l e d _ i p = t r a c e H o p ( t t l , t a r g e t )
41

42 i f ( iTR == 0)
43 #no r e v e l a t i o n ( f a i l )
44 re turn NOTHING_TO_REVEAL
45 i f ( iTR == 1)
46 # s i n g l e hop r e v e a l e d LSP ( \ dpr ≈ \ b r p r )
47 re turn 1HOP_LSP
48 e l s e
49 #hop by hop r e v e l a t i o n wi th \ b r p r
50 re turn BRPR

Listing 4 offers a simplified view of the TNT tunnel
revelation. The first step consists in launching a standard
traceroute towards the candidate Egress10 (line 8 in
Listing 4). REV_STARTING_TTL is the starting TTL used
for the revelation, which corresponds to 2 hops before the
candidate Ingress hop, by default. During this first attempt,
TNT may fail to reach the candidate Egress (line 12), and/or
the candidate Ingress (line 15) when collecting the active data.
Otherwise, TNT may reveal a tunnel and four additional output
states can arise:

• an LSP composed of at least 2 LSRs is revealed in the
first trace towards the Egress (line 19 – DPR, Direct Path
Revelation [9] – Table IV for a summary of acronyms
used by TNT);

• an LSP having more than one LSR is revealed using
several iterations (line 50 – BRPR, Backward Recursive
Path Revelation [9]).

• nothing is revealed, the candidate Ingress and Egress are
still consecutive IP addresses in the trace towards the
candidate Egress (line 44);

• a single-hop LSP is revealed (line 47) although several
iterations have been tried: DPR and BRPR cannot be
distinguished for one hop LSPs.

With the default UHP configuration on Cisco IOS 15.2,
an additional test, called buddy (line 31), is required to
retrieve the outgoing IP interface of the Egress LER (the
right interface, in green, on PE2 in Fig. 2), and thanks to
its retrieval, force replies from its incoming IP interface (the
left one, in red, on PE2 in Fig. 2). The buddy() function
assumes a point-to-point connection between the Egress LER
and the next hop (IP addresses on this point-to-point link
are called buddies). In most cases, the corresponding IP
addresses belong to a /31 or a /30 prefix [4], [28]. Note
that according to the IP address submitted to buddy(), this
function may require additional probing to infer the correct
prefix in use. Besides, specific UDP probing is necessary in
order to provoke destination-unreachable messages.
Such error messages, as time-exceeded ones, enable to
get the incoming interface of the targeted router (instead of
echo-reply ones that are indexed with the target IP).

10We use the term candidate as, at this point, we are not completely sure
an MPLS tunnel is hidden there.

DPR (Direct Path Revelation) works when there is no
MPLS tunneling for internal IGP prefixes other than loopback
addresses, i.e., the traffic to internal IP prefixes is not MPLS
encapsulated (default Juniper configuration but can also be
easily configured on Cisco devices – see Sec. II-B) . With PHP,
BRPR (Backward Recursive Path Revelation) works because
the target (PE2.left on Fig. 2) belongs to a prefix being also
advertised by the PH. Thus, the probe is popped one hop
before the PH (P3 on Fig. 2), and it appears in the trace towards
the Egress incoming IP interface, e.g., PE2.left on Fig. 2. BRPR
is then applied recursively on the newly discovered interface
until no new IP address is revealed. BRPR works also natively
with UHP on IOS 12.4 (i.e., without the buddy() function),
for the same reason as for PHP: the prefix is local and shifts the
end of the tunnel one hop before and, in this implementation,
the EH replies directly. On the contrary, TNT needs to use the
buddy() function at each step for IOS 15.2 enabling UHP,
because the EH silently forwards the packet one hop ahead.
Vanaubel et al. [9] provides more details on DPR and BRPR.

D. Reproducibility and Practical BGP Configurations
We use the GNS3 emulation environment for several pur-

poses. First, we aim at verifying that the inference assumptions
we considered in the wild are correct and reproducible in a
controlled environment. Second, some of the phenomena we
exploit to reveal tunnels in the wild have been directly dis-
covered in our testbed. Indeed, using our testbed we reverse-
engineered the TTL processing (considering many MPLS
configurations, we study the POP operation in particular)
of some common OSes used by many real routers. Finally,
it is also useful for debugging TNT to test its features in
this controllable environment. Generally speaking, we aim at
reproducing with GNS3 all common behaviors observed in the
wild, and, on the opposite, we also expect to encounter in the
wild all basic behaviors (based on standard MPLS and BGP
configurations) we build and setup within GNS3.

In practice, we have considered four distinct router OSes:
two Cisco standard IOS (12.4 and 15.2), and two virtualized
versions of JunOS (Olive and VMX, the only Juniper OSes
we succeeded to emulate within GNS3). We envision in a
near future to also test the IOS XR and some other Juniper
OSes, if possible, but we believe that our tests are already
representative enough of most behaviors existing in the wild.

In our emulations, topologies (see Fig. 2) are configured as
follows. We assumed that LERs are AS Provider-Edge (PE)
routers, i.e., AS border routers of the ISP running (e)BGP
sessions. Two main configurations are then possible to enable
transit tunneling at the edges. Either the BGP next-hop can
be the loopback IP address of the PE itself (with next hop
self command), or it belongs to the eBGP neighbor – and
in that case the connected subnet or the IP address should
be redistributed in the ISP. In both cases, there exists a LDP
mapping, at each Ingress LER and for any transit forwarding
equivalent class (FEC) between the BGP next-hop, the IGP
next-hop, and the local MPLS label to be pushed. According
to the configuration at the Egress LER, when the Ingress LER
is in pipe mode (see Sec. II-C1), distinct kinds of tunnels
emerge: Opaque, UHP Invisible, or PHP Invisible.
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We consider the simplest possible configurations, i.e., ho-
mogeneous in terms of OS and MPLS+BGP configurations.
They are consistent and symmetric MPLS configurations both
in terms of signaling (LDP with the independent model
using all IGP connected prefix – Cisco default mode – xor
the ordered model using only loopback addresses – Juniper
default mode)11 and the propagation operation in use (pipe
xor uniform)12 at the domain scale. Using heterogeneous
configurations, we discovered many intriguing corner cases
that are discussed in Appendix I-D. Some of them may result
in incorrect TTL processing and other in hiding even more
the tunnel to TNT. In some rare cases, only the Brute Force
option of TNT is able to fire the path revelation that exposes
tunnels.

The BGP configuration is also standard: the Egress LER
enables the next-hop-self feature and so the transit traffic is
tunneled via this IP address. All LSRs also have a global
IGP routing table thanks to a route reflector (they can answer
natively to ping requests) or a redistribution in the IGP routing
control plane. The AS scale BGP prefix is advertised using a
global aggregation and the BGP inter-domain link is addressed
by the neighbor but can be redistributed in the IGP as a
connected one.

Opaque tunnels show up when enabling the neighbor
<IP> ebgp-multihop <#hops> command towards
the BGP neighbor whose IP address is redistributed
statically in the IGP. DPR works also with Cisco IOS when
enabling the mpls ldp label allocate global
host-routes command. Eventually, the command mpls
ldp explicit-null [for prefix-acl] allows for
revealing UHP tunnels without the use of the buddy.

Table V provides a summary of TNT capacities consid-
ering several MPLS usages. In particular, it provides many
information about the way TNT is able to collect information
about tunnels in default cases (i.e., standard configurations).
For example, it shows that TNT is able to discriminate between
Cisco Invisible UHP and PHP tunnels while it is not the case
for Juniper routers (the 2� is not colored). Indeed, for both
UHP/PHP Juniper configurations, the trigger and the revelation
methods are the same (RTLA and DPR). Moreover, we also
show when our basic set of techniques need to be extended
for enabling revelation and distinction among different classes:
we use the symbol ++ to enforce these new requirements.
In particular, for revealing UHP Cisco tunnels, TNT extends
BRPR with additional buddy() function and UDP probing.

Another kind of MPLS technology that conduct to sur-
prising patterns is VPRN tunnels. They also lead to Opaque
tunnels for Cisco routers and twisted traces with Juniper
routers.

As shown by Table V, TNT is able to reveal the content
of all basic point-to-point (P2P) MPLS circuits (i.e., LDP
or RSP-TE tunnels). However, things are not as easy when
point-to-multipoint (P2MP) tunnels join the party (second part
of Table V), leading typically to Opaque tunnels. In such
a situation, TNT is only able to detect their presence but

11See Sec. II-B
12See Sec. II-C1

Configurations Pop Cisco iOS15.2 Juniper VMX
P2P circuits PHP FRPLA, BRPR RTLA, DPR
(e.g. LDP or UHP DUP_IP, BRPR ++ RTLA, DPR
RSVP-TE tunnels) 2� 2�
P2MP overlays PHP LSE-TTL, - RTLA++, -
(e.g. VPRN: CsC or UHP LSE-TTL++, - N/A
VPN BGP-MPLS) 4 4

TABLE V: TNT revelation (2�) and detection (4) capacities ac-
cording to the OS and the MPLS tunnel flavor (i.e. the MPLS
L3 tunneling underlying technologies for a given usage). In
particular, this table provides the default indicator/trigger and
the default path revelation method (when it applies).

without revealing their content. Indeed, such tunnels may
result from various network configurations, e.g., heterogeneous
routing devices (a combination of Juniper and Cisco devices
in particular), specific BGP edge configurations as already
introduced, or VPRN (Virtual Private Routed Network) [14].
As for the two former configurations, the Opaque pattern arises
with VPRN because of an abrupt tunnel ending, i.e., the LSP
ends without a standard ending label (Implicit or Explicit
NULL). Indeed, the last hop towards the Egress contains at
least one label (two with UHP, the top label then being 0).
The inner label is used to identify the VPN and the associated
VRF containing routes. By definition, the VPN label value is
neither Explicit NULL nor Implicit NULL. Upon receiving
this non-terminating label, the Egress behaves as if the tunnel
did not end in a controlled fashion.

Using our GNS-3 platform, it appears that VPRN content
cannot be revealed with TNT, while other Opaque tunnels
configurations (i.e., routing devices heterogeneity, BGP edge
configuration) can. The mechanism behind the absence of
content revelation can be explained by the IP address collected
by TNT from the source IP field in the ICMP reply. Usually,
the collected address is the one assigned to the physical
incoming interface of the Egress PE. In the VPRN case, the
collected IP is the one assigned to the interface on which
the VRF is attached. In practice, this corresponds to the
outgoing interface towards the VPN at the customer’s side.
Said otherwise, TNT collects the outgoing address instead of
the incoming one. Because the incoming address is the only
one that enables a successful revelation, this type of Opaque
tunnels cannot be revealed yet. Table VII in Sec. VI will show
that, in the wild, VPRNs are the most prevalent case of Opaque
tunnels.

Whatever the kind of probes sent to or through the VPRN,
the IP address visible to TNT (or traceroute in general) is
the outgoing address. Despite its expired TTL, it is likely that
the probe arriving on the Egress PE will be pushed to the VRF
of the VPN and its associated interface before generating the
error message (the VPN being identified with the MPLS label
contained in the packet). Then, the interface where the packet
actually expires is the one associated to the VRF. However, as
shown in Table V, we are able to distinguish UHP and PHP
configurations (thanks to LSE-TTL++), because the bottom
label is equal to 255 for UHP and lower with PHP.

With Juniper VPN, there is no Opaque indicator resulting
from VPRN or any other configurations. A first explanation
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is that Juniper routers, on the contrary to the independent
mode enabled by default with Cisco routers, do not inject the
whole IGP in LDP, but only their loopback address using the
ordered mode (see Sec. II). This mode limits the probability
to face a non-controlled tunnel ending. However, with VPRN
configurations, a Juniper Egress LER deals with the same
packet level situation as with Cisco routers. Up to the end
of the tunnel, the packet is still MPLS encapsulated with the
end-to-end VPN non terminating label at the bottom of the
stack. Juniper routers do not, however, produce an Opaque
indicator in that situation. Indeed, packets destined to the VPN
are handled in a specific way with Juniper devices: they are
IP packets forwarded directly to the next-hop without looking
at or manipulating the IP-TTL whatever its value.

The outcome of such a sliding packet is twofold. Firstly, the
Egress hop is hidden in the transit trace, as with Cisco UHP
but without the duplicated IP. Secondly, when performing a
direct trace (even with UDP) targeting the first address of
the path within the VPN, i.e the IP interface of the Egress
LER belonging to the VPN, one can see that this address
and its buddy appear in the wrong order. Indeed, in the
trace, the two addresses are switched, meaning that the CE
IP address appears before the Egress one. Being forwarded
without inspecting the IP-TTL, probes targeting IP addresses
belonging to the VPN are automatically forwarded to the CE
router, where they expire. The next probe, having a greater
TTL, follows the same path as the one before, but can be
forwarded back to the Egress LER by the CE router before
expiring. This loop results in the two addresses being switched
regarding their actual location in the path. Finally, one can
infer the loop because two additional artifacts compared to
RTLA (RTLA++) are visible: the TTL that deviates from its
monotony and subsequent IP addresses also raise alarms due
to potential conflicting allocation.

Additional details on the validation through GNS3 em-
ulation can be found in the Appendix, at the end of this
paper. All topologies and scripts developed are available for
reproducibility.3

V. TNT CALIBRATION AND PROBING COST

Sec. IV shows that TNT relies mainly on four parameters
when looking for tunnels indicators or triggers: TLSE_TTLfor
Opaque tunnels, TUTURNfor Implicit tunnels, and TRTLAand
TFRPLAfor PHP/UHP Invisible tunnels. This section aims at
calibrating those parameters (Sec. V-B), as well as evaluating
the probing cost associated to TNT (Sec. V-C).

A. Measurement Setup

We deployed TNT on three vantage points (VPs) over the
Archipelago infrastructure [17]. VPs were located in Europe
(Belgium), North America (San Diego), and Asia (Tokyo).
TNT was run on April 6th, 2018 towards a set of 10,000

destinations (randomly chosen among the whole set of
Archipelago destinations list). Each VP had its own list of
destinations, without any overlapping.

From indicators and triggers described in Sec. IV-B (see
Listing 2 and 3), it is obvious that UTURN is equivalent
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Fig. 4: Receiver operating characteristic (ROC) curve provid-
ing the efficiency of TNT according to values for Invisible
tunnels parameters. TRx

refers to TRTLAwith the value x, while
TFy

to TFRPLAwith the value y.

to RTLA for Juniper routers. However, the TUTURNwill not
have the same value than TRTLA. TUTURN= 0 by design as
any difference between echo-reply and time-exceeded
replies for the Cisco router signature indicates LSE-/IP-TTL
shifting. In practice, we reinforce the condition by looking
for at least two consecutive hops having a cumulated UTURN
≥ 3. Besides, we have observed that abnormal13 LSE-TTL
values oscillate between 236 and 254, the main proportion
being located between 250 and 254. It suggests thus that, in
the majority of the cases, Opaque tunnels are rather short.
Consequently, a value of 236 for TLSE_TTLwould be enough
for detecting the presence of an opaque tunnel and launching
additional measurements for revealing its content.

For our tests, we varied TRTLAand TFRPLAbetween 0 and 4.
A full measurement campaign was launched for each pair
of parameter value (thus, a total of 25 measurement runs).
Moreover for each pair, if no trigger is pulled, a so called
brute force revelation is undertaken: DPR/BRPR are launched
(with the use of the buddy if required). This brute force data
is used as a basis to evaluate the quality and cost of each
threshold value.

B. Calibration

With the help of well calibrated thresholds, the results
associated to FRPLA and RTLA triggers allows for a binary
classification. These triggers provide a prediction, while the
results of additional probing gives the true facts when some
conditions apply (see resulting states of Listing 4), i.e., being
or not a tunnel. With that in mind, one can assess the
performance of FRPLA and RTLA triggers through the analysis
of True Positive Rate (TPR) and False Positive Rate (FPR): we
plot the results on a Receiver Operating Characteristic (ROC)
curve in Fig. 4. We define TPR as the ratio of TNT success
to the number of links being actually MPLS tunnels (having
a length greater than 1): TNT triggers additional probing and
actually reveals Invisible tunnels (we have TPR+FNR = 1,

13Abnormal here means “different from 1” which is the LSE-TTL value
that should be obtained in ICMP time-exceeded messages. More details
can be found in our technical report [29].
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Fig. 5: Probing cost associated to TNT according to TFRPLAand
TRTLAthresholds.

i.e., when adding to False Negative Rate, we obtain all links
being long enough tunnels). FPR is defined as the ratio of
TNT failure to the amount of standard IP links: it triggers for
additional probing but without revealing anything (we have
FPR + TNR = 1, i.e., when adding to True Negative Rate,
we obtain all IP links without tunnels). Here, our brute force
data gives the ground data that we consider reliable (i.e.,
revelation is fired at each hop and if nothing is revealed,
we consider that there is no tunnel – we do not consider
inconclusive cases where we obtain states ING_NOT_FOUND
or TARGET_NOT_REACHED– see Listing 4). The ROC curve
is obtained by varying the TRTLAand TFRPLAparameters between
0 and 4. The red dotted diagonal provides the separation
between positive results for TNT (above part of the graph)
and negative results (below part of the graph). Finally, the
black dotted line is the interpolation of measurement results
(at the exception of TR0

values which appear as being outliers,
as expected).

We observe that the results are essentially positive for TNT.
Some results, between (TR1 , TF3 ) and (TR2 , TF3 ), are even
reasonably close to the perfect classification (upper left corner)
and, thus, are considered as the best choice for defining our
thresholds TRTLAand TFRPLA. We obtain a compromise close to
80%-20%: while we expect to reveal at least 80% of existing
tunnels (MPLS links), TNT has a controlled overhead of 20%,
i.e., it fires useless additional probing for an average limited
to two actual IP links on ten.

C. Probing Cost

Fig. 5 illustrates the probing cost associated to TNT. In
particular, it focuses on additional measurements triggered by
RTLA or FRPLA for revealing Invisible tunnels. The light grey
zone (labeled as “Original” on Fig. 5) corresponds to probes
associated to standard traceroute. The green, orange, and
dark grey zones correspond to probes sent when additional
measurements are triggered by RTLA or FRPLA. In particular,
the green zone corresponds to additional measurements that
were able to reveal the content of an Invisible tunnel. On the
contrary, the orange zone refers to additional measurements
that failed, i.e., no Invisible tunnel content was revealed.

Finally, the dark grey zone refers to inconclusive revelation:
the trigger has led to additional measurements but TNT was
unable to reach the potential Egress LER (i.e., the IP address
that engaged the trigger – cur_hop in Listing 1 – generally
due to unresponsive IP interface) or TNT was unable to reach
again the candidate Ingress LER (i.e., prev_hop in Listing 1)
because the destination has changed (ECMP or BGP routing
noises).

If the amount of probes sent for actually revealing the
content of an Invisible tunnel remains almost stable whatever
the values for TFRPLAand TRTLAare, one can observe a very
slow decrease meaning that there are less revealed tunnels
for high values. Further, the additional traffic generated by
erroneous trigger (orange) or by inconclusive revelation (dark
grey) clearly decreases while TFRPLAincreases. This result is
aligned with Sec. V-B in which the best values for TFRPLAare
between 2 and 3. Note that FRPLA is more generic but less
reliable than other triggers. On the contrary, the TRTLAthreshold
has a minor effect on the amount of probes sent because it is
more specific and more reliable.

Hatched zones (orange, dark grey, and green) correspond
to the amount of probes sent using brute force. First, on
the contrary to normal behavior (i.e., revelation launched
according to triggers), the amount of probes sent increases
with TFRPLA(the impact of TRTLAis quite negligible), as well as
the amount of inconclusive revelation. Second, the amount of
probes having revealed an Invisible tunnel is low compared to
standard behavior.

Generally speaking, one can observe that the overhead of
TNT is quite limited compared to a basic active campaign and
considering the information gathered. In particular, if using
correct parameters to limit both useless probes and missed
tunnels (e.g., TR1

, TF3
), our tool generates less than 10% of

additional probing compared to the underlying campaign for
reaching a satisfying compromise where 80% of tunnels are
revealed.

VI. TUNNELS QUANTIFICATION WITH TNT

This section aims at discussing how TNT and its features
behave in the wild Internet. In particular, it analyzes the suc-
cess rate of each indicator and trigger with respect to possible
revelation techniques. Sec. VI-A describes the measurement
setup, while Sec. VI-B discusses the results obtained.

A. Measurement Setup

We deployed TNT on the Archipelago infrastructure [17] on
April 23rd, 2018 with parameters TFRPLAfixed to 3 and TRTLAto
1, according to results discussed in Sec. V-B.
TNT has been deployed over 28 vantage points, scattered

all around the world: Europe (9), North America (11), South
America (1), Asia (4), and Australia (3). The overall set of
destinations, nearly 2,800,000 IP addresses, is inherited from
the Archipelago dataset and spread over the 28 vantage points
to speed up the probing process.

A total of 522,049 distinct IP addresses (excluding
traceroute targets) has been collected, with 28,350 being
non publicly routable addresses (and thus excluded from our
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Status # probes
traceroute ping buddy

original 63,559,385 7,109,075 −

at
te

m
pt revealed 2,190,275 206,842 19,181

no revelation 1,640,224 − 556
TARGET_NOT_REACHED 4,174,404 − 9,888
ING_NOT_FOUND 1,790,900 − 7,326

TABLE VI: Raw number of probes sent by TNT over the set
of 28 vantage points.

dataset). Each collected routable IP address has been pinged,
only once per vantage point, allowing us to collect additional
data for fingerprinting (see Sec. II-A). Our dataset and our
post-processing scripts are freely available.3

B. Results

Table VI provides the amount of probes sent by
traceroute-like probing in TNT, ping, and buddy bit ex-
ploration. The row “original” refers to standard traceroute
based revelation (i.e., nothing to reveal, Explicit, or Implicit
tunnels).

The main results from Table VI is the amount of
probes involved in inconclusive revelation, split between
TARGET_NOT_REACHED (TNT was unable to reach the
potential Egress LER) and ING_NOT_FOUND (TNT did
not cross the potential Ingress LER). In particular, TAR-
GET_NOT_REACHED involved twice more probes than re-
vealed tunnels. Those particular inconclusive revelations
might be explained by ICMP rate limiting between the
traceroute probe and additional probing (both ping
and BRPR/DPR). Another explanation is that those potential
Egress LERs respond to initial traceroute with an IP
address that is not globally announced. As such, additional
probing following traceroute will fail as no route is
available to reach them.

Table VII provides the number of MPLS tunnels discovered
by TNT, per tunnel type as indicated in the first column. The
indicators/triggers are provided, as well as the additional rev-
elation technique used. Without any surprise, Explicit tunnels
are the most present category (76% of tunnels discovered).

Implicit tunnels represent 5% of the whole dataset, with the
UTURN indicator providing more results than qTTL. However,
those results must be taken with care as UTURN is subject
to false positive (implicit UTURN tunnels are likely to be
overestimated because of possible confusion with RTLA for
Juniper routers), while qTTL is much more reliable [30].
Compared to previous works, it is clear that is class is not
as prevalent as expected at the time (because both we correct
and improve our methodology and the RFC4950 is likely to
be more and more deployed).

Opaque tunnels are less prevalent (1.7% of tunnels discov-
ered). This is somewhat expected as Opaque tunnels are the re-
sults of particular label distribution within Cisco MPLS clouds.
This confirms previous empirical results [8, Sec. 7.2]. It is also
worth noticing that additional revelation techniques (DPR or
BRPR) does not perform well with such tunnels (content of
98% of Opaque tunnels cannot be revealed). Indeed, as already

discussed earlier, this result can be explained because Carrier-
of-Carriers VPN [26] or similar VPRN are not possible to
reveal but can only be detected. We deduce from our campaign
results that the vast majority of Opaque tunnels seems to arise
from Cisco VPRN.14

The proportion of Invisible tunnels is not negligible (16%
of tunnels in our dataset). Those measurements clearly contra-
dicts our previous work suggesting that Invisible tunnels were
probably 40 to 50 times less numerous than Explicit ones [8,
Sec. 8]. More precisely, Invisible PHP is the most prominent
configuration (87% of Invisible tunnels belongs to the Invisible
PHP category), confirming so our past survey [9]. RTLA
appears as being the most efficient trigger. This is partially due
to the order of triggers in the TNT code because it favors high
ranked trigger compared to low ranked (in case both apply,
we prefer to use the most reliable, i.e., the less subject to any
interference such a BGP asymmetry). As indicated in Listing 3
(Sec. IV-B), we first check for RTLA as it is more reliable than
FRPLA. DPR works better than BRPR, which is obvious as it
is triggered by RTLA (Juniper routers). For Invisible UHP, it
is worth noticing that the buddy bit, prior to BRPR or DPR
revelation, was required in nearly 25% of the cases. In other
cases, a simple BRPR or DPR revelation was enough to get the
tunnel content. UHP seems to be often filtered for a particular
FEC, e.g., only /32 host loopback addresses are advertised
in LDP with UHP while other FEC are advertised with PHP
(BRPR) or are not injected at all (DPR).

The column labeled “mix” corresponds to tunnels partially
revealed thanks to BRPR and partially with DPR. Typically,
it comes from heterogeneous MPLS clouds. For instance, op-
erators may deploy both Juniper and Cisco hardware without
any homogeneous prefixes distribution (i.e., local prefix for
Juniper, all prefixes for Cisco – See Sec. II-B for details).
Note that it is also possible that the UHP and PHP label pop-
ping techniques co-exist when using our backward recursive
path revelation (BRPR). Although not explained in Sec. IV
for clarity reasons, TNT can deal with those more complex
situations, making the tool quite robust to pitfalls encountered
in the wild Internet (5% of the Invisible tunnels encountered).

Finally, the column labeled “1HOP_LSP” corresponds to
one hop tunnels where DPR and BRPR cannot be distin-
guished. This large proportion (20%) of very short Invisible
tunnels is aligned with previous works that already noticed the
proportion of short Explicit tunnels [8], [10], [31].

VII. RELATED WORK

For years now, traceroute has been used as the main
tool for discovering the Internet topology [1]. Multiple exten-
sions have been provided to circumvent traceroute limits.

Doubletree [27], [32] has been proposed for improving the
cooperation between scattered traceroute vantage points,
reducing so the probing redundancy. Paris traceroute [11] has
been developed for fixing issues related to IP load balancing,
avoiding so false links between IP interfaces. tracebox [5]

14In this paper, TNT does not look for Juniper VPRN as its indicator,
RTLA++, is less reliable (See Sec. IV-D).
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Tunnel Type Indicator/Trigger Revelation Technique # TunnelsDPR BRPR 1HOP_LSP Mix
Explicit LSE headers - - - - 150,036

Implicit qTTL - - - - 2,689
UTURN - - - - 7,216

Opaque LSE-TTL 22 17 43 - 3,346

Invisible PHP RTLA 11,268 1,191 2,595 279 15,333
FRPLA 5,903 2,555 3,260 1,012 12,730

Invisible UHP DUP_IP 1,609 1,531 686 296 4,122
Total 18,802 5,294 6,584 1,587 195,525

TABLE VII: Raw number of tunnels discovered by TNT per tunnel type (see Sec. III). Color code for indicators/triggers is
identical to Fig. 2. No additional revelation technique is necessary for Explicit and Implicit tunnels.

extends traceroute for revealing the presence of mid-
dleboxes along a path. YARRP [33] provides techniques
for speeding up the traceroute probing process. Reverse
traceroute [34] is able to provide the reverse path (i.e.,
from the target back to the vantage point). Passenger [35]
and Discarte [36] extend traceroute with the IP record
route option. Marchetta et al. [37] have proposed to use
the ICMP Parameter Problem in addition to Record Route
option in traceroute. Finally, tracenet [38] mimics
traceroute for discovering subnetworks.
TNT is also in the scope of the hidden router issue, i.e.,

any device that does not decrement the TTL causing the
device to be transparent to traceroute probing. Discarte
and Passenger, through the use of IP Record Route Option,
allows, to some extent, to reveal hidden routers along a path.
DRAGO [39] considers the ICMP Timestamp for also detecting
hidden routers. TNT goes beyond those solutions as it does
not rely on ICMP messages and IP option that are, generally,
filtered by operators either locally (i.e., the option/message
is turned off on the router) or for transit packets (i.e., edge
routers do not forward those particular packets).15 TNT only
relies on standard messages (echo-request/echo-reply
and time-exceeded) that are implemented and used by the
vast majority of routers and, as such, has the potential to reveal
much more information.

MPLS tunnels discovery has been the subject of several
researches those last years. In particular, Sommers et al. [10]
examined the characteristics of MPLS deployments that are
explicitly identified using RFC4950 extensions, as observed
in CAIDA’s topology data. Donnet et al. [8] proposed the first
classification of MPLS tunnels according to the relationship
between MPLS and traceroute. This paper is a revision
of Donnet et al.’s work in light of a deeper understanding of
MPLS mechanisms, in particular for hidden tunnels (Opaque,
Invisible PHP and UHP). More recently, Vanaubel et al. [9]
have proposed techniques for inferring and possibly revealing
hidden tunnels: FRPLA, RTLA, BRPR, and DPR. FRPLA and
RTLA were initially not used as triggers for measurements
(as we are doing in this paper with TNT by extending
those techniques in many aspects) but rather as a way to
infer an hidden tunnel length. Vanaubel et al. directed their
measurements towards pre-identified high degree routers with

15It has been, however, demonstrated recently that IP Record Route option
might still find a suitable usage in Internet measurements if used with
prudence [40].

the ITDK dataset used as a source for triggering specific
measurements (as they were suspected to be the exit point of
a large number of hidden MPLS tunnels). As such, Vanaubel
et al. did not provide any integrated measurement tool, on the
contrary to TNT, in which MPLS tunnels are discovered on
the fly (TNT does not rely on any kind of external dataset).

VIII. CONCLUSION

In this paper, we revise the MPLS classification proposed
by Donnet et al. [8] and introduce TNT (Trace the Naughty
Tunnels) that is an extension to Paris traceroute for revealing
MPLS tunnels along a path. As such, TNT has the potential to
reveal more complete information on the exact Internet topol-
ogy. We provide accurate IP level tracing functions leading
so to better Internet models. For instance, it has been shown
that Invisible tunnels have an impact on Internet basic graph
properties [9]). Our fully integrated tool reveals, or at least
detect, all kind of tunnels in two simple stages: first, it uses
indicators and triggers to respectively classify and possibly tag
tunnels as hidden, second it reveals the tagged tunnel content
if any. TNT has the capacity to unveil the MPLS ecosystem
deployed by operators. Recent works on MPLS discovery have
revealed that MPLS is largely deployed by most ISP [8],
[31], [10]. By running TNT on a daily (or nearly daily) basis
from the Archipelago platform, we expect to see numerous
researches using our tool and data to mitigate the impact of
MPLS on the Internet topology. TNT has been developed with
a reproducibility perspective. As such, it is freely available, as
well as our dataset and scripts used for processing data.3
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Appendix

This appendix illustrates the validation of TNT through GNS-3 emulations. Multiple configurations have been tested (and even more are
proposed on the website3 and can be setup using the scripts and the data online). Note that we use the version 2.1.5 of GNS3 to export the
so-called portable configurations. TNT is able to deal with all those configurations (both in the wild and with the ones emulated in GNS3),
making it a pretty robust tool. However, in this report we use another version of our tool to simplify the output. The output of TNT slightly
differ but the conclusions are the same.

(a) Cisco topology. PE1 is the Ingress LER, PE2 the Egress LER, the LSP is set up between PE1 and the EH (P3 or PE2).
The TNT target (i.e., the argument of trace_naughty_tunnel() function – See Listing 1) is the loopback address of
CE3.

(b) Juniper topology. PE1 is the Ingress LER, PE2 the Egress LER, the LSP is set up between PE1 and the EH (P3 or PE2).
The TNT target (i.e., the argument of trace_naughty_tunnel() function – See Listing 1) is the loopback address of
CE3.

Fig. 6: Topology used for GNS-3 tests
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I. P2P CIRCUITS

A. Explicit Tunnels Validation
We first review Explicit tunnels, i.e., tunnels with RFC4950 and ttl-propagate enabled (see Sec. III).
In the following, we distinguish Cisco (Appendix I-A1) and Juniper IP topologies (Appendix I-A2) and configurations. In particular, with

Cisco configurations, PHP (LSE popped by P3) is distinguished from UHP (LSE popped by Egress LER).
For each case, we provide the configuration of routers as well as the simplified TNT output. Indicators and triggers (see Sec. IV-B) are

provided, as well as raw ICMP time-exceeded and ICMP echo-reply TTLs.
1) Cisco Explicit Configurations: All configurations presented here were run on the IP topology provided by Fig. 6a.
The first example provides an Explicit tunnel deployed with PHP, under Cisco IOS 15.2. The TNT behavior is the one expected.

IOS 15.2 – Explicit PHP
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 router bgp 3333
5 redistribute connected
6 redistribute ospf 10
7 neighbor 10.12.0.1 remote-as 3333
8 neighbor 10.12.0.1 next-hop-self
9 neighbor 192.168.8.1 remote-as 1024

10 neighbor 192.168.8.1 next-hop-self
11

12 PE2
13 version 15.2
14 mpls label protocol ldp
15 router bgp 3333
16 redistribute connected
17 redistribute ospf 10
18 neighbor 10.12.0.1 remote-as 3333
19 neighbor 10.12.0.1 next-hop-self
20 neighbor 192.168.2.2 remote-as 2048
21 neighbor 192.168.2.2 next-hop-self
22

23 P1
24 version 15.2
25 mpls label protocol ldp
26 router bgp 3333
27 neighbor 10.12.0.1 remote-as 3333
28

29 P2
30 version 15.2
31 mpls label protocol ldp
32 router bgp 3333
33 neighbor 10.12.0.1 remote-as 3333
34

35 P3
36 version 15.2
37 mpls label protocol ldp
38 router bgp 3333
39 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Explicit PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 27.083 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 19.895 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 80.598 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 69.875 ms
7 5 left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 20 | LSE-TTL : 1] 68.98 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 78.17 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 78.957 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 110.598 ms

The next two configurations illustrate UHP with both IOS 12.4 and IOS 15.2. TNT works as expected and shows two examples of MPLS
TTL processing specifically with UHP. With the 12.4 IOS, we see the null label while it is hidden with the 15.2 IOS. In addition, we can
see that UHP tunnels show a UTURN signature different from PHP tunnels. This difference results from the way time-exceeded messages
are handled by the LSRs. In both cases, the time-exceeded message is forwarded to the EH which replies using its own IP forwarding table.
The EH changes depending on the configuration: P3 for PHP (here the EH is the PH), and PE2 for UHP (here the EH is the Egress LER).
Indeed, we can see that the UTURN difference disappears at the respective EH.

IOS 12.4 – Explicit UHP
1 PE1
2 version 12.4
3 mpls label protocol ldp
4 mpls ldp explicit-null
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
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9 neighbor 10.12.0.1 next-hop-self
10 neighbor 192.168.8.1 remote-as 1024
11 neighbor 192.168.8.1 next-hop-self
12

13 PE2
14 version 12.4
15 mpls label protocol ldp
16 mpls ldp explicit-null
17 router bgp 3333
18 redistribute connected
19 redistribute ospf 10
20 neighbor 10.12.0.1 remote-as 3333
21 neighbor 10.12.0.1 next-hop-self
22 neighbor 192.168.2.2 remote-as 2048
23 neighbor 192.168.2.2 next-hop-self
24

25 P1
26 version 12.4
27 mpls label protocol ldp
28 mpls ldp explicit-null
29 router bgp 3333
30 neighbor 10.12.0.1 remote-as 3333
31

32 P2
33 version 12.4
34 mpls label protocol ldp
35 mpls ldp explicit-null
36 router bgp 3333
37 neighbor 10.12.0.1 remote-as 3333
38

39 P3
40 version 12.4
41 mpls label protocol ldp
42 mpls ldp explicit-null
43 router bgp 3333
44 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 12.4 – Explicit UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 22.651 ms
4 2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 230.326 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 22 | LSE-TTL : 1] 263.686 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 22 | LSE-TTL : 1] 358.238 ms
7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][qttl = 3][uturn = 2][MPLS LSE | Label : 16 | LSE-TTL : 1] 374.214 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 0 | LSE-TTL : 1] 418.696 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 655.848 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 513.054 ms

IOS 15.2 – Explicit UHP
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 mpls ldp explicit-null
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
9 neighbor 10.12.0.1 next-hop-self

10 neighbor 192.168.8.1 remote-as 1024
11 neighbor 192.168.8.1 next-hop-self
12

13 PE2
14 version 15.2
15 mpls label protocol ldp
16 mpls ldp explicit-null
17 router bgp 3333
18 redistribute connected
19 redistribute ospf 10
20 neighbor 10.12.0.1 remote-as 3333
21 neighbor 10.12.0.1 next-hop-self
22 neighbor 192.168.2.2 remote-as 2048
23 neighbor 192.168.2.2 next-hop-self
24

25 P1
26 version 15.2
27 mpls label protocol ldp
28 mpls ldp explicit-null
29 router bgp 3333
30 neighbor 10.12.0.1 remote-as 3333
31

32 P2
33 version 15.2
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34 mpls label protocol ldp
35 mpls ldp explicit-null
36 router bgp 3333
37 neighbor 10.12.0.1 remote-as 3333
38

39 P3
40 version 15.2
41 mpls label protocol ldp
42 mpls ldp explicit-null
43 router bgp 3333
44 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Explicit UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.64 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 39.87 ms
5 3 left.P1 (10.1.0.2) <247,253> [frpla = 6][qttl = 1][uturn = 6][MPLS LSE | Label : 19 | LSE-TTL : 1] 100.632 ms
6 4 left.P2 (10.2.0.2) <248,252> [frpla = 4][qttl = 2][uturn = 4][MPLS LSE | Label : 20 | LSE-TTL : 1] 80.453 ms
7 5 left.P3 (10.3.0.2) <249,251> [frpla = 2][qttl = 3][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL : 1] 100.815 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 109.089 ms
9 7 left.CE2 (192.168.2.2) <249,249> [frpla = 0][qttl = 1][uturn = 0] 98.817 ms

10 8 192.168.4.2 (192.168.4.2) <248,248> [frpla = 0][qttl = 1][uturn = 0] 119.842 ms

2) Juniper Explicit Configurations: All configurations presented here were run on the topology provided by Fig. 6b.
For Explicit tunnels, Juniper Olive and VMX behave the same. We first provide the configuration and TNT output for Explicit tunnels

without UTURN effect.
VMX – Explicit PHP (default configuration)

1 PE1
2 propagate ttl
3

4 PE2
5 propagate ttl
6

7 P1
8 propagate ttl
9

10 P2
11 propagate ttl
12

13 P3
14 propagate ttl

TNT running over VMX - Explicit PHP (default configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 ( 172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 2.682 ms
4 2 PE1 ( 172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 4.603 ms
5 3 left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 6.362 ms
6 4 left.P2 (192.168.1.6) <252,61> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 8.451 ms
7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 8.557 ms
8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][qttl = 1][uturn = 0] 8.285 ms
9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][qttl = 1][uturn = 0] 8.09 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][qttl = 1][uturn = 0] 8.142 ms

On the contrary to Cisco configuration, Juniper does not exhibit the UTURN effect. When the LSE-TTL of a packet expires, the LSR
does not send the ICMP time-exceeded to the EH which then forwards the packets on its own to the probing source, it replies the same
with respect to other probes (e.g., echo-request) using its own IP forwarding table if available – resulting in general in a shorter return
path (see Sec. IV-B). The configuration must be explicitly stated with the icmp-tunneling as provided below.

VMX – Explicit PHP (icmp-tunneling configuration)
1 PE1
2 propagate ttl
3 icmp-tunneling
4

5 PE2
6 propagate ttl
7 icmp-tunneling
8

9 P1
10 propagate ttl
11 icmp-tunneling
12

13 P2
14 propagate ttl
15 icmp-tunneling
16

17 P3
18 propagate ttl
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19 icmp-tunneling

TNT running over VMX – Explicit PHP (icmp-tunneling configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 ( 172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 2.034 ms
4 2 PE1 ( 172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 4.646 ms
5 3 left.P1 (192.168.1.2) <246,62> [frpla = 7][qttl = 1][uturn = 7][MPLS LSE | Label : 299824 | LSE-TTL : 1] 11.424 ms
6 4 left.P2 (192.168.1.6) <247,61> [frpla = 5][qttl = 1][uturn = 5][MPLS LSE | Label : 299824 | LSE-TTL : 1] 7.994 ms
7 5 left.P3 (192.168.1.10) <251,60> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 6.252 ms
8 6 left.PE2 (192.168.1.14) <250,59> [frpla = 0][qttl = 1][uturn = 0] 8.585 ms
9 7 CE2 (192.168.2.2) <249,58> [frpla = 0][qttl = 1][uturn = 0] 9.369 ms

10 8 CE3 (192.168.2.102) <248,57> [frpla = 0][qttl = 1][uturn = 0] 9.232 ms

B. Opaque Tunnels Validation (Cisco only)
Opaque tunnels only occur with Cisco routers, in some particular configuration (see Sec. III for details). The topology used for GNS-3

emulation is the one provided by Fig. 6a. We only show tests for IOS 15.2 as the situation is the same with IOS 12.4. In our example, we
were able to reveal the content of the Opaque tunnel through BRPR, on the contrary to in the wild TNT deployment where Opaque tunnels
revelation did not work that much (see Sec. VI). We see thus here a difference between theory and practice.

IOS 15.2 – Opaque PHP
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 no propagate-ttl
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
9 neighbor 192.168.8.1 remote-as 1024

10

11 PE2
12 version 15.2
13 mpls label protocol ldp
14 no propagate-ttl
15 router bgp 3333
16 redistribute connected
17 redistribute ospf 10
18 neighbor 10.12.0.1 remote-as 3333
19 neighbor 192.168.6.1 remote-as 2048
20 neighbor 192.168.6.1 ebgp-multihop 2
21

22 P1
23 version 15.2
24 mpls label protocol ldp
25 no propagate-ttl
26 router bgp 3333
27 neighbor 10.12.0.1 remote-as 3333
28

29 P2
30 version 15.2
31 mpls label protocol ldp
32 no propagate-ttl
33 router bgp 3333
34 neighbor 10.12.0.1 remote-as 3333
35

36 P3
37 version 15.2
38 mpls label protocol ldp
39 no propagate-ttl
40 router bgp 3333
41 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Opaque PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 25.164 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 40.06 ms
5

6 OPAQUE | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 40.008 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 40.058 ms - step 1
9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 90.301 ms - step 0

10

11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][qttl = 1][uturn = 0][MPLS LSE | Label : 16 | LSE-TTL : 252] 110.408 ms
12 4 left.CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 80.195 ms
13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 132.331 ms
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C. Invisible Tunnels Validation
This section discusses Invisible tunnels, i.e., tunnels with the no-ttl-propagate option enabled (see Sec. III).
We do a distinction between Cisco (Appendix I-C1) and Juniper configurations (Appendix I-C2). PHP (LSE popped by P3) is also

distinguished from UHP (LSE popped by Egress LER).
For each case, we provide the configuration of routers as well as the TNT output. Indicators and triggers (see Sec. IV-B) are provided, as

well as ICMP time-exceeded and ICMP echo-reply TTLs.
1) Invisible Cisco Configurations: All configurations presented here were run on the topology provided by Fig. 6a.

IOS 15.2 – Invisible PHP
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 no propagate-ttl
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
9 neighbor 10.12.0.1 next-hop-self

10 neighbor 192.168.8.1 remote-as 1024
11 neighbor 192.168.8.1 next-hop-self
12

13 PE2
14 version 15.2
15 mpls label protocol ldp
16 no propagate-ttl
17 router bgp 3333
18 redistribute connected
19 redistribute ospf 10
20 neighbor 10.12.0.1 remote-as 3333
21 neighbor 10.12.0.1 next-hop-self
22 neighbor 192.168.2.2 remote-as 2048
23 neighbor 192.168.2.2 next-hop-self
24

25 P1
26 version 15.2
27 mpls label protocol ldp
28 no propagate-ttl
29 router bgp 3333
30 neighbor 10.12.0.1 remote-as 3333
31

32 P2
33 version 15.2
34 mpls label protocol ldp
35 no propagate-ttl
36 router bgp 3333
37 neighbor 10.12.0.1 remote-as 3333
38

39 P3
40 version 15.2
41 mpls label protocol ldp
42 no propagate-ttl
43 router bgp 3333
44 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible PHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.52 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.927 ms
5

6 FRPLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 50.051 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 60.102 ms - step 1
9 2.3 [REVEALED] left.P3 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 59.876 ms - step 0

10

11 3 left.PE2 (10.4.0.2) <250,250> [frpla = 3][qttl = 1][uturn = 0] 80.38 ms
12 4 left.CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 69.89 ms
13 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 99.833 ms

The configuration for running standard Cisco Invisible UHP tunnels is provided below. Such a configuration might be revealed through
BRPR thanks to the DUP_IP trigger.

IOS 15.2 – Invisible UHP
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 no propagate-ttl
5 mpls ldp explicit-null
6 router bgp 3333
7 redistribute connected
8 redistribute ospf 10
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9 neighbor 10.12.0.1 remote-as 3333
10 neighbor 10.12.0.1 next-hop-self
11 neighbor 192.168.8.1 remote-as 1024
12 neighbor 192.168.8.1 next-hop-self
13

14 PE2
15 version 15.2
16 mpls label protocol ldp
17 no propagate-ttl
18 mpls ldp explicit-null
19 router bgp 3333
20 redistribute connected
21 redistribute ospf 10
22 neighbor 10.12.0.1 remote-as 3333
23 neighbor 10.12.0.1 next-hop-self
24 neighbor 192.168.2.2 remote-as 2048
25 neighbor 192.168.2.2 next-hop-self
26

27 P1
28 version 15.2
29 mpls label protocol ldp
30 no propagate-ttl
31 mpls ldp explicit-null
32 router bgp 3333
33 neighbor 10.12.0.1 remote-as 3333
34

35 P2
36 version 15.2
37 mpls label protocol ldp
38 no propagate-ttl
39 mpls ldp explicit-null
40 router bgp 3333
41 neighbor 10.12.0.1 remote-as 3333
42

43 P3
44 version 15.2
45 mpls label protocol ldp
46 no propagate-ttl
47 mpls ldp explicit-null
48 router bgp 3333
49 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 3.157 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.92 ms
5

6 Duplicate IP (Egress : 192.168.2.2) | Length estimation : 1 | Revealed : 4 (difference : 3)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 50.043 ms - step 4 (Buddy used)
8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 49.778 ms - step 3 (Buddy used)
9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 69.834 ms - step 2 (Buddy used)

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 80.594 ms - step 1 (Buddy used)
11

12 3 left.CE2 (192.168.2.2) <252,252> [frpla = 1][qttl = 1][uturn = 0] 80.08 ms
13 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 89.891 ms
14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 107.579 ms

With Cisco routers, it is possible to mimic an Invisible UHP tunnel with a Juniper per loopback configuration (i.e., by filtering addresses
to /32 border prefixes), meaning that the tunnel content might be revealed through DPR, thanks to the DUP_IP trigger. Such a configuration
is achieved with the allocate global host-routes command.

IOS 15.2 – Invisible UHP (allocate global host route configuration)
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 no propagate-ttl
5 mpls ldp explicit-null
6 mpls ldp label
7 allocate global host-routes
8 router bgp 3333
9 redistribute connected

10 redistribute ospf 10
11 neighbor 10.12.0.1 remote-as 3333
12 neighbor 10.12.0.1 next-hop-self
13 neighbor 192.168.8.1 remote-as 1024
14 neighbor 192.168.8.1 next-hop-self
15

16 PE2
17 version 15.2
18 mpls label protocol ldp
19 no propagate-ttl
20 mpls ldp explicit-null
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21 mpls ldp label
22 allocate global host-routes
23 router bgp 3333
24 redistribute connected
25 redistribute ospf 10
26 neighbor 10.12.0.1 remote-as 3333
27 neighbor 10.12.0.1 next-hop-self
28 neighbor 192.168.2.2 remote-as 2048
29 neighbor 192.168.2.2 next-hop-self
30

31 P1
32 version 15.2
33 mpls label protocol ldp
34 no propagate-ttl
35 mpls ldp explicit-null
36 mpls ldp label
37 allocate global host-routes
38 router bgp 3333
39 neighbor 10.12.0.1 remote-as 3333
40

41 P2
42 version 15.2
43 mpls label protocol ldp
44 no propagate-ttl
45 mpls ldp explicit-null
46 mpls ldp label
47 allocate global host-routes
48 router bgp 3333
49 neighbor 10.12.0.1 remote-as 3333
50

51 P3
52 version 15.2
53 mpls label protocol ldp
54 no propagate-ttl
55 mpls ldp explicit-null
56 mpls ldp label
57 allocate global host-routes
58 router bgp 3333
59 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP (allocate global host route configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 8.091 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 39.867 ms
5

6 Duplicate IP (Egress : 10.1.0.2) | Length estimation : 1 | Revealed : 4 (difference : 3)
7 2.1 [REVEALED] left.P1 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 39.788 ms - step 2
8 2.2 [REVEALED] left.P2 (10.2.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 49.573 ms - step 2
9 2.3 [REVEALED] left.P3 (10.3.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 70.094 ms - step 2

10 2.4 [REVEALED] left.PE2 (10.4.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 89.171 ms - step 1 ( Buddy used )
11

12 3 left.CE2 (192.168.2.2) <252,252> [frpla = 1][qttl = 1][uturn = 0] 120.546 ms
13 4 left.CE2 (192.168.2.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 89.892 ms
14 5 192.168.4.2 (192.168.4.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 117.301 ms

It is also possible to build Invisible UHP tunnel in which the buddy mechanism is not necessary (as we discover in the wild). Simply
running BRPR will make the tunnel content visible. This configuration might be achieved with the ip access-list command to enable
Ultimate Hop Popping for external destinations only:

IOS 15.2 – Invisible UHP (mpls ldp explicit-null [for prefix-acl] configuration)
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 no propagate-ttl
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
9 neighbor 10.12.0.1 next-hop-self

10 neighbor 192.168.8.1 remote-as 1024
11 neighbor 192.168.8.1 next-hop-self
12

13 PE2
14 version 15.2
15 mpls label protocol ldp
16 no propagate-ttl
17 mpls ldp explicit-null for BRPR-wo-buddy
18 router bgp 3333
19 redistribute connected
20 redistribute ospf 10
21 neighbor 10.12.0.1 remote-as 3333
22 neighbor 10.12.0.1 next-hop-self



25

23 neighbor 192.168.2.2 remote-as 2048
24 neighbor 192.168.2.2 next-hop-self
25 ip access-list standard BRPR-wo-buddy
26 permit 10.9.0.1
27 deny any
28

29 P1
30 version 15.2
31 mpls label protocol ldp
32 no propagate-ttl
33 router bgp 3333
34 neighbor 10.12.0.1 remote-as 3333
35

36 P2
37 version 15.2
38 mpls label protocol ldp
39 no propagate-ttl
40 router bgp 3333
41 neighbor 10.12.0.1 remote-as 3333
42

43 P3
44 version 15.2
45 mpls label protocol ldp
46 no propagate-ttl
47 router bgp 3333
48 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Invisible UHP (mpls ldp explicit-null [for prefix-acl] configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 192.168.3.2 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 7.299 ms
4 2 192.168.8.2 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 14.921 ms
5

6 Duplicate IP (Egress : 10.4.0.2) | Length estimation : 3 | Revealed : 4 (difference : 1)
7 2.1 [REVEALED] 10.1.0.2 (10.1.0.2) <253,253> [frpla = 0][qttl = 1][uturn = 0] 36.443 ms - step 3
8 2.2 [REVEALED] 10.2.0.2 (10.2.0.2) <252,252> [frpla = 0][qttl = 1][uturn = 0] 35.879 ms - step 2
9 2.3 [REVEALED] 10.3.0.2 (10.3.0.2) <251,251> [frpla = 0][qttl = 1][uturn = 0] 66.288 ms - step 1

10 2.4 [REVEALED] 10.4.0.2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 64.19 ms - step 0
11

12 3 CE2 (192.168.2.2) <250,250> [frpla = 3][qttl = 1][uturn = 0] 116.643 ms
13 4 CE2 (192.168.2.2) <250,250> [frpla = 2][qttl = 1][uturn = 0] 99.93 ms
14 5 192.168.4.2 (192.168.4.2) <250,250> [frpla = 1][qttl = 1][uturn = 0] 94.185 ms

2) Juniper Invisible Configurations: All configurations presented here were run on the topology provided by Fig. 6b.
Juniper, with Olive OS, does not apply the MIN(IP-TTL, LSE-TTL) at the exit of the MPLS cloud. As such, the FRPLA trigger does not

provide the return tunnel length but is equal to 1 because the ingress LER process the incoming IP TTL in a distinct way with respect to
the origin of the packet (locally generated or not). Invisible PHP tunnel can, then, be revealed through DPR. Juniper LSR can be configured
as followed:
JunOS Olive – Invisible PHP

1 PE1
2 no-propagate-ttl
3

4 PE2
5 no-propagate-ttl
6

7 P1
8 no-propagate-ttl
9

10 P2
11 no-propagate-ttl
12

13 P3
14 no-propagate-ttl

TNT running over JunOS Olive – Invisible PHP
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 ( 172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.638 ms
4 2 PE1 ( 172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.898 ms
5

6 FRPLA | Length estimation : 1 | Revealed : 3 (difference : 2)
7 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0] 3.039 ms - step 0
8 2.2 [REVEALED] left.P2 (192.168.1.6) <252,61> [frpla = 0][qttl = 1][uturn = 0] 3.951 ms - step 0
9 2.3 [REVEALED] left.P3 (192.168.1.10) <252,61> [frpla = 0][qttl = 1][uturn = 0] 4.906 ms - step 0

10

11 3 left.PE2 (192.168.1.14) <252,61> [frpla = 1][qttl = 1][uturn = 0] 7.043 ms
12 4 CE2 (192.168.2.2) <252,61> [frpla = 0][qttl = 1][uturn = 0] 6.891 ms
13 5 CE3 (192.168.2.102) <251,60> [frpla = 0][qttl = 1][uturn = 0] 8.978 ms

On the contrary to Olive, VMX applies the MIN(IP-TTL, LSE-TTL) function. As such, the behavior observed is the theoretical one. It
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is worth noting that configuring Juniper VMX for Invisible MPLS tunnels is identical than with Olive. Invisible tunnels are, now, revealed
through DPR, with the RTLA trigger.

JunOS VMX – Invisible PHP
1 PE1
2 no-propagate-ttl
3

4 PE2
5 no-propagate-ttl
6

7 P1
8 no-propagate-ttl
9

10 P2
11 no-propagate-ttl
12

13 P3
14 no-propagate-ttl

TNT running over JunOS VMX – Invisible PHP
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 ( 172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.96 ms
4 2 PE1 ( 172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.66 ms
5

6 RTLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0] 8.8 ms - step 0
8 2.2 [REVEALED] left.P2 (192.168.1.6) <252,62> [frpla = 0][qttl = 1][uturn = 0] 2.134 ms - step 0
9 2.3 [REVEALED] left.P3 (192.168.1.10) <251,62> [frpla = 0][qttl = 1][uturn = 0] 3.352 ms - step 0

10

11 3 left.PE2 (192.168.1.14) <250,62> [frpla = 3][rtl = 3(3)][qttl = 1][uturn = 3] 4.569 ms
12 4 CE2 (192.168.2.2) <250,61> [frpla = 2][rtl = 2(-1)][qttl = 1][uturn = 2] 4.625 ms
13 5 CE3 (192.168.2.102) <250,60> [frpla = 1][rtl = 1(-1)][qttl = 1][uturn = 1] 4.355 ms

D. Corner Cases: Heterogeneous Propagation Configuration
This section discusses corner cases, i.e., unlikely configurations that may arise when MPLS is not homogeneously configured throughout

the tunnel. TNT, like traceroute, cannot deal with those situations, but these abnormal shiftings have not been clearly encountered in
practice.

1) Cisco Jumpy Configurations: The following Cisco configuration (for IOS 15.2) is supposed to build an UHP Invisible tunnel.
However, on the contrary to the configuration provided in Appendix I-C1, the management of LSE-TTL is heterogeneous over the tunnel.
Indeed, in this case, the Ingress LER is not configured with the no-ttl-propagate (on the contrary to the Egress LER and other routers
in the tunnel). As such, the MIN(IP-TTL, LSE-TTL) operation is not – systematically – applied on the Egress while it is expected to be
from the Ingress. The EH assumes that the propagation configuration is homogeneous among LERs, which is not the case here. Therefore,
the Egress LER will use the IP-TTL instead of the LSE-TTL when popping the LSE. As consequence, and as shown by the TNT output,
we observe that

1) the MPLS tunnel is actually Explicit;
2) a number of hops equal to the tunnel length after the MPLS tunnel are missing (here, only CE2 is missing as the platform is too short

– see Fig. 6a for the Cisco topology we use), leading to a so-called jump effect.
We call such a configuration Explicit Jump and it can be observed in the qTTL of the last hop (2 instead of one plus the skipped hop).

IOS 15.2 – Explicit Jump (heterogeneous configuration)
1 PE1
2 version 15.2
3 mpls label protocol ldp
4 mpls ldp explicit-null
5 router bgp 3333
6 redistribute connected
7 redistribute ospf 10
8 neighbor 10.12.0.1 remote-as 3333
9 neighbor 10.12.0.1 next-hop-self

10 neighbor 192.168.8.1 remote-as 1024
11 neighbor 192.168.8.1 next-hop-self
12

13 PE2
14 version 15.2
15 mpls label protocol ldp
16 no propagate-ttl
17 mpls ldp explicit-null
18 router bgp 3333
19 redistribute connected
20 redistribute ospf 10
21 neighbor 10.12.0.1 remote-as 3333
22 neighbor 10.12.0.1 next-hop-self
23 neighbor 192.168.2.2 remote-as 2048
24 neighbor 192.168.2.2 next-hop-self
25

26 P1
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27 version 15.2
28 mpls label protocol ldp
29 no propagate-ttl
30 mpls ldp explicit-null
31 router bgp 3333
32 neighbor 10.12.0.1 remote-as 3333
33

34 P2
35 version 15.2
36 mpls label protocol ldp
37 no propagate-ttl
38 mpls ldp explicit-null
39 router bgp 3333
40 neighbor 10.12.0.1 remote-as 3333
41

42 P3
43 version 15.2
44 mpls label protocol ldp
45 no propagate-ttl
46 mpls ldp explicit-null
47 router bgp 3333
48 neighbor 10.12.0.1 remote-as 3333

TNT running over IOS 15.2 – Explicit Jump (heterogeneous configuration)
1 Launching TNT: 192.168.7.1 (192.168.7.1)
2

3 1 left.CE1 (192.168.3.2) <255,255> [frpla = 0][qttl = 1][uturn = 0] 8.407 ms
4 2 left.PE1 (192.168.8.2) <254,254> [frpla = 0][qttl = 1][uturn = 0] 29.477 ms
5 3 left.P1 (10.1.0.2) <250,253> [frpla = 3][qttl = 1][uturn = 3][MPLS LSE | Label : 19 | LSE-TTL : 1] 79.929 ms
6 4 left.P2 (10.2.0.2) <250,252> [frpla = 2][qttl = 2][uturn = 2][MPLS LSE | Label : 20 | LSE-TTL : 1] 80.573 ms
7 5 left.P3 (10.3.0.2) <250,251> [frpla = 1][qttl = 3][uturn = 1][MPLS LSE | Label : 20 | LSE-TTL : 1] 109.577 ms
8 6 left.PE2 (10.4.0.2) <250,250> [frpla = 0][qttl = 1][uturn = 0] 79.766 ms
9 7 192.168.4.2 (192.168.4.2) <250,250> [frpla = -1][qttl = 2][uturn = 0] 109.357 ms

2) Juniper Jumpy Configurations: In the fashion of Cisco, Juniper with the Olive OS (this is not possible with VMX) allows to
configure an Explicit Jump tunnel with PHP. The configuration provided below shows such an MPLS tunnel. The EH is configured with
the no-ttl-propagate option, while other routers are configured with ttl-propagate. As such, P3 will not apply the MIN(IP-TTL,
LSE-TTL) when popping the label, leading so to a jump effect that is nearly as long as the tunnel itself (the Egress LER and CE2 are
missing plus the qTTl at 2 on the last hop).

Olive – Explicit Jump (heterogeneous configuration)
1 PE1
2 propagate ttl
3

4 PE2
5 propagate ttl
6

7 P1
8 propagate ttl
9

10 P2
11 propagate-ttl
12

13 P3
14 no-propagate-ttl

TNT running over Olive – Explicit (heterogeneous configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2

3 1 CE1 (172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.622 ms
4 2 PE1 (172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.749 ms
5 3 left.P1 (192.168.1.2) <253,62> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299824 | LSE-TTL : 1] 2.799 ms
6 4 left.P2 (192.168.1.6) <252,252> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299792 | LSE-TTL : 1] 3.725 ms
7 5 left.P3 (192.168.1.10) <251,251> [frpla = 0][qttl = 1][uturn = 0][MPLS LSE | Label : 299776 | LSE-TTL : 1] 7.784 ms
8 6 CE3 (192.168.2.102) <248,57> [frpla = 2][qttl = 2][uturn = 0] 8.884 ms

The last configuration is Juniper Olive with an Invisible Jump configuration. This is somewhat equivalent to the Explicit Jump but for
Invisible tunnels. In that case, when P3 (PHP is configured) will pop the LSE, it will not apply the MIN(IP-TTL, LSE-TTL). As a result,
TNT will see the Ingress LER (PE1) and several hops after P3 will be missed (Egress LER and CE2). The tunnel is invisible and triggers
do not work. One can notice a qTTL of 250 on the last hop of our platform: it means that traceroute can miss an entire path of 255
minus the length of the tunnel!

Olive – Invisible Jump configuration (heterogeneous configuration)
1 PE1
2 no-propagate ttl
3

4 PE2
5 propagate ttl
6
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7 P1
8 no-propagate ttl
9

10 P2
11 no-propagate-ttl
12

13 P3
14 propagate-ttl

TNT running over Olive – Invisible Jump (heterogeneous configuration)
1 Launching TNT: 192.168.2.102 (192.168.2.102)
2 1 CE1 ( 172.16.0.5) <255,64> [frpla = 0][qttl = 1][uturn = 0] 0.515 ms
3 2 PE1 ( 172.16.0.2) <254,63> [frpla = 0][qttl = 1][uturn = 0] 1.712 ms
4 3 CE3 (192.168.2.102) <251,60> [frpla = 2][qttl = 250][uturn = 0] 8.553 ms

E. RSVP-TE (All Invisible)
In this section, we introduce PHP and UHP invisible configurations with both Cisco and Juniper OSes but considering RSVP-TE instead

of LDP. There is no much to say as all the resulting behaviors are the same as with LDP configurations described previously. The conclusion
is then simple: TNT is able to reveal TE tunnels as LDP ones whatever the OS and the popping configuration is (i.e. PHP or UHP).
1) Cisco Config – PHP:
cisco IOS 15.2 – RSVP-TE PHP

1 PE1
2 version 15.2
3 no propagate-ttl
4 mpls traffic-eng tunnels
5

6 interface Tunnel0
7 ip unnumbered Loopback0
8 tunnel mode mpls traffic-eng
9 tunnel destination 10.9.0.1

10 tunnel mpls traffic-eng autoroute announce
11 tunnel mpls traffic-eng priority 1 1
12 tunnel mpls traffic-eng bandwidth 500
13 tunnel mpls traffic-eng path-option 1 dynamic
14

15 PE2
16 version 15.2
17 no propagate-ttl
18 mpls traffic-eng tunnels
19

20 P1
21 version 15.2
22 no propagate-ttl
23 mpls traffic-eng tunnels
24

25 P2
26 version 15.2
27 no propagate-ttl
28 mpls traffic-eng tunnels
29

30 P3
31 version 15.2
32 no propagate-ttl
33 mpls traffic-eng tunnels

TNT running over 15.2 – RSVP-TE PHP
1 Launching TraceTunnel: 192.168.7.1 (192.168.7.1)
2

3 1 192.168.3.2 (192.168.3.2) <255,255> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
4 2 192.168.8.2 (192.168.8.2) <254,254> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
5

6 FRPLA | Length estimation : 3 | Revealed : 3 (difference : 0)
7 2.1 [REVEALED] 10.1.0.2 ( 10.1.0.2) <253,253> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 2
8 2.2 [REVEALED] 10.2.0.2 ( 10.2.0.2) <252,252> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 1
9 2.3 [REVEALED] 10.3.0.2 ( 10.3.0.2) <251,251> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 0

10

11 3 10.4.0.2 ( 10.4.0.2) <250,250> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ]
12 4 CE2 (192.168.2.2) <250,250> [ frpla = 2 ][ qttl = 1 ][ uturn = 0 ]
13 5 192.168.4.2 (192.168.4.2) <250,250> [ frpla = 1 ][ qttl = 1 ][ uturn = 0 ]

The tunnel is easily revealed as for LDP tunnels.
2) Juniper Config – PHP:
Juniper – RSVP-TE PHP

1 PE1
2 protocols {
3 rsvp {
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4 tunnel-services;
5 interface all;
6 }
7 mpls {
8 no-propagate-ttl;
9 label-switched-path PE1-to-PE2 {

10 to 192.168.1.105;
11 }
12 interface all;
13 }
14 ospf {
15 traffic-engineering {
16 shortcuts lsp-metric-into-summary;
17 }
18 }
19 }
20

21 PE2
22 protocols {
23 rsvp {
24 tunnel-services;
25 interface all;
26 }
27 mpls {
28 no-propagate-ttl;
29 icmp-tunneling;
30 label-switched-path PE2-toPE1 {
31 to 192.168.1.101;
32 }
33 interface all;
34 interface ge-0/0/2.0;
35 }
36 ospf {
37 traffic-engineering;
38 }
39 }
40

41 P1
42 protocols {
43 rsvp {
44 interface all;
45 }
46 mpls {
47 no-propagate-ttl;
48 interface ge-0/0/1.0;
49 interface ge-0/0/3.0;
50 }
51 ospf {
52 traffic-engineering;
53 }
54 }
55

56 P2
57 protocols {
58 rsvp {
59 interface all;
60 }
61 mpls {
62 no-propagate-ttl;
63 interface ge-0/0/1.0;
64 interface ge-0/0/3.0;
65 }
66 ospf {
67 traffic-engineering;
68 }
69 }
70

71 P3
72 protocols {
73 rsvp {
74 interface all;
75 }
76 mpls {
77 no-propagate-ttl;
78 interface ge-0/0/1.0;
79 interface ge-0/0/3.0;
80 }
81 ospf {
82 traffic-engineering;
83 }
84 }
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TNT running over Juniper – RSVP-TE PHP
1 Launching TraceTunnel: 192.168.2.102 (192.168.2.102)
2 1 CE1 ( 172.16.0.5) <255,64> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
3 2 PE1 ( 172.16.0.2) <254,63> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
4

5 RTL | Length estimation : 3 | Revealed : 3 (difference : 0)
6 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
7 2.2 [REVEALED] left.P2 (192.168.1.6) <252,61> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
8 2.3 [REVEALED] left.P3 (192.168.1.10) <251,60> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
9

10 3 left.PE2 (192.168.1.14) <250,62> [ frpla = 3 ][ rtla = 3(3) ][ qttl = 1 ][ uturn = 3 ]
11 4 CE2 (192.168.2.2) <250,61> [ frpla = 2 ][ rtla = 0(-1) ][ qttl = 1 ][ uturn = 0 ]
12 5 CE3 (192.168.2.102) <250,60> [ frpla = 1 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]

3) Cisco Config – UHP:
cisco IOS 15.2 – RSVP-TE UHP

1 PE1
2 version 15.2
3 no propagate-ttl
4 mpls traffic-eng tunnels
5

6 interface Tunnel0
7 ip unnumbered Loopback0
8 tunnel mode mpls traffic-eng
9 tunnel destination 10.9.0.1

10 tunnel mpls traffic-eng autoroute announce
11 tunnel mpls traffic-eng priority 1 1
12 tunnel mpls traffic-eng bandwidth 500
13 tunnel mpls traffic-eng path-option 1 dynamic
14

15 PE2
16 version 15.2
17 no propagate-ttl
18 mpls traffic-eng tunnels
19 mpls ldp explicit-null
20

21 P1
22 version 15.2
23 no propagate-ttl
24 mpls traffic-eng tunnels
25

26 P2
27 version 15.2
28 no propagate-ttl
29 mpls traffic-eng tunnels
30

31 P3
32 version 15.2
33 no propagate-ttl
34 mpls traffic-eng tunnels
35 mpls traffic-eng signalling interpret explicit-null verbatim

TNT running over 15.2 – RSVP-TE UHP
1 Launching TraceTunnel: 192.168.7.1 (192.168.7.1)
2 1 192.168.3.2 (192.168.3.2) <255,255> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
3 2 192.168.8.2 (192.168.8.2) <254,254> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
4

5 Duplicate IP (Egress : 10.4.0.2) | Length estimation : 3 | Revealed : 4 (difference : 1)
6 2.1 [REVEALED] 10.1.0.2 ( 10.1.0.2) <253,253> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 4
7 2.2 [REVEALED] 10.2.0.2 ( 10.2.0.2) <252,252> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 3
8 2.3 [REVEALED] 10.3.0.2 ( 10.3.0.2) <251,251> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 2
9 2.4 [REVEALED] 10.4.0.2 ( 10.4.0.2) <250,250> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ] - step 1 ( Buddy used )

10

11 3 CE2 (192.168.2.2) <250,250> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ][ meta = 3, 0, 0 ]
12 4 CE2 (192.168.2.2) <250,250> [ frpla = 2 ][ qttl = 1 ][ uturn = 0 ][ meta = -1, 0, 0 ]
13 5 192.168.4.2 (192.168.4.2) <250,250> [ frpla = 1 ][ qttl = 1 ][ uturn = 0 ][ meta = 0, 0, 0 ]

4) Juniper Config – UHP:
Juniper – RSVP-TE UHP

1 PE1
2 protocols {
3 rsvp {
4 tunnel-services;
5 interface all;
6 }
7 mpls {
8 no-propagate-ttl;
9 label-switched-path PE1-to-PE2 {

10 to 192.168.1.105;
11 }
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12 interface all;
13 }
14 ospf {
15 traffic-engineering {
16 shortcuts lsp-metric-into-summary;
17 }
18 }
19 }
20

21 PE2
22 protocols {
23 rsvp {
24 tunnel-services;
25 interface all;
26 }
27 mpls {
28 no-propagate-ttl;
29 explicit-null;
30 icmp-tunneling;
31 label-switched-path PE2-toPE1 {
32 to 192.168.1.101;
33 }
34 interface all;
35 interface ge-0/0/2.0;
36 }
37 ospf {
38 traffic-engineering;
39 }
40 }
41

42 P1
43 protocols {
44 rsvp {
45 interface all;
46 }
47 mpls {
48 no-propagate-ttl;
49 interface ge-0/0/1.0;
50 interface ge-0/0/3.0;
51 }
52 ospf {
53 traffic-engineering;
54 }
55 }
56

57 P2
58 protocols {
59 rsvp {
60 interface all;
61 }
62 mpls {
63 no-propagate-ttl;
64 interface ge-0/0/1.0;
65 interface ge-0/0/3.0;
66 }
67 ospf {
68 traffic-engineering;
69 }
70 }
71

72 P3
73 protocols {
74 rsvp {
75 interface all;
76 }
77 mpls {
78 no-propagate-ttl;
79 interface ge-0/0/1.0;
80 interface ge-0/0/3.0;
81 }
82 ospf {
83 traffic-engineering;
84 }
85 }

TNT running over Juniper – RSVP-TE UHP
1 Launching TraceTunnel: 192.168.2.102 (192.168.2.102)
2 1 CE1 ( 172.16.0.5) <255,64> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
3 2 PE1 ( 172.16.0.2) <254,63> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
4

5 RTL | Length estimation : 3 | Revealed : 3 (difference : 0)
6 2.1 [REVEALED] left.P1 (192.168.1.2) <253,62> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
7 2.2 [REVEALED] left.P2 (192.168.1.6) <252,61> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
8 2.3 [REVEALED] left.P3 (192.168.1.10) <251,60> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 0
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9

10 3 left.PE2 (192.168.1.14) <250,62> [ frpla = 3 ][ rtla = 3(3) ][ qttl = 1 ][ uturn = 3 ]
11 4 CE2 (192.168.2.2) <250,61> [ frpla = 2 ][ rtla = 0(-1) ][ qttl = 1 ][ uturn = 0 ]]
12 5 CE3 (192.168.2.102) <250,60> [ frpla = 1 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]

Again, as one can observe, there is no difference in the trace revelation regarding the LDP case (in any configurations).

II. P2MP CIRCUITS (ALL INVISIBLE)

In this section, we study the VPRN case. In addition to MPLS, it requires the MP-BGP feature to build P2MP tunnels. We divide the
analysis in two invisible tunnels sub-cases: the Implicit Null model (relying on the PHP option) and the Explicit Null one (enabling the UHP
option). Note that we simplify a bit the given configurations for obvious readability purposes (as in the previous TE section). Moreover the
IP configuration is not exactly the same as for previous cases as its is a more complex MPLS usage.

A. VPN BGP MPLS – Implicit Null Model

1) Cisco Config – PHP:
cisco IOS 15.2 – MPLS BGP VPN PHP

1 PE1
2 version 15.2
3 no propagate-ttl
4 mpls label protocol ldp
5

6 ip vrf VPN_Y
7 rd 1:2
8 route-target export 1:2
9 route-target import 1:2

10

11 interface GigabitEthernet4/0
12 description PEtoCEVPN
13 ip vrf forwarding VPN_Y
14

15 router rip
16 address-family ipv4 vrf VPN_Y
17 redistribute bgp 1 metric 1
18 network 10.0.0.0
19

20 router bgp 1
21 address-family vpnv4
22 neighbor 10.0.0.131 activate
23 neighbor 10.0.0.131 send-community extended
24 neighbor 10.0.0.132 activate
25 neighbor 10.0.0.132 send-community extended
26 neighbor 10.0.0.130 activate
27 neighbor 10.0.0.130 send-community extended
28

29 address-family ipv4 vrf VPN_Y
30 redistribute rip
31 no synchronization
32

33 PE2
34 version 15.2
35 no propagate-ttl
36 ip vrf VPN_Y
37 rd 1:2
38 route-target export 1:2
39 route-target import 1:2
40

41 interface GigabitEthernet4/0
42 description PEtoCEVPN
43 ip vrf forwarding VPN_Y
44

45 router rip
46 address-family ipv4 vrf VPN_Y
47 redistribute bgp 1 metric 1
48 network 10.0.0.0
49

50 router bgp 1
51 address-family vpnv4
52 neighbor 10.0.0.130 activate
53 neighbor 10.0.0.130 send-community extended
54 neighbor 10.0.0.132 activate
55 neighbor 10.0.0.132 send-community extended
56 neighbor 10.0.0.133 activate
57 neighbor 10.0.0.133 send-community extended
58

59 address-family ipv4 vrf VPN_Y
60 redistribute rip
61 no synchronization
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TNT running over 15.2 – VPN BGP MPLS PHP
1 Launching TraceTunnel: 10.0.1.103 (10.0.1.103)
2 1 192.168.3.2 (192.168.3.2) <255,255> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
3 2 10.0.0.54 ( 10.0.0.54) <254,254> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
4

5 OPAQUE | Length estimation : 3 | Revealed : 0 (difference : 3)
6

7 3 10.0.0.58 ( 10.0.0.58) <250,250> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ][MPLS LSE | Label : 28 | mTTL : 252 ]
8 4 10.0.0.57 ( 10.0.0.57) <249,249> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ]

The bottom label is revealed and equal to 252. This is the only visible MPLS indication. No revelation is working on such Opaque
tunnels. Whatever the kind of probes sent to or through the VPRN, the IP address visible to TNT (or traceroute in general) is the
outgoing address. Despite its expired TTL, it is likely that the probe arriving on the Egress PE will be pushed to the VRF of the VPN
and its associated interface before generating the error message (the VPN being identified with the MPLS label contained in the packet).
Then, the interface where the packet actually expires is the one associated to the VRF. However, we are able to distinguish UHP and PHP
configurations (thanks to the so called LSE-TTL++), because the bottom label is equal to 255 for UHP and lower with PHP as we can see
here. Note that the two last IP addresses can also trigger an alarm. In any cases, we are able to discriminate them from other opaque tunnels
shown in previous P2P configurations. So we are able to identify their class as they are not possible to reveal.

2) Juniper Config – PHP:
Juniper – VPN BGP MPLS PHP

1 PE1
2 routing-instances
3 VRF1
4 instance-type vrf;
5 interface ge-0/0/2.0;
6 route-distinguisher 192.168.1.101:1;
7 vrf-target target:65000:1;
8 protocols
9 bgp

10 group ce
11 type external;
12 peer-as 1;
13 neighbor 172.16.0.1;
14 protocols
15 mpls
16 interface all;
17 no-propagate-ttl;
18

19 bgp
20 group internal-peers
21 type internal;
22 local-address 192.168.1.101;
23 family inet-vpn
24 any;
25 export next-hop-self;
26 neighbor 192.168.1.106;
27 neighbor 192.168.1.105;
28

29 PE2
30 routing-instances
31 VRF1
32 instance-type vrf;
33 interface ge-0/0/2.0;
34 route-distinguisher 192.168.1.105:1;
35 vrf-target target:65000:1;
36 protocols
37 bgp
38 group ce
39 type external;
40 peer-as 3;
41 neighbor 192.168.2.2;
42 protocols
43 mpls
44 no-propagate-ttl;
45 icmp-tunneling;
46 interface all;
47

48 bgp
49 group internal-peers
50 type internal;
51 local-address 192.168.1.105;
52 family inet-vpn
53 any;
54 export next-hop-self;
55 neighbor 192.168.1.106;
56 neighbor 192.168.1.101;
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TNT running over Juniper towards the buddy – BGP MPLS VPN PHP
1 Launching TraceTunnel: 192.168.2.102 (192.168.2.102)
2 1 CE1 ( 172.16.0.5) <255,64> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
3 2 PE1 ( 172.16.0.2) <254,63> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
4

5 RTL | Length estimation : 3 | Revealed : 1 (difference : 2)
6 2.1 CE2 (192.168.2.2) <250,62> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 1 ( Buddy used )
7

8 3 CE2 (192.168.2.2) <250,62> [ frpla = 3 ][ rtla = 3(3) ][ qttl = 1 ][ uturn = 3 ]
9 4 CE3 (192.168.2.102) <250,61> [ frpla = 2 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]

We can observe that CE2 appears twice. When targeting the buddy (192.168.2.1), we rediscover CE2 since it now appears as if it was
before the buddy in the topology. We say that we capture a twisted IP when targeting the buddy.

TNT running over Juniper – BGP MPLS VPN PHP
1 Launching TraceTunnel: 192.168.2.1 (192.168.2.1)
2 1 CE1 ( 172.16.0.5) <255,64> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
3 2 PE1 ( 172.16.0.2) <254,63> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ]
4

5 RTL | Length estimation : 3 | Revealed : 1 (difference : 2)
6 2.1 CE2 (192.168.2.2) <250,62> [ frpla = 0 ][ rtla = 0(0) ][ qttl = 1 ][ uturn = 0 ] - step 1 ( Buddy used )
7

8 3 CE2 (192.168.2.2) <250,62> [ frpla = 3 ][ rtla = 3(3) ][ qttl = 1 ][ uturn = 3 ]
9 4 192.168.2.1 (192.168.2.1) <250,63> [ frpla = 2 ][ rtla = 4(0) ][ qttl = 1 ][ uturn = 4 ]

With Juniper VPN, there is no Opaque indicator resulting from VPRN or any other configurations. A first explanation is that Juniper
routers, on the contrary to the independent mode enabled by default with Cisco routers, do not inject the whole IGP in LDP, but only their
loopback address using the ordered mode (see Sec. II). This mode limits the probability to face a non-controlled tunnel ending. However,
with VPRN configurations, a Juniper Egress LER deals with the same packet level situation as with Cisco routers. Up to the end of the
tunnel, the packet is still MPLS encapsulated with the end-to-end VPN non terminating label at the bottom of the stack. Juniper routers do
not, however, produce an Opaque indicator in that situation. Indeed, packets destined to the VPN are handled in a specific way with Juniper
devices: they are IP packets forwarded directly to the next-hop without looking at or manipulating the IP-TTL whatever its value.

The outcome of such a sliding packet is twofold. Firstly, the Egress hop is hidden in the transit trace, as with Cisco UHP but without the
duplicated IP. Secondly, when performing a direct trace (even with UDP) targeting the first address of the path within the VPN, i.e the IP
interface of the Egress LER belonging to the VPN, one can see that this address and its buddy appear in the wrong order. Indeed, in the
trace, the two addresses are switched, meaning that the CE IP address appears before the Egress one. Being forwarded without inspecting
the IP-TTL, probes targeting IP addresses belonging to the VPN are automatically forwarded to the CE router, where they expire. The next
probe, having a greater TTL, follows the same path as the one before, but can be forwarded back to the Egress LER by the CE router
before expiring. This loop results in the two addresses being switched regarding their actual location in the path. Finally, one can infer the
loop because two additional artifacts compared to RTLA (RTLA++) are visible: the TTL that deviates from its monotony and subsequent
IP addresses also raise alarms due to potential conflicting allocation.

B. VPN BGP MPLS – Explicit Null

1) Cisco Config – UHP:
cisco IOS 15.2 – MPLS BGP VPN PHP

1 PE1
2 version 15.2
3 no propagate-ttl
4 mpls label protocol ldp
5

6 ip vrf VPN_Y
7 rd 1:2
8 route-target export 1:2
9 route-target import 1:2

10

11 interface GigabitEthernet4/0
12 description PEtoCEVPN
13 ip vrf forwarding VPN_Y
14

15 router rip
16 address-family ipv4 vrf VPN_Y
17 redistribute bgp 1 metric 1
18 network 10.0.0.0
19

20 router bgp 1
21 address-family vpnv4
22 neighbor 10.0.0.131 activate
23 neighbor 10.0.0.131 send-community extended
24 neighbor 10.0.0.132 activate
25 neighbor 10.0.0.132 send-community extended
26 neighbor 10.0.0.130 activate
27 neighbor 10.0.0.130 send-community extended
28

29 address-family ipv4 vrf VPN_Y
30 redistribute rip
31

32 PE2
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33 version 15.2
34 no propagate-ttl
35 mpls ldp explicit-null
36

37 ip vrf VPN_Y
38 rd 1:2
39 route-target export 1:2
40 route-target import 1:2
41

42 interface GigabitEthernet4/0
43 description PEtoCEVPN
44 ip vrf forwarding VPN_Y
45

46 router rip
47 address-family ipv4 vrf VPN_Y
48 redistribute bgp 1 metric 1
49 network 10.0.0.0
50

51 router bgp 1
52 address-family vpnv4
53 neighbor 10.0.0.130 activate
54 neighbor 10.0.0.130 send-community extended
55 neighbor 10.0.0.132 activate
56 neighbor 10.0.0.132 send-community extended
57 neighbor 10.0.0.133 activate
58 neighbor 10.0.0.133 send-community extended
59

60 address-family ipv4 vrf VPN_Y
61 redistribute rip

TNT running over 15.2 – VPN BGP MPLS UHP
1 Launching TraceTunnel: 10.0.1.103 (10.0.1.103)
2 1 192.168.3.2 (192.168.3.2) <255,255> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
3 2 10.0.0.54 ( 10.0.0.54) <254,254> [ frpla = 0 ][ qttl = 1 ][ uturn = 0 ]
4

5 OPAQUE | Length estimation : 3 | Revealed : 0 (difference : 3)
6

7 3 10.0.0.58 ( 10.0.0.58) <250,250> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ][MPLS LSE | Label : 28 | mTTL : 255 ]
8 4 10.0.0.57 ( 10.0.0.57) <249,249> [ frpla = 3 ][ qttl = 1 ][ uturn = 0 ]

The bottom label is revealed and equal to 255. We can identify this tunnel as the VPRN UHP case but not reveal its content as for non
VPRN opaque ones.

To conclude, it appears that VPRN content cannot be revealed with TNT, while other Opaque tunnels configurations (i.e., routing devices
heterogeneity, BGP edge configuration) can. The mechanism behind the absence of content revelation can be explained by the IP address
collected by TNT from the source IP field in the ICMP reply. Usually, the collected address is the one assigned to the physical incoming
interface of the Egress PE. In the VPRN case, the collected IP is the one assigned to the interface on which the VRF is attached. In practice,
this corresponds to the outgoing interface towards the VPN at the customer’s side. Said otherwise, TNT collects the outgoing address instead
of the incoming one. Because the incoming address is the only one that enables a successful revelation, this type of Opaque tunnels cannot
be revealed yet.


