

Outcome of patients with Myelofibrosis relapsing after allogeneic stem cell transplant: a retrospective study by the Chronic Malignancies Working Party of EBMT

Donal P. McLornan,¹ Richard Szydlo,² Marie Robin,³ Anja van Biezen,⁴ Linda Koster,⁴ Henrik J. P. Blok,⁴ Maria T. Van Lint,⁵ Jürgen Finke,⁶ Antonin Vitek,⁷ Kristina Carlson,⁸ Laimonas Griskevicius,⁹ Ernst Holler,¹⁰ Maija Itälä-Remes,¹¹ Michel Schaap,¹² Gerard Socié,³ Jacques-Olivier Bay,¹³ Yves Beguin,¹⁴ Benedetto Bruno,¹⁵ Jan J. Cornelissen,¹⁶ Tobias Gedde-Dahl,¹⁷ Per Ljungman,¹⁸ Marie T. Rubio,¹⁹ Ibrahim Yakoub-Agha,²⁰ Evgeny Klyuchnikov,²¹ Eduardo Olavarria,² Yves Chalandon²² and Nicolaus Kröger²¹

Summary

Allogeneic Haematopoietic Stem Cell Transplant (allo-HSCT) remains the only curative approach for Myelofibrosis (MF). Scarce information exists in the literature on the outcome and, indeed, management of those MF patients who relapse following transplant. We hereby report on the management and outcome of 202 patients who relapsed post allo-HSCT for MF.

Keywords: myelofibrosis, allogeneic stem cell transplant, fibrosis, JAK inhibitors, relapse.

¹Comprehensive Cancer Centre, Division of Haematology, King's College, London, ²Hammersmith Hospital NHS Foundation Trust, London, United Kingdom, ³Service d'Hématologie-Greffe, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France, ⁴EBMT Data Office, University Medical Centre, Leiden, the Netherlands, ⁵Ospedale San Martino, Genova, Italy, ⁶University of Freiburg, Freiburg, Germany, ⁷Institute of Haematology and Blood Transfusion, Prague, Czech Republic, ⁸University Hospital Uppsala, Uppsala, Sweden, ⁹Haematology, Oncology & Transfusion Centre, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania, ¹⁰Department of Haematology and Oncology, University of Regensburg, Regensburg, Germany, ¹¹Stem Cell Transplant Unit, Turku University Hospital, Turku, Finland, ¹²Department of Haematology, Radboud University Medical Centre, Nijmegen, the Netherlands, ¹³Service d'hématologie clinique Adulte et pédiatrie, CHU ESTAING, Clermont, France, ¹⁴Department of Haematology, University of Liege, Liege, Belgium, ¹⁵A.O.U Città della Salute e della Scienza di Torino, S.S.C.V.D Trapianto di Cellule Staminali, Torino, Italy, ¹⁶Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands, ¹⁷Clinic for Cancer,

Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Norway, ¹⁸Department of Haematology, Karolinska University Hospital, Stockholm, Sweden, ¹⁹Department of Haematology, Hopital d'Enfants, Nancy, France, ²⁰CHU de Lille, LIRIC, INSERM U995, Universite de Lille, Lille, France, ²¹University Hospital Eppendorf, Hamburg, Germany and ²²Division of Haematology, Geneva University Hospitals, Geneva, Switzerland

Received 9 December 2017; accepted for publication 19 March 2018

Correspondence: Professor Nicolaus Kröger, Professor of Medicine, Director, Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg/Germany.

E-mail: nkroeger@uke.uni-hamburg.de

Over the last decade, there has been a significant increase in the number of patients with Myelofibrosis (MF) undergoing Allogeneic Haematopoietic Stem Cell Transplantation (allo-HSCT). The European Society for Blood and Marrow Transplantation (EBMT) registry reported on 181 episodes in 2004 which had risen considerably to 559 episodes in 2014. Current practice often adheres to consensus European LeukaemiaNet (ELN)/EBMT guidelines that suggest consideration towards transplantation in intermediate-2- or high-risk disease, as defined by the International Prognostic Scoring System (IPSS), and for patients who are <70 years of age. Moreover, patients with intermediate-1-risk disease and age <65 years could be considered if they present with either refractory, transfusion-dependent anaemia, or a percentage of blasts in peripheral blood (PB) >2%, or adverse cytogenetics (Kröger *et al.* 2015).

Despite the advent of many novel agents in MF, allo-HSCT remains the only known curative approach (reviewed in McLornan *et al.* 2012). However, disease relapse remains a significant barrier to successful outcome. Long-term results from the first prospective study of reduced intensity conditioned (RIC) allo-HSCT co-ordinated by the EBMT suggested a significant relapse risk of up to 22% at 3 years and approximately 28% at 5 years, although historically relapse rates were higher (Kröger *et al.* 2009a). We hereby report on a retrospective analysis of 202 patients with MF registered in the EBMT database who have relapsed following allo-HSCT.

Methods

This was a retrospective, multicentre, EBMT registry-based analysis. All patients whose transplant data are reported to the EBMT by participating centres provide informed consent to use the information for anonymised research. Patient selection

was performed by identifying adult patients who underwent first allo-HSCT for MF between the years 2000–2014, using either RIC or myeloablative conditioning (MAC). Those with documented and dated relapse (after Day +30) and sufficient clinical details were analysed. Statistical analyses were performed with SPSS 22 (IBM, Armonk, NY, USA). Patient-, disease- and transplant-related variables were expressed as median and range for continuous variables and frequencies for categorical variables. Overall Survival (OS) was calculated from the date of documented relapse until death or last observation alive. Patients alive at their last follow-up were censored. This study was performed in accordance with the principles of the Declaration of Helsinki and approved by the Chronic Malignancies Working Party of the EBMT.

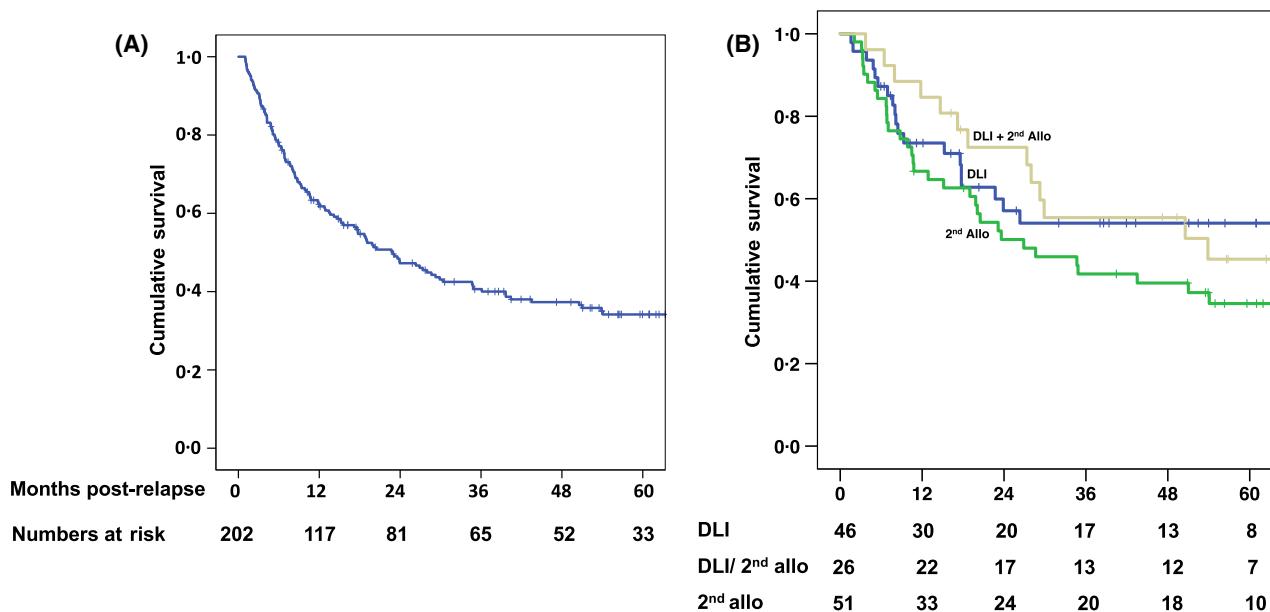
Results

From the registry, a total of 251 relapsed patients were identified within an entire patient cohort of 1371, giving an estimated relapse incidence of 18.3%, albeit dependent on adequate reporting. For this analysis, we excluded cases with insufficient clinical information, umbilical cord blood and haploidentical transplants and, hence, a total of 202 patients were included (Table I). A total of 165 patients had a diagnosis of primary MF and 37 secondary MF at the time of transplant. The cohort consisted of 133 males and 69 females with a median age at transplantation of 55 years (range, 22–69 years). Sixty-six (33%) patients underwent MAC and 136 (67%) patients had RIC. The most frequent conditioning regimens across the entire cohort were fludarabine/busulphan (Flu/Bu; 36%), fludarabine/melphalan (Flu/Mel; 13%) and busulphan/cyclophosphamide (BuCy; 6%). The most common agent for *in vivo* T-cell depletion was antithymocyte

globulin (ATG). No *ex vivo* T-cell depletion was reported. The main source of haematopoietic stem cells (HSC) was peripheral blood (175 patients; 87%) whereas 27 (13%) received BM-derived HSC. Donors were human leucocyte antigen-matched related ($n = 107$) or unrelated [matched/mismatched ($n = 95$)] (Table I).

The median time from diagnosis of MF to transplant was 28 months (range, 2–321 months). The median time to relapse was relatively short, at 7.1 months (range 1.4–111 months), with a median OS from the time of relapse of 22.9 months for the entire cohort [95% confidence interval (CI) 16–29.6; Fig 1A]. Collectively, without treatment stratification, there was a significant difference in survival outcome for those relapsing <7.1 months post allo-HSCT [median survival 12.9 months (95% CI 27.2–44.6)] compared to those relapsing after 7.1 months following the initial allo-HSCT episode [median survival 36.9 months (95% CI 42.8–62.8); Log Rank Mantel Cox: $P < 0.002$]. Disease duration prior to allo-HSCT did not significantly affect outcome post-relapse.

Heterogeneous practice existed regarding management of the relapse episode and was documented in 165 patients (82%). A total of 47 (23%) patients received a donor


lymphocyte infusion (DLI) alone (median survival estimate, 76 months); 23 (11%) had chemotherapy alone (complete regimen details not documented; median survival approximately 23 months) whereas 18 (20%) patients had DLI combined with chemotherapy. Fifty-one (25%) patients underwent 2nd allo-HSCT alone (median survival 26.9 months) and 26 (13%) underwent DLI and 2nd allo-HSCT (median survival estimate, 54 months). The median time to receive DLI in the entire cohort was relatively short at 43 days. Most frequent conditioning regimens for 2nd allografts were FluBu and fludarabine/ATG (Flu/ATG). Active management – if any – was not documented for 37 (18%) patients and hence was not analysed. Survival median estimates are highlighted in Table SI for all groups. The median OS from the time of relapse for those receiving DLI alone, DLI followed by 2nd allo-HSCT or 2nd allo-HSCT is demonstrated in Fig 1B.

Discussion

Treatment of relapse evidently presents huge challenges and the heterogeneous management strategies highlighted reflects current practice. Direct comparison between

Characteristic	<i>n</i>
Median age, years (range)	55 (22–69)
Gender	
Male	133
Female	69
Diagnosis at time of transplant	
Primary myelofibrosis	165
Secondary myelofibrosis	37
Median time from diagnosis to transplant, months (range)	28 (2–321)
Median time to relapse post-transplant, months (range)	7.1 (1.4–111)
Median follow-up post-transplant for patients alive, months (range)	52.5 (4–116)
Donor type	
Matched related	107
Unrelated matched	35
Unrelated mismatched/degree of match not stated	60
Conditioning	
Myeloablative	66
Reduced intensity	136
Stem cell source	
Bone marrow	27
Peripheral blood	175
Graft-versus-host disease during first transplant	
Acute	122
No graft-versus-host disease	34
Grade 1	37
Grade 2–4	9
Missing, ungraded or unknown	
Chronic	
Limited	51
Extensive	33
Missing	118

Table I. Patient characteristics ($n = 202$).

Fig 1. (A) Cumulative overall survival post-relapse of entire cohort as estimated by the Kaplan-Meier method. Median overall survival from the time of relapse of approximately 23 months for the entire cohort (95% Confidence Intervals 16–29.6). (B) Cumulative overall survival post-relapse of those patients receiving either DLI, DLI+2nd allo-HSCT or 2nd allo-HSCT alone as estimated by the Kaplan-Meier method. Median overall survival from the time of relapse was approximately 76 months for the DLI alone cohort, 54 months for the DLI+2nd allo-HSCT cohort and 27 months for the 2nd allo-HSCT. allo-HSCT, allogeneic haemopoietic stem cell transplant; DLI, donor lymphocyte infusion. [Colour figure can be viewed at wileyonlinelibrary.com]

therapeutic interventions to gauge efficacy is not feasible from this analysis as bias could well be influenced by patient performance status, heterogeneous timing of relapse, patient and physician choice and availability of either DLI or second allo-HSCT. No robust details were available concerning the dynamic IPSS or pre-transplant therapy and it is unknown if any of the patients transplanted in more recent years had received JAK inhibitors pre-transplant. Nonetheless, this retrospective analysis represents the largest study to date which documents the outcome and management of MF patients who undergo relapse following allo-HSCT and, despite its limitations, provides important and clinically relevant information.

Survival varies markedly following relapse, in this study the median survival was just less than 2 years, i.e., approximately 23 months. It is clear that earlier relapse following MF allo-HSCT has a much worse prognosis than later relapses, akin to other myeloid disorders. Moreover, our data importantly suggests there is a beneficial role to be considered for adoptive immunotherapeutic approaches with DLI and/or 2nd allo-HSCT. DLI was administered to 45% of the entire cohort overall and almost 38% of patients underwent a second allograft either alone or following the use of DLI. Indeed, the efficacy and safety of dose escalating DLI in the post allo-HSCT setting for MF has previously been described (Kröger *et al*, 2009b; Klyuchnikov *et al*, 2012). Survival following 2nd allo-HSCT (either alone or following DLI) is encouraging, although conclusions regarding absolute benefits of a 2nd transplant

procedure from this study are somewhat limited as this most often occurs in a highly selected group who survive long enough and are fit enough to undergo such intervention. Furthermore, 2nd allograft following DLI means that the recipient may not have responded to DLI alone and hence direct comparisons between the two modalities are not feasible. However, one should carefully evaluate the patient who has relapsed to decide whether a 2nd allo-HSCT is appropriate. Klyuchnikov *et al* (2012) previously reported on acceptable toxicity and outcomes in a cohort of relapsed patients who proceeded to 2nd allo-HSCT, utilising an alternative donor, the majority of whom received fludarabine, treosulphan and ATG-based conditioning.

The role of splenectomy and its effect on relapse risk and subsequent outcome remains unclear and was not analysed in this study due to a lack of complete information on splenectomy status. A recent study has suggested that exposure to JAK1/2 inhibitors did not adversely affect post-transplant outcomes and that there was superior survival and lower non-relapse mortality in patients who had clinical improvement with JAK1/2 inhibitors prior to allo-HSCT (Shanavas *et al*, 2016). The role of these agents in the management of relapse remains intriguing, yet ill-defined. Janson *et al* (2016) recently reported on 10 patients from a single centre who had relapsed post MF allo-HSCT (median time to relapse 24 months; range 2.7–85.7) and who received ruxolitinib therapy (Novartis Pharmaceuticals, Basel, Switzerland) at a median dose of 10 mg twice daily. The median

treatment duration was 143.5 days (range, 12–369). Although transient amelioration of disease-related constitutional symptoms, transfusion burden and spleen reduction was apparent in some, progressive disease eventually occurred in all patients. No significant improvement in chimerism or reduction in *JAK2* allelic burden quantification was evident. Of note, all patients who had concomitant graft-versus-host-disease (GVHD), had an amelioration or resolution of their GVHD.

In conclusion, this retrospective study is, to the best of our knowledge, the first to describe the outcome and 'real-world' management of relapsed patients post MF allo-HSCT. Timing of relapse appears critical, with those relapsing early having worse outcomes. Close monitoring of chimerism and minimal residual disease would therefore be paramount. The role of DLI and, where required, 2nd allo-HSCT for relapsed MF should be studied collaboratively as there is a suggestion of survival benefit for those fit enough to undergo such a procedure. How the era of *JAK* inhibitors for the therapy of MF will affect both relapse risk and management, however, remains unclear.

References

- Janson, D., Ayuk, F.A., Wolschke, C., Christopeit, M., Badbaran, A., von Pein, U.M., van Randenborgh, A. & Kroeger, N. (2016) Ruxolitinib for myelofibrosis patients relapsing after allogeneic hematopoietic transplantation. *Blood*, **128**, 1948.
- Klyuchnikov, E., Holler, E., Bornhäuser, M., Kobbe, G., Nagler, A., Shimoni, A., Könecke, C., Wolschke, C., Bacher, U., Zander, A.R. & Kröger, N. (2012) Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. *British Journal of Haematology*, **159**, 172–181.
- Kröger, N., Holler, E., Kobbe, G., Bornhäuser, M., Schwerdtfeger, R., Baurmann, H., Nagler, A., Bethge, W., Stelljes, M., Uharek, L., Wandt, H., Burchert, A., Corradini, P., Schubert, J., Kaufmann, M., Dreger, P., Wulf, G.G., Einsele, H., Zabelina, T., Kvasnicka, H.M., Thiele, J., Brand, R., Zander, A.R., Niederwieser, D. & de Witte, T.M. (2009a) Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. *Blood*, **114**, 5264–5270.
- Kröger, N., Alchalby, H., Klyuchnikov, E., Badbaran, A., Hildebrandt, Y., Ayuk, F., Bacher, U., Bock, O., Kvasnicka, M., Fehse, B. & Zander, A. (2009b) *JAK2*-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. *Blood*, **113**, 1866–1868.
- Kröger, N.M., Deeg, J.H., Olavarria, E., Niederwieser, D., Bacigalupo, A., Barbui, T., Rambaldi, A., Mesa, R., Tefferi, A., Griesshammer, M., Gupta, V., Harrison, C., Alchalby, H., Vannucchi, A.M., Cervantes, F., Robin, M., Ditschkowski, M., Fauble, V., McLornan, D., Ballen, K., Popat, U.R., Passamonti, F., Rondelli, D. & Barosi, G. (2015) Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. *Leukemia*, **29**, 2126–2133.
- McLornan, D.P., Mead, A.J., Jackson, G. & Harrison, C.N. (2012) Allogeneic stem cell transplantation for myelofibrosis in 2012. *British Journal of Haematology*, **157**, 413–425.
- Shanavas, M., Popat, U., Michaelis, L.C., Fauble, V., McLornan, D., Klisovic, R., Masicarenhas, J., Tamari, R., Arcasoy, M.O., Davies, J., Gergis, U., Ukaegbu, O.C., Kamble, R.T., Storring, J.M., Majhail, N.S., Romee, R., Verstovsek, S., Pagliuca, A., Vasu, S., Ernst, B., Atenafu, E.G., Hanif, A., Champlin, R., Hari, P. & Gupta, V. (2016) Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis with prior exposure to Janus Kinase 1/2 inhibitors. *Biology of Blood Marrow Transplantation*, **22**, 432–440.

Author contributions

DML, RS, MR, YC and NK designed the study and contributed data. DML and RS analysed the data. AVB, LK, HJPB contributed essential data management. All the remaining authors (MVL, JF, AV, KC, LG, EH, MIR, MS, GS, JB, BB, JC, TG, PL, MTR, IYA, EK, EO) contributed data to the study and every author critically appraised and approved the final version of the paper.

Competing interests

The authors have no competing interests.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table SI. Summary of management of relapse post allo-HSCT.