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Allergic rhinitis is the most common clinical presentation of 
allergy, affecting 400 million people worldwide, with increas-
ing incidence in westernized countries1,2. To elucidate the 
genetic architecture and understand the underlying disease 
mechanisms, we carried out a meta-analysis of allergic rhini-
tis in 59,762 cases and 152,358 controls of European ancestry 
and identified a total of 41 risk loci for allergic rhinitis, includ-
ing 20 loci not previously associated with allergic rhinitis, 
which were confirmed in a replication phase of 60,720 cases 
and 618,527 controls. Functional annotation implicated genes 
involved in various immune pathways, and fine mapping of 
the HLA region suggested amino acid variants important for 
antigen binding. We further performed genome-wide associa-
tion study (GWAS) analyses of allergic sensitization against 
inhalant allergens and nonallergic rhinitis, which suggested 
shared genetic mechanisms across rhinitis-related traits. 
Future studies of the identified loci and genes might identify 
novel targets for treatment and prevention of allergic rhinitis.

Allergic rhinitis, an inflammatory disorder of the nasal mucosa, 
is mediated by allergic hypersensitivity responses to environmental 
allergens1. It has substantial adverse effects on quality of life and 
health-care expenditures. The underlying causes of allergic rhinitis 
are still not understood, and prevention of the disease is not pos-
sible. The heritability of allergic rhinitis has been estimated to be 
more than 65% (refs 3,4). Seven loci have been associated with aller-
gic rhinitis in GWAS on allergic rhinitis, and other loci have been 
suggested from GWAS on related traits such as self-reported allergy, 
asthma plus hay fever, or allergic sensitization5–9; however only a few 
of these findings have been replicated.

We carried out a large-scale meta-GWAS on allergic rhinitis 
including a discovery meta-analysis of 16,531,985 genetic markers 
from 18 studies comprising 59,762 cases and 152,358 controls of 
primarily European ancestry (Supplementary Table 1 and cohort-
recruitment details in Supplementary Note). We report the genetic 
heritability on the liability scale of allergic rhinitis to be at least 
7.8% (assuming 10% disease prevalence), with a genomic infla-
tion of 1.048 (Supplementary Fig. 1). We identified 42 genetic loci 
with index markers below genome-wide significance (P <  5 ×  10−8), 
of which 21 have previously been reported in relation to aller-
gic rhinitis or other inhalant allergy6–9 (Fig. 1, Tables 1 and 2, and 
Supplementary Figs. 2 and 3).

One study (23andMe) had a proportionally large weight (~80%) 
in the discovery phase. Overall, there was good agreement between 
23andMe and the other studies with respect to effect size and direc-
tion and regional association patterns (Supplementary Table 2 
and Supplementary Figs. 4 and 5), and the genetic correlation was 
0.80 (P <  2 ×  10−17). The heterogeneity between 23andMe and the 
remaining studies was statistically significant (P <  0.05) for 7 of 42 
loci, in most cases because of a smaller effect size in 23andMe. This 

finding was probably due to many non-23andMe studies using a 
more robust phenotype definition of doctor-diagnosed allergic 
 rhinitis (Supplementary Table 3), which tended to result in larger 
effect sizes (Supplementary Table 4).

The index markers from a total of 25 loci that had not previously 
been associated with allergic rhinitis or other inhalant allergy were 
carried forward to the replication phase. These markers included 
16 loci that showed genome-wide-significant association in the 
discovery phase and evidence of association (P <  0.05) in both 
23andMe and non-23andMe studies (Supplementary Table 2), and 
an additional nine loci that were selected from the P-value stratum 
between 5 ×  10−8 and 1 ×  10−6, on the basis of enrichment of gene 
sets involved in immunological signaling (Supplementary Table 5). 
We sought replication in another ten studies with 60,720 cases and 
618,527 controls. Of the 25 loci, 20 reached a Bonferroni-corrected 
significance threshold of 0.05 (P <  0.0019) in a meta-analysis of rep-
lication studies (Fig. 1 (blue) and Table 2) and also reached genome-
wide significance in the combined fixed-effect meta-analysis of 
discovery and replication studies (Table 2). Evidence of heterogene-
ity was seen for one of these loci (rs1504215), which did not reach 
statistical significance in the random-effects model (0.95 (0.92; 
0.97), P =  2.83 ×  10−7; Supplementary Fig. 3).

A conditional analysis of top loci identified 13 additional 
independent variants at P <  1 ×  10−5, four of which were genome-
wide significant (near WDR36, HLA-DQB1, IL1RL1, and LPP; 
Supplementary Table 6 and Supplementary Fig. 5).

To gain insight into the functional consequences of known and 
novel loci, we used a number of data sources, including: (i) 11 
expression quantitative trait locus (eQTL) sets and one methylation 
quantitative trait locus (meQTL) set from blood and blood subsets; 
(ii) two eQTL sets and one meQTL set from lung tissue; and (iii) 
data on enhancer–promoter interactions in 15 different blood sub-
sets. We found support for regulatory effects on coding genes for 
33 of the 41 loci. Many loci showed evidence of regulatory effects 
across a wide range of immune-cell types (including B and T cells), 
whereas other loci seemed to be cell-type specific (Supplementary 
Table 7). Calculating the ‘credible set’ of markers for each locus 
through a Bayesian approach that selected markers likely to contain 
the causal disease-associated markers (Supplementary Table 8) and 
then looking up those markers in the Variant Effect Predictor data-
base generated a list of 17 markers producing amino acid changes, 
including deleterious changes in NUSAP1, SULT1A1 and PLCL, as 
predicted by SIFT (Supplementary Table 9).

The major histocompatibility complex (MHC) on chromosome 
6p contained some of the strongest association signals in the GWAS, 
including independent signals located around HLA-DQB and HLA-
B. The top variant at HLA-DQB was an eQTL for several HLA genes, 
including HLA-DQB1, HLA-DQA1, HLA-DQA2, and HLA-DRB1 
in immune and/or lung tissue, and the top variant at HLA-B was 
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an eQTL for MICA (Supplementary Table 7). In addition, we found 
associations with several classical HLA alleles, including HLA-
DQB1*02:02, HLA-DQB1*03:01, HLA-DRB1*04:01, and HLA-
C*04:01, which were in weak linkage disequilibrium (LD) (r2 <  0.1) 
with the GWAS top SNPs (Supplementary Tables 10 and 11), and 
strong associations with well-imputed amino acid variants, includ-
ing HLA-DQB1 His30 (P =  2.06 ×  10−28, odds ratio (OR) =  0.91) 
and HLA-B Asp116/His116-/Leu116 (P =  6.00 ×  10−13, OR =  1.06) 
(Supplementary Tables 12 and 13). Within HLA-DQB1, the amino 
acid variant was in moderate LD (r2 =  0.71) with the GWAS top 

SNP and accounted for most of the SNP association (rs34004019, 
P =  2.18 ×  10−28, OR =  0.88, conditional P =  1.35 ×  10−3). Within 
HLA-B, the strongest associated amino acid variant was only in weak 
LD (r2 =  0.23) with the top SNP and accounted for a small part of the 
SNP association (rs2428494, P =  3.99 ×  10−15, OR =  1.07, conditional 
P =  3.23 ×  10−10). Importantly, the strongest associated amino acid 
variants in HLA-DQB1 and HLA-B, respectively, were both located 
in the peptide-binding pockets with a high likelihood of affecting 
MHC–peptide interaction (Fig. 2). MHC class II molecules, includ-
ing HLA-DQ, are known for their roles in allergen binding and type 
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Fig. 1 | Manhattan plot of the meta-GWAs discovery phase. Circular plot of P values, calculated from the two-tailed z score from an inverse-variance-
weighted fixed-effect meta-analysis of association of 16,531,985 genetic markers with allergic rhinitis from the discovery phase, including 212,120 
individuals. Only markers with P <  1 ×  10−3 are shown. Labels indicate the nearest gene name for the index marker in the locus (the marker with the lowest  
P value). Green labels indicate loci previously associated with allergy; blue labels indicate novel allergic rhinitis–associated loci; gray labels indicate novel 
loci that were not carried forward to the replication phase. Green line indicates the level of genome-wide significance (P =  5 ×  10−8).
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2 helper T cell (TH2)-driven immune responses10; our results there-
fore suggest that the GWAS signal at this locus involves structural 
changes related to allergen binding properties. This effect might 
be in addition to gene-regulatory effects similar to those found for 
autoimmune disease11,12. Most of the 20 loci not previously asso-
ciated with allergic rhinitis implicate genes with a known role in 
the immune system, including IL7R13,14, SH2B3 (ref. 15), CEBPA-
CEBPG16,17, CXCR5 (ref. 18), FCER1G, NFKB1 (ref. 19), BACH2 
(refs 20,21), TYRO3 (ref. 22), LTK23, VPRBP24, SPPL3 (ref. 25), OASL26, 
RORA27, and TNFSF11 (ref. 28). Other loci implicated genes with no 
clear function in allergic rhinitis pathogenesis. These included one 
of the strongest associated loci in this meta-analysis at 12q24.31, 
with the top signal located between CDK2AP1 and C12orf65, and 
containing cis-eQTLs in blood and lung tissue for several genes and 
evidence of enhancer–promoter interaction with DDX55 in various 
immune cells (Supplementary Table 14 and further locus descrip-
tion in Supplementary Note). Concomitantly with the current 
study, a GWAS combining asthma, eczema, and allergic rhinitis was 
conducted29. Most (15/20) of the identified allergic rhinitis–associ-
ated loci in our study were also suggested in the previous, less spe-
cific GWAS29 (as indicated in Table 2), whereas many suggested loci 
from the previous GWAS were not identified in our study. Asthma, 
eczema, and allergic rhinitis are related but distinct disease entities, 
often with separate disease mechanisms; for example, allergic sen-
sitization is present in only 50% of children with asthma30 and 35% 
of children with eczema31. Our results therefore complement those 
from the less specific ‘atopic phenotype’ GWAS29 by pinpointing loci 
specifically associated and replicated in relation to allergic rhinitis.

Allergic rhinitis–associated loci were significantly enriched 
(P <  1 ×  10−5) in variants reported to be associated with autoimmune 
disorders. Reported autoimmune variants were located within 1 Mb 
of 31 (76%) of the 41 allergic rhinitis–associated loci. For 24 of these, 
an autoimmune top SNP was also associated with allergic rhinitis, 
and for 12 of these, the autoimmune top SNP was in LD (r2 >  0.5) 
with the allergic rhinitis top SNP (Supplementary Table 15). For 
approximately half of these, the direction of the effect was the same 
for the autoimmune and allergic rhinitis top SNP, in line with find-
ings from a previous study32, thus underlining the complex genetic 
relationship between allergic rhinitis and autoimmunity, which 
might involve shared as well as diverging molecular mechanisms.

Assessment of the enrichment of allergic rhinitis–associated vari-
ant burden in open chromatin, as defined by DNase-hypersensitive 
sites, showed a clear enrichment in several blood and immune-cell 
subsets, with the largest enrichment in T cells (CD3 expressing), 
B cells (CD19 expressing), and T and NK cells (CD56 expressing) 
(Fig. 3, Supplementary Table 16 and Supplementary Fig. 6). We also 
probed tissue enrichment by using gene-expression data from a 
wide number of sources and observed enrichment of allergic rhini-
tis–associated genes in blood and immune-cell subsets, as well as in 
tissues of the respiratory system, including the oropharynx and the 
respiratory and nasal mucosa (Supplementary Table 17).

To explore biological connections and identify new path-
ways associated with allergic rhinitis, we combined all genes sug-
gested from the eQTL and meQTL analyses, enhancer–promoter 
 interactions, and localization within the top loci. The resultant pri-
oritized gene set consisted of 255 genes, of which 89 (~36%) were 

Table 1 | Association results of index markers (variant with lowest P value for each locus) previously reported in relation to allergic 
rhinitis or other inhalant allergy

Discovery

Variant Locus Nearest genes eA/OA eAF n (studies) Or 95% Ci P Het. P

Known
rs34004019 6p21.32 HLA-DQB1, HLA-DQA1 G/A 0.27 196,951 (11) 0.89 0.87–0.90 1.00 ×  10–30 0.41

rs950881 2q12.1 IL1RL1, IL1RL1 T/G 0.15 212,120 (18) 0.88 0.87–0.90 1.74 ×  10–30 0.91

rs5743618 4p14 TLR1, TLR10 A/C 0.27 210,652 (17) 0.90 0.89–0.92 4.38 ×  10–27 0.70

rs1438673 5q22.1 CAMK4, WDR36 C/T 0.50 212,120 (18) 1.08 1.07–1.10 3.15 ×  10–26 0.26

rs7936323 11q13.5 LRRC32, C11orf30 A/G 0.48 212,120 (18) 1.08 1.06–1.09 6.53 ×  10–24 0.0001

rs2428494 6p21.33 HLA-B, HLA-C A/T 0.42 195,753 (12) 1.08 1.06–1.09 7.01 ×  10–19 0.25

rs11644510 16p13.13 RMI2, CLEC16A T/C 0.37 212,120 (18) 0.93 0.92–0.95 1.58 ×  10–17 0.65

rs12939457 17q12 GSDMB, ZPBP2 C/T 0.44 212,120 (18) 0.94 0.92–0.95 2.35 ×  10–17 0.02

rs148505069 4q27 IL21, IL2 G/A 0.33 212,120 (18) 1.07 1.05–1.08 2.54 ×  10–15 0.02

rs13395467 2p25.1 ID2, RNF144A G/A 0.28 212,120 (18) 0.94 0.92–0.95 9.93 ×  10–15 0.61

rs9775039 9p24.1 IL33, RANBP6 A/G 0.16 212,120 (18) 1.08 1.06–1.10 2.22 ×  10–14 0.40

rs2164068 2q33.1 PLCL1 A/T 0.49 212,120 (18) 0.94 0.93–0.96 4.21 ×  10–14 0.82

rs2030519 3q28 TPRG1, LPP G/A 0.49 212,120 (18) 1.06 1.04–1.07 1.83 ×  10–13 0.12

rs11256017 10p14 CELF2, GATA3 T/C 0.18 212,120 (18) 1.07 1.05–1.09 2.72 ×  10–12 0.60

rs17294280 15q22.33 AAGAB, SMAD3 G/A 0.25 212,120 (18) 1.07 1.05–1.09 5.97 ×  10–12 0.07

rs7824993 8q21.13 ZBTB10, TPD52 A/G 0.37 212,120 (18) 1.05 1.04–1.07 1.86 ×  10–10 0.56

rs9282864 16p11.2 SULT1A1, SULT1A2 C/A 0.33 208,761 (16) 0.94 0.93–0.96 4.69 ×  10–10 0.03

rs9687749 5q31.1 IL13, RAD50 T/G 0.44 207,604 (16) 1.06 1.04–1.09 1.84 ×  10–9 0.19

rs61977073 14q21.1 TTC6 G/A 0.22 212,120 (18) 1.06 1.04–1.08 5.78 ×  10–9 0.05

rs6470578 8q24.21 TMEM75, MYC T/A 0.28 212,120 (18) 1.05 1.03–1.07 4.36 ×  10–8 0.02

rs3787184 20q13.2 NFATC2, KCNG1 G/A 0.19 207,604 (16) 0.94 0.93–0.96 4.76 ×  10–8 0.69

‘Nearest genes’ denotes the nearest up- and downstream gene (for intergenic variants with two genes listed) or surrounding gene (for intronic variants with one gene listed), with the exception of 
rs5743618, an exonic missense variant within TLR1. EA/OA, effect allele/other allele; EAF, effect-allele frequency. P values were calculated from two-tailed z scores from an inverse-variance-weighted 
fixed-effect meta-analysis. Het. P, P value for heterogeneity obtained from Cochrane’s Q test. 
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present in more than one set (Supplementary Fig. 7). Overall, the 
full set was enriched in pathways involved in type 1 helper T cell 
(TH1) and TH2 activation (Fig. 4), antigen presentation, cytokine 
signaling, and inflammatory responses (Supplementary Table 18).

Using the 255 prioritized genes in combination with the STRING 
database to identify proteins interacting with the proteins encoded 
by the high-priority genes, we demonstrated a high degree of inter-
action at the protein level, and several of these proteins, includ-
ing TNFSF11, NDUFAF1, PD-L1, IL-5, and IL-13, are targets of 
approved drugs or drugs in development (Fig. 4).

Allergic rhinitis is strongly correlated with allergic sensitization 
(presence of allergen-specific IgE), but sensitization is often pres-
ent without allergic rhinitis, thus suggesting that specific mecha-
nisms determine the progression from sensitization to disease. We 
therefore conducted a GWAS on sensitization to inhalant aller-
gens, comprising 8,040 cases and 16,441 controls from 13 studies 
(Supplementary Table 1), in what is, to our knowledge, the largest 
GWAS on allergic sensitization to date7. A total of ten loci reached 
genome-wide significance, including one novel locus near FASLG 
(Supplementary Table 19). The genetic heritability on the liability 
scale was 17.75% (10% prevalence), a value considerably higher than 
the heritability of allergic rhinitis and consistent with a more homo-
geneous phenotype. Look-up of top allergic rhinitis–associated loci 
in the allergic-sensitization GWAS demonstrated high agreement: 
40 of the 41 allergic rhinitis markers showed the same direction of 
effect, and 28 also showed nominal significance for allergic sensiti-
zation (Supplementary Table 20). This result suggests that  allergic 

P9P6

P4

P1

a b

P9P2

Fig. 2 | structural visualization of amino acid variants associated with 
allergic rhinitis. The surface of the MHC molecule is shown in white, and 
the backbone of the bound peptide is shown in dark gray. The amino acid 
variant in focus is highlighted in red, and the peptide-binding pockets of the 
MHC molecule are indicated with dashed circles and are annotated P1–P9. 
a, The amino acid variant with the strongest association with allergic rhinitis 
was HLA-DQB1 His30 (MHC class II), located close to P6 with a distance of 
6 Å to the peptide (excluding the peptide side chain). The protective amino 
acid variant at this location in relation to allergic rhinitis was histidine, 
whereas the risk variant was serine. Histidine is positively charged and 
has a large aromatic ring, whereas serine is not charged and not aromatic. 
Therefore, this alteration results in a substantial change in the binding-
pocket environment. b, The strongest allergic rhinitis–associated amino 
acid variants in HLA-B (MHC class I) were HLA-B Asp116/His116-/Leu116, 
located close to P9 with a distance of 7 Å to the peptide (excluding the 
peptide side chain). The proximity to the bound peptide for both variants 
indicates that they are likely to affect the MHC–peptide interaction and 
thereby affect which peptides are presented.
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Fig. 3 | enrichment of allergic rhinitis-associated variants in tissue-specific open chromatin. Enrichment of 16,531,985 genetic variants associated with 
allergic rhinitis in 212,120 individuals (at P <  1 ×  10−8 as a threshold for marker association) in 189 cell types from ENCODE and Roadmap epigenomics 
data. Enrichment and P values were calculated empirically against a permuted genomic background with the GARFIELD tool. Red labels indicate blood and 
blood-related cell types, and gray labels indicate other cell types. Owing to the number of permutations (1 ×  107), empirical P values reached a minimum 
ceiling of 1/(1 ×  107). The false discovery rate (FDR) threshold was 0.00026. For Epstein–Barr virus–transformed B-lymphocyte cell types (cell type 
GM****), only the most enriched instance is shown (‘B lymphocyte’). NHEK, normal human epidermal keratinocytes; HMEC/vHMEC, mammary epithelial 
cells; HCM, human cardiac myocytes; WI-38, lung fibroblast derived; HRGEC, human renal glomerular endothelial cells; HCFaa, human cardiac fibroblast–
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rhinitis and allergic sensitization share biological mechanisms, and 
that allergic-sensitization loci generally affect systemic allergic sen-
sitization. We compared genetic pathways of allergic rhinitis and 
allergic sensitization by using the DEPICT tool, which showed over-
lap in enriched pathways but also differences among the top gene 
sets: allergic rhinitis gene sets were characterized by B cell, TH2, and 
parasite responses, whereas allergic-sensitization gene sets were 
characterized by a broader activation of cells (Supplementary Fig. 8 
and Supplementary Tables 21 and 22).

Nonallergic rhinitis, defined as having rhinitis symptoms with-
out evidence of allergic sensitization, is a common but poorly under-
stood disease entity33. We performed what is, to our  knowledge, the 
first GWAS on this phenotype, with the goal of identifying specific 
rhinitis mechanisms. The analysis included 2,028 cases and 9,606 

controls from nine studies but did not identify any risk loci at the 
genome-wide-significant level. Comparison with the allergic rhinitis 
results suggested some overlap in susceptibility loci (Supplementary 
Note and Supplementary Table 23).

We estimated the proportion of allergic rhinitis in the gen-
eral population that was attributable to the 41 identified allergic 
rhinitis–associated loci and obtained a conservative population-
attributable risk-fraction estimate of 39% (95% confidence inter-
val (CI) 26–50%), by considering the 10% of the population with 
the lowest genetic-risk scores to represent an ‘unexposed’ group. 
The allergic rhinitis prevalence plotted by genetic-risk score 
(Supplementary Fig. 9) showed a prevalence approximately two 
times higher in the 7% of the population with the highest risk 
score than the 7% with the lowest risk score.
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Finally, we investigated the genetic correlation of allergic rhinitis 
with allergic sensitization, asthma34, and eczema35 by using LD-score 
regression. There was a strong correlation between allergic rhinitis 
and allergic sensitization (r2 =  0.73, P <  2 ×  10−34), a moderate corre-
lation with asthma (r2 =  0.60, P <  3 ×  10−14), and a weaker correlation 
with eczema (r2 =  0.40, P <  2 ×  10−7).

We tested the identified allergic rhinitis–associated loci for 
association with allergic rhinitis in non-European cohorts, which 
showed only a nominally significant association for one locus, but 
this analysis had limited statistical power, owing to population sizes 
(Supplementary Table 24).

In conclusion, we expanded the number of established suscep-
tibility loci for allergic rhinitis and highlighted the involvement of 
allergic rhinitis–susceptibility loci in diverse immune-cell types and 
both innate and adaptive IgE-related mechanisms. Future studies of 
novel allergic rhinitis–associated loci might identify targets for the 
treatment and prevention of this disease.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0157-1.
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Methods
Phenotype definition. Allergic rhinitis. Cases were defined as individuals who 
had ever received a diagnosis or experienced symptoms of allergic rhinitis, on the 
basis of available phenotype definitions in the included studies (Supplementary 
Table 3 and cohort-recruitment details in Supplementary Note). All relevant 
ethical regulations were followed, as specified in relation to the individual studies 
in the Supplementary Note. To maximize numbers and optimize statistical power, 
we did not require doctor-diagnosed allergic rhinitis or verification by allergic 
sensitization. This approach was confirmed by a sensitivity analysis in 23andMe on 
the basis of association with known risk loci for allergic rhinitis (data not shown). 
Controls were defined as individuals who had never received a diagnosis or 
experienced symptoms of allergic rhinitis.

Allergic sensitization. We considered specific IgE production against inhalant 
allergens without restricting by assessment method or type of inhalant allergen. 
Cases were defined as individuals with objectively measured sensitization against at 
least one of the inhalant allergens tested for in the respective studies, and controls 
were defined as individuals who were not sensitized against any of the allergens 
tested for. We included sensitization assessed by skin reaction after puncture of the 
skin with a droplet of allergen extract (SPT) and/or by detection of the levels of 
circulating allergen-specific IgE in the blood. The SPT wheal-diameter cutoffs were 
≥  3 mm for cases and <  1 mm for controls. To optimize case specificity and the 
correlation between methods, we chose a high cutoff of specific IgE levels for cases 
(0.7 IU/ml) and a low cutoff for controls (0.35 IU/ml).

Nonallergic rhinitis. Cases were defined as individuals with current allergic rhinitis 
symptoms (within the previous 12 months) and no allergic sensitization (negative 
specific IgE (< 0.35 IU/ml) and/or negative skin-prick test (< 1 mm) for all allergens 
and time points tested).

Controls were defined as individuals who had never had symptoms of allergic 
rhinitis and showed no allergic sensitization (negative specific IgE (< 0.35 IU/ml) 
and/or negative skin-prick test (< 1 mm) for all allergens and time points tested)

For all three phenotypes, we combined data from children and adults but 
chose a lower age limit of 6 years, because allergic rhinitis and sensitization status 
at younger ages show poorer correlation with status later in life, owing to both 
transient symptoms/sensitization status and frequent development of symptoms/
sensitization during late childhood.

GWAS quality control and cohort summary-data harmonization. For allergic 
rhinitis, allergic sensitization, and nonallergic rhinitis, data were imputed 
separately for each cohort with the 1000 Genomes Project (1KGP) phase 1, version 
3 release, and the genome-wide association analysis was adjusted for sex and, if 
necessary, for age and principal components (Supplementary Table 3). All studies 
included individuals of European descent, except Generation R and RAINE,  
which comprised a mixed, multiancestral population. We used EasyQC v. 9.2  
(ref. 36) for quality control and marker harmonization for cohort-level meta-GWAS 
summary files. Cohort data were harmonized to genome build GRCh37 and were 
checked against the 1KGP phase 3 reference-allele frequencies for processing 
problems. GWAS summary ‘karyograms’ were visually inspected to catch cohorts 
with incomplete data. Distributions of estimate coefficients and errors, as well 
as plots of standard error versus sample size and of P value versus Z score, were 
inspected for each cohort for systematic errors in statistical models. Ambiguous 
markers that were nonunique in terms of both genomic position and allele coding 
were removed. A minimum imputation score of 0.3 (r2) or 0.4 (proper_info) was 
required for markers. A minimum minor-allele count of 7 was required for each 
marker in each cohort, as suggested by the GIANT consortium and EasyQC.

Meta-analysis. For allergic rhinitis, allergic sensitization, and nonallergic rhinitis, 
meta-analysis for the discovery phase was conducted with GWAMA37 with an 
inverse-variance-weighted fixed-effect model with genomic-control correction 
of the individual studies. Each locus is represented by the variant showing the 
strongest evidence within a 1-Mb buffer. Loci were inspected visually by plotting 
genomic neighborhood and coloring for 1KGP r2 values. From the pool of 
genome-wide-significant markers in the discovery, one locus with index marker 
rs193243426 without a credible LD structure was removed from further analysis 
(Supplementary Fig. 10). Heterogeneity was assessed with Cochran’s Q test.

Meta-analysis of replication candidates from the allergic rhinitis discovery 
phase was carried out in R version 3.4.0 and the meta package version 4.8-2 with 
an inverse-variance-weighted fixed-effect model. For a subset of markers, cohorts 
reported suitable proxies (r2 >  0.85), and followed-up markers were not present or 
had insufficient imputation or genotyping quality (Supplementary Table 25).

Gene-set-overrepresentation analysis, discovery phase. To facilitate the 
selection of biologically relevant discovery candidates in the sub-genome-wide 
significant stratum (5 ×  10−8 <  P <  1 ×  10−6), we used a custom algorithm for 
gene-set-overrepresentation analysis implemented in R, with a scoring and 
permutation regime modeled after MAGENTA38. Genes with lengths less than 
200 bp, with copies on multiple chromosomes, and with multiple copies on the 
same chromosome more than 1 Mb apart were removed from analysis. Gene 

models (GENCODE v 19) were downloaded from the UCSC Table Browser39 and 
expanded 110 kb upstream and 40 kb downstream, similarly to the MAGENTA 
procedure. The HLA region was excluded from analysis (chromosome 6: 
29691116–33054976). Similarly to the MAGENTA procedure, gene scores 
were adjusted for the number of markers per gene, gene width, recombination 
hotspots, genetic distance, and number of independent markers per gene, all with 
updated data from the UCSC Table Browser. For the gene-set-overrepresentation 
permutation calculation, gene sets from the MSigDB collections c2, c3, c5, c7, and 
hallmark were included40. A MAGENTA-style enrichment cutoff at 95% was used. 
Gene sets with FDR < 0.05 were considered.

Conditional analyses. To identify additional independent markers at each 
discovery genomic region, we used genome-wide complex trait analysis (GCTA)  
v. 1.26.0 (ref. 41). Within a window of ± 1 Mb of each discovery-phase index marker, 
all markers were conditioned on the index by using the --cojo-cond feature of 
GCTA with default parameters. Plink v. 1.90b3.42 (ref. 42) was used to calculate r2 
for GCTA with the UK10K full genotype panel43 as a reference. A total of 42 of 52 
markers from the full discovery phase were present in UK10K. Because a MAF-
dependent inflation of conditional P values was observed (data not shown), only 
conditional markers with MAF ≥ 10% were selected.

Locus definition and credible sets for VEP annotation. Discovery loci were 
defined as index markers extended with markers in LD (r2 ≥  0.5), on the basis 
of 1KGP phase 3. Protein-coding gene transcript models (GENCODE v. 24) 
were downloaded from the UCSC Table Browser, and the nearest upstream and 
downstream genes, as well as all genes within the extended loci, were annotated. 
Credible sets for each locus were calculated with the method of Morris44.

LD was calculated for each discovery index variant within ± 500 kb, and 
markers with r2 <  0.1 were excluded. For the remaining markers, the Bayesian 
factor (ABF) values and the posterior probabilities (PostProb) were calculated, 
and cumulative posterior probability values were generated on the basis of ranking 
markers on ABF. Finally, variants were included in the 99%-credible set until the 
cumulative posterior probability was ≥ 0.99.

Credible sets for each locus were annotated with information on mutation 
effects in coding regions by using the Variant Effect Predictor (VeP) REST API45, 
exporting only the nonsynonymous substitutions.

GWAS-catalog lookup. For annotation of markers with identification in previous 
GWA studies, the GWAS catalog was downloaded from NHGRI-EBI (v.1.0.1,  
28 November 2016). For this analysis, allergic rhinitis–associated loci were lifted 
from genomic build GRCh37 to GRCh38 and extended with ± 1 Mb in each 
direction before being overlapped with GWAS-catalog annotations. Relevant 
GWAS-catalog overlap traits were binned into the trait groups ‘allergic rhinitis’, 
‘asthma’, ‘autoimmune’, ‘eczema’, ‘infectious diseases’, ‘lung-related traits’, and 
‘other allergy’. One million random genomic intervals of the same length (2 Mb) 
were obtained to generate a background overlap distribution, and P values were 
calculated from this background.

Classical HLA-allele analysis. Analyses of imputed classical HLA alleles were 
performed in the 23andMe study (AR discovery population) comprising 49,180 
individuals with allergic rhinitis and 124,102 controls.

HLA imputation was performed with HIBAG v. 1.2.3 (ref. 46). We imputed 
allelic dosage for HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, 
and HLA-DRB1 loci at four-digit resolution with the default settings of HIBAG, for 
a total of 292 classical HLA alleles.

Using an approach suggested by de Bakker47, we downloaded the files mapping 
HLA alleles to amino acid sequences from https://www.broadinstitute.org/mpg/
snp2hla/ and mapped our imputed HLA alleles at four-digit resolution to the 
corresponding amino acid sequences; in this way, we translated the imputed HLA 
allelic dosages directly to amino acid dosages. We encoded all amino acid variants 
in the 23andMe European samples as 2,395 biallelic amino acid polymorphisms, as 
previously described48.

Similarly to the SNP imputation, we measured imputation quality by using r2, 
which is the ratio of the empirically observed variance of the allele dosage to the 
expected variance, assuming Hardy–Weinberg equilibrium.

To test associations among imputed HLA alleles, amino acid variants, and 
phenotypes, we performed logistic regression using the same set of covariates 
used in the SNP-based GWAS. We applied a forward stepwise strategy within 
each type of variant to establish statistically independent signals in the HLA 
region. Within each variant type, we first identified the most strongly associated 
signals (lowest P value) and performed forward iterative conditional regression to 
identify other independent signals. All analyses were controlled for sex and five 
principal components of genetic ancestry. The P values were calculated with a 
likelihood-ratio test.

Structural visualization of amino acid variants. Structural visualization of amino 
acid variants was performed for the strongest associated variants in HLA-DQB1 
(position 30) and HLA-B (position 116), respectively (Supplementary Table 10) 
and was based on X-ray structures from the Protein Data Bank (PDB)49. To find 
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the best structure, we used the specialized search function in the Immune Epitope 
Database50, selecting only X-ray-crystalized structures for the specific MHC 
classes HLA-DQB1 (class II) and HLA-B (class I). Using this criterion, we found 
17 crystallized structures for HLA-DQB1 and 164 structures for HLA-B. From 
these lists, we selected the structure with the lowest resolution and the amino 
acids encoded by the reported top SNPs. The accession codes for the selected 
structures were PDB 4MAY51 for HLA-DQB1 and PDB 2A83 (ref. 52) for HLA-B. 
Both structures were visualized in PyMOL v. 1.8.2.1 (http://www.pymol.org/). 
Furthermore, we used PyMOL to measure intramolecular distances from the side 
chains of the amino acids associated with allergic rhinitis to the Cα  atoms in the 
peptide. This distance measure was chosen to accommodate the possibility of 
different amino acids in the peptide. For two amino acids to interact, the distance 
should be approximately 4 Å or less. We measured distances of 6 Å (HLA-DQB1) 
and 7 Å (HLA-B). However, these distances do not include the peptide side chains, 
which range from 1.5 to 8.8 Å. Therefore, we estimate that physical interaction 
between the amino acids associated with allergic rhinitis and the peptide is likely.

Genetic heritability and genetic correlation. For calculating genetic heritability 
and genetic correlation between allergic rhinitis and allergic sensitization,  
as well as between clinical cohorts and 23andMe within allergic rhinitis, we used 
the LD-score regression-based method, as implemented in LDSC v. 1.0 (refs 45,53).  
The population prevalence was set to 10% for allergic rhinitis and allergic 
sensitization. Genetic correlation analysis among allergic rhinitis, allergic 
sensitization, and published GWAS studies was carried out in LDHUB platform  
v. 1.3.1 (ref. 54) against all traits but excluding metabolites55.

eQTL sources and analysis. From GTEx V6p56, all significant variant-gene 
cis-eQTL pairs for whole blood, lung, and EBV-transformed lymphocytes were 
downloaded from https://gtexportal.org/ and used in analysis. From Westra et al.57, 
we downloaded both cis and trans eQTLs in whole blood, then used variant-gene 
pairs with FDR < 0.1 in subsequent analyses. From Fairfax et al.58, we downloaded 
cis-eQTLs from monocytes and B cells, then used variant-gene pairs with FDR < 
0.1 in subsequent analyses. From Bonder et al.58, we downloaded meQTLs from 
whole blood and used variant-probe pairs with FDR < 0.05 in subsequent analyses. 
From Nicodemus-Johnson et al.59, we downloaded cis-eQTLs and meQTLs from 
the lung and used variant-gene pairs with FDR < 0.1 in subsequent analyses. From 
Momozawa et al.60, we downloaded cis-eQTLs from blood cell types CD14, CD15, 
CD19, CD4, and CD8 used and variant-gene pairs with a weighted correlation ≥ 0.6 
in analyses. For Supplementary Table 14 priority genes, protein-coding information 
was downloaded from the UCSC Table Browser, with the ‘transcriptClass’ field 
from the ‘wgEncodeGencodeAttrsV24lift37’ table.

Promoter-capture Hi-C gene prioritization. To assess spatial promoter 
interactions in the discovery set, we performed a capture Hi-C gene prioritization 
(CHIGP) as described in Javierre et al.61 and https://github.com/ollyburren/
CHIGP/ by using the following recommended settings and data sources: 0.1 cM 
recombination blocks, 1KGP EUR reference population, coding markers from the 
GRCh37 Ensembl assembly, and the CHICAGO-generated62 promoter-capture 
Hi-C peak matrix data from 17 human primary blood cell types supplied in the 
original paper. The resulting protein-coding prioritized genes (gene score > 0.5) 
were used in the downstream network analysis, from cell types ‘fetal thymus’, ‘total 
CD4 T cells’, ‘activated total CD4 T cells’, ‘nonactivated total CD4 T cells’, ‘naive 
CD4 T cells’, ‘total CD8 T cells’, ‘naive CD8 T cells’, ‘total B cells’, ‘naive B cells’, 
‘endothelial precursors’, ‘macrophages M0’, ‘macrophages M1’, ‘macrophages M2’, 
‘monocytes’, and ‘neutrophils’.

Gene-set-overrepresentation analysis of known and replicating novel loci. All 
high-confidence gene symbols from eQTL and meQTL sources, PCHiC, as well 
as genes (models extended 110 kb upstream, and 40 kb downstream) within each 
r2-based locus definition from known and replicating novel loci were input into 
the pathway-based set over-representation analysis module in ConsensusPathDB 
(CPDB) database and tools63 with 229 of 277 gene identifiers translated. In 
addition, these same symbols were used for ingenuity pathway analysis (IPA; http://
www.ingenuity.com/; a curated database of the relationships among genes obtained 
from published articles, and genetic and expression data repositories), to identify 
biological pathways common to genes. IPA determines whether the associated 
genes are significantly enriched in a specific biological function or network by 
assessing direct interactions. We assigned significance if the right-tailed Fisher’s 
exact test P <  0.05. eQTL/meQTL, PCHiC and locus–gene intersections were 
visualized with the UpSetR package (v1.3.2)64.

Tissue overrepresentation. To assay the enrichment of variants associated with 
allergic rhinitis in tissue-specific gene-expression sets, we used the DEPICT 
enrichment method65, using a P-value threshold of 1 ×  10−5 and standard settings.

Enrichment of regulatory regions. To assay the enrichment of variants associated 
with allergic rhinitis in regions of open chromatin and specific histone marks, 
we used the GWAS analysis of regulatory or functional information enrichment 
with LD correction (GARFIELD v. 1) method66. In essence, GARFIELD performs 

greedy pruning of GWAS markers (LD r2 >  0.1) and then annotates them according 
to functional information overlap. Next, it quantifies fold enrichment at various 
GWAS significance cutoffs and assesses them by permutation testing while 
adjusting for the minor allele frequency, distance to nearest transcription start 
site and number of LD proxies (r2 >  0.8). GARFIELD was run with 10,000,000 
permutations and otherwise default settings.

Population-attributable-risk fraction. Population-attributable-risk fractions 
(PARFs) were estimated from B58C, a general-population sample with participant 
ages 44–45 years also contributing to the discovery stage. The genetic-risk score 
was calculated by applying the pooled per-allele coefficients (ln(OR) values) from 
the allergic rhinitis discovery set to the number of higher-risk alleles of each of the 
41 established loci (known genome-wide-significant and novel replicated loci), 
with one SNP per locus. Because there were no individuals observed with zero 
higher-risk alleles, the prevalence of sensitization for individuals in the lowest 
decile of the genetic-risk score distribution was used to derive PARF estimates on 
the assumption that this 10% of the population was unexposed. This method has 
the advantage that it does not predict beyond the bounds of the data, but its results 
are conservative. The PARF was then derived (with 95% confidence intervals) 
by expressing the difference between the observed prevalence and the predicted 
(unexposed) prevalence as a percentage of the observed prevalence. PARFs were 
estimated by using the 41 allergic rhinitis–associated loci in relation to allergic 
rhinitis, allergic sensitization, and nonallergic rhinitis.

Protein-network and drug interactions. To analyze protein–protein–drug 
interaction networks, STRING (V10)67 was used. Protein-network data (9606.
protein.links.v10.txt.gz) and protein alias data (9606.protein.aliases.v10.txt) 
files were downloaded from the string db website (http://string-db.org/). GWAS 
hits stratified on ‘all’, ‘blood’, and ‘lung’ were converted to Ensembl protein IDs 
by using the protein alias data. The interactors were subsequently identified 
by using the link data at a ‘high-confidence cutoff of > 0.7’, as described in 
the STRING FAQ. The interactor Ensembl protein IDs were then converted 
to UniProt gene names, and both hits and interactors were then analyzed for 
interactions with FDA approved drugs by using the ChEMBL Database v. 22 
(ref. 68) API via Python (v. 2.7.12). Finally, stratified networks consisting of 
GWAS hits connected to interactors and drugs connected to both GWAS hits 
and interactors were visualized with GGraph (v. 1.0.0), iGraph (v. 1.0.1), and 
TidyVerse (v. 1.1.1) in R (v. 3.3.2).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Genome-wide results, excluding 23andMe, are available from 
the corresponding author on request and will be available on LDhub after July 
2018. The full GWAS summary statistics for the 23andMe discovery dataset will be 
made available through 23andMe to qualified researchers under an agreement with 
23andMe that protects the privacy of the 23andMe participants. Please contact 
D.A.H. (dhinds@23andme.com) for more information and to apply for access to 
the 23andMe data.
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    Experimental design
1.   Sample size

Describe how sample size was determined. We aimed to include all available data-sets on allergic rhinitis worldwide. 
In this study we achieved a sample size that was several times larger than 
previous GWAS- studies, which was sufficent for providing genome-wide 
significant findings.

2.   Data exclusions

Describe any data exclusions. Other than the preliminary analyses/experimental optimization, no data 
were excluded. 

3.   Replication

Describe whether the experimental findings were reliably reproduced. No experimental studies were performed.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

No experimental studies were performed. Cases and controls for genome-
wide association were analyzed based upon predefined criteria.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

No blinding was performed and not considered relevant in this meta-
Genome-wide association study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. This is described in details in the methods section. In short, for AR, AS, and 
NAR, meta-analysis for the discovery phase was conducted using GWAMA, 
while meta-analysis of replication candidates from the AR discovery phase 
was carried out using R version 3.4.0, and the meta package version 4.8-2 
with an inverse variance weighted fixed-effect model. Additional software 
include EasyQC (v9.2), STRING (v10), ChEMBL Database (v22), GGraph 
(v1.0.0), iGraph (v1.0.1), TidyVerse (v1.1.1), LDHUB platform (v1.3.1), 
GENCODE (v19 and v24, Genome-wide Complex Trait Analysis (GCTA) (v. 
1.26.0), Plink (v1.90b3.42), PyMOL (v1.8.2.1), LDSC (v.1.0), LDHUB platform 
(v1.3.1), GTEx (V6p), UpSetR package (v1.3.2), GWAS Analysis of 
Regulatory or Functional Information Enrichment with LD correction 
(GARFIELD) method (v1), Python (v2.7.12), HIBAG (v1.2.3). 

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No eukaryotic cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Relevant information on research participants in the individual studies is 
provided in the supplementary material.
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