

Stochastic Models of Disordered Porous Materials for small-angle scattering analysis and more

Cedric Gommes

Dep. Chemical Engineering, University of Liège, Belgium

Leoben, July 3rd 2018

Outline

- ▶ Why models? in general and for small-angle scattering in particular
- Some stochastic models

- Boolean models
- Dead leaves models
- Gaussian random field models
- Examples of SAXS data analysis
- Supported nanoparticlesConfined liquids

And more...

- Predicting adsorption in disordered mesopores

Why use models?

► The engineer: To make inferences from incomplete data;

- The scientist: As a reality check, because models are falsifiable;
- The philosopher: Isn't the very purpose of science to produce useful models of reality?

Inferences about porous materials

Characterization data:

adsorption/desorption, mercury intrusion, microscopy, small-angle scattering, etc.

Surface areas, pore volumes, pore size distribution, solid size distribution, connectivity, tortuosity, etc. Or even predict useful macroscopic properties

An example of inference

the length of an undersea cable

Often, "no model" = crude model

Implicit model in many data analysis procedures

What the materials microstructure may look like*

*The Journal of Supercritical Fluids 107 (2016) 201

Small-Angle Scattering (SAXS or SANS)

BM26@ESRF

Typically, length scales from 1 nm to 100 nm are probed.

The mathematics of SAXS

JOURNAL OF APPLIED PHYSICS

VOLUME 28, NUMBER 6

JUNE, 1957

Peter Debye 1884-1966

Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application*

P. DEBYE, H. R. ANDERSON, JR., † AND H. BRUMBERGER Baker Laboratory of Chemistry, Cornell University, Ithaca, New York (Received January 2, 1957)

$$\gamma(\mathbf{r})\langle \eta^2 \rangle_{Av} = \langle \eta_A \eta_B \rangle_{Av}, \qquad (1)$$

$$i = 4\pi \langle \eta^2 \rangle_{Av} V \int_0^\infty \gamma(r) r^2 \frac{\sin k s r}{k s r} dr.$$
 (4)

* This research was supported by the Esso Research and Engineering Company, Elizabeth, New Jersey.

SAS data analysis for children

SAS data analysis for children

The missing information can be compensated with structural models

Contents lists available at ScienceDirect

Microporous and Mesoporous Materials

journal homepage: www.elsevier.com/locate/micromeso

Stochastic models of disordered mesoporous materials for small-angle scattering analysis and more

Cedric J. Gommes

Department of Chemical Engineering, University of Liège B6 A, Allée du Six Août 3, B-4000 Liège, Belgium

Microporous and Mesoporous Materials 257 (2018) 62-78

0.5

0.3

0.2

Outline

► Why models? in general and for small-angle scattering in particular

Some stochastic models	- Boolean models - Dead leaves models - Gaussian random field models
------------------------	--

Examples of SAXS data analysis

Supported nanoparticlesConfined liquids

- Predicting adsorption in disordered mesopores

Boolean models

Porosity

 $\phi_0 = \exp[-\theta V]$

Correlation function

 $C_{00}(r) = \phi_0^2 \exp[\theta K(r)]$ $K_R(r) = \frac{4\pi}{3} R^3 \left(1 - \frac{r}{2R}\right)^2 \left(1 + \frac{r}{4R}\right)$

Variations of the Boolean model

Dead-leave model

Gaussian random field models

Tuning the connectivity of GRF models

The type of mathematics in Gaussian-field models

The correlation function $P_{SS}(r)$

Three disordered mesoporous materials

N2 adsorption/desorption

SAXS

Carbon xerogel Mesoporous alumina Fumed silica

Carbon xerogel

Fumed silica

Alumina

Reality check: size distributions

Inferences: connectivity, tortuosity

Material Model	A_V [m ² cm ⁻³]	l ^(c) [Å]	l _s ^(c) [Å]	A ₃ [10 ³ Å ³]	φ _s [%]	φ ^(d) [%]	φ ^(d) [%]	$ au_p$ [-]	τ _s [-]	$d_p^{(m)}$ [Å]	d _s ^(m) [Å]
Xerogel G1	261	54	100	113	65±0.5	$\sim 10^{-3}$	\sim 10–4	1.4 ± 0.0	1.1 ± 0.0	55 ± 5	75 ± 5
Silica B2	173	148	83	48 397	36±1.4	$\sim 10^{-3}$	$\sim 10^{-3}$	1.1 ± 0.0	1.4 ± 0.0	200 ± 17	83 ± 8
Alumina											
B1	269	101	48	186	33±1.3	1.4 ± 0.3	$\sim 10^{-6}$	1.1 ± 0.0	2.1 ± 0.1	67±5	67±5
B2	318	86	40	204	32±1.0	$\sim 10^{-1}$	$\sim 10^{-4}$	1.1 ± 0.0	1.8 ± 0.1	69±4	48 ± 4
DL	355	77	36	168	32±1.3	$\sim 10^{-3}$	$\sim 10^{-2}$	1.1±0.0	1.5 ± 0.0	65±5	46±5
G1	244	112	53	166	33±1.7	$\sim 10^{-2}$	$\sim 10^{-5}$	1.1±0.0	1.4 ± 0.0	74±5	53±5
G2	274	99	47	190	32±0.5	$\sim 10^{-1}$	$\sim 10^{-3}$	1.2±0.0	1.3±0.0	84±5	39±4

Outline

- ► Why models? in general and for small-angle scattering in particular
- Some stochastic models

- Boolean models
- Dead leaves models
- Gaussian random field models

Examples of SAXS data analysis

Supported nanoparticlesConfined liquids

- Predicting adsorption in disordered mesopores

Example 1: supported nanoparticles

Example 2: confined liquids

Plurigaussian models of confined liquids

C. Lantuéjoul, Geostatistical Simulations, Springer 2002

Nanometer-scale wetting transitions

C. Gommes, J. Appl. Cryst. (2013) 46, 493-504

Outline

- ► Why models? in general and for small-angle scattering in particular
- Some stochastic models

- Boolean models
- Dead leaves models
- Gaussian random field models

• Examples of SAXS data analysis

Supported nanoparticlesConfined liquids

And more...

- Analyzing adsorption in disordered mesopores

Disorder matters: SBA-15 ordered silica

 SBA-15 pore structure: Electron tomography

 1.2 ± 0.2

 σ_R (nm)

		20 nm
	Electron Tomography	Scattering
R_m (nm)	3.6 ± 0.2	3.7

0.6

 SBA-15 pore structure: Small-Angle Scattering

Nitrogen adsorption isotherms

Gommes et al. Chem. Mater. 2009

How to model disorder?

Mild disorder: add defects

• Wild disorder?

Ravikovitch & Neimark, Langmuir 22 (**2006**) 11171 Gommes, *Langmuir* 28 (**2012**) 5101

Plurigaussian model of the condensate

Energy landscape of a liquid condensate in mesoporous alumina

Carbon aerogels: from SAXS to adsorption

Hysteresis in monodispersed GRF models

Conclusions

- Geometrical complexity does not rule out conceptual simplicity;
- Disorder is not merely a nuisance, it changes the physics
- Many mathematical models are available from other fields (e.g. geostatistics), so let's use them!

