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Gammaherpesviruses are important pathogens that establish latent infection in their
natural host for lifelong persistence. During latency, the viral genome persists in
the nucleus of infected cells as a circular episomal element while the viral gene
expression program is restricted to non-coding RNAs and a few latency proteins. Among
these, the genome maintenance protein (GMP) is part of the small subset of genes
expressed in latently infected cells. Despite sharing little peptidic sequence similarity,
gammaherpesvirus GMPs have conserved functions playing essential roles in latent
infection. Among these functions, GMPs have acquired an intriguing capacity to evade
the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen
presentation, further ensuring virus persistence in the infected host. In this review, we
provide an updated overview of the main functions of gammaherpesvirus GMPs during
latency with an emphasis on their immune evasion properties.

Keywords: herpesvirus, viral latency, genome maintenance protein, immune evasion, antigen presentation, viral
proteins

INTRODUCTION

Herpesviruses are enveloped double-stranded DNA viruses that are in general responsible for
persistent infections in a large number of animal species. In 2008, the International Committee
on Taxonomy of Viruses (ICTV) created the order Herpesvirales comprising three families:
the family Malacoherpesviridae composed of viruses infecting molluscs such as oysters, the
family Alloherpesviridae composed of viruses infecting fish species and amphibians, and the
predominantly studied family Herpesviridae that includes viruses of mammals and birds, itself
classified into the three subfamilies Alpha-, Beta-, and Gammaherpesvirinae. A hallmark of
all herpesviruses is their unique capacity to induce lifelong infection through establishing and
maintaining latent infection. The definition of herpesvirus latency involves: (i) the presence of
the viral genome in the nucleus of the infected cell (either as an episome or integrated in
cellular chromosomes), (ii) reduced viral gene expression together with the absence of virion
production, and (iii) the ability of latently infected cells to reactivate lytic viral replication either
in vivo and/or in vitro (Lieberman, 2016). In addition, latent lifelong infection requires evasion
mechanisms from the host immune response. Most alphaherpesviruses such as herpes simplex
virus (HSV-1 or human alphaherpesvirus 1 – HHV-1) establish latency in non-dividing sensory
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neurons through maintenance of a quiescent episomal genome
and expression of viral transcripts, in the absence of viral protein
detection (Roizman and Whitley, 2013). In betaherpesviruses,
myeloid cells such as macrophages are the main target of latent
infection but the latency mechanisms in this subfamily have
yet to be fully deciphered (Goodrum, 2016; Collins-McMillen
et al., 2018). Gammaherpesviruses essentially establish latency
in either B or T lymphocytes, although some species such as
bovine gammaherpesvirus 4 (BoHV-4) seem to infect cells of
the monocyte/macrophage lineage (Machiels et al., 2011, 2013).
The mechanisms regulating latency establishment, maintenance
of such a dormant infection in actively dividing cells, and how
gammaherpesviruses escape the immune system of the infected
host have been thoroughly studied (Stevenson and Efstathiou,
2005; Blake, 2010; Barton et al., 2011; White et al., 2012;
Lieberman, 2013; Schuren et al., 2016; Dong et al., 2017; Ueda,
2018).

Most significant advances in the understanding of
herpesvirus latency mechanisms have been identified in
gammaherpesviruses, which can probably be explained by
the fact that one major latency protein, named the “genome
maintenance protein” (GMP): (i) is encoded by the genome
of all described gammaherpesvirus species, (ii) is expressed
during latent infection, (iii) regulates the maintenance of viral
episomes in actively dividing lymphocytes through tethering
the viral genome to cellular chromosomes, and (iv) evades
immune detection (Verma et al., 2007; Frappier, 2015). The
main objective of this review is to briefly summarize the
importance of gammaherpesvirus infections and how GMPs
maintain viral episomes in infected lymphocytes, before
focusing on a more detailed description of the mechanisms
mediated by GMPs to escape immune surveillance, in
particular CD8+ cytotoxic T cells (CTLs), during latent
infection.

THE SUBFAMILY Gammaherpesvirinae

Based on genomic and biological characteristics,
gammaherpesviruses have been classified into four genera:
the Lymphocryptovirus genus, the Rhadinovirus genus,
the Percavirus genus and the Macavirus genus (Davison
et al., 2009). Lymphocryptoviruses mainly infect human
and non-human primates, and include one of the two
gammaherpesviruses infecting humans: Epstein-Barr virus
(EBV or human gammaherpesvirus 4 – HHV-4) (Jha et al.,
2016). Rhadinoviruses also infect human and non-human
primates, and include the second human gammaherpesvirus,
Kaposi’s sarcoma-associated herpesvirus (KSHV or human
gammaherpesvirus 8 – HHV-8) (Li et al., 2017). In addition
to KSHV and viruses infecting Old World primates such as
macaques, gorillas and chimpanzees, some rhadinoviruses
also infect New World monkeys. Two examples are saimiriine
gammaherpesvirus 2 (or SaHV-2) also known as herpesvirus
saimiri (HVS); and ateline gammaherpesvirus 3, which infects
spider monkeys (Damania and Desrosiers, 2001). In addition to
viruses infecting primates, rhadinoviruses also include a number

of viral species infecting other mammalians (Davison et al.,
2009). For instance, murid gammaherpesvirus 4 (MuHV-4),
also referred to as murine gammaherpesvirus 68 (MHV-68) is
a natural pathogen of the yellow-necked field mouse (Ehlers
et al., 2007) and is largely used in the laboratory mouse
(Mus musculus). Furthermore, Bovine herpesvirus 4 (BoHV-
4) infection is prevalent in cows while this virus is thought
to have originally evolved in another Bovinae, the African
buffalo (Syncerus caffer) (Dewals et al., 2005). Macaviruses are
viruses infecting ruminants and are mainly associated with a
lymphoproliferative disease named malignant catarrhal fever
(MCF). Among these, alcelaphine gammaherpesvirus 1 (AlHV-1)
and ovine gammaherpesvirus 2 (OvHV-2) naturally infect
wildebeest (Connochaetes taurinus) and sheep (Ovis aries). They
are responsible for wildebeest-derived and sheep-associated
MCF in ruminants, respectively. The genus Percavirus is less
well-defined and includes virus species infecting horses or
mustelids.

The importance of latent infection by gammaherpesviruses is
evident, both in term of lifelong persistence and related clinical
diseases. The majority of epidemiological and clinical data comes
from human gammaherpesviruses, although some veterinary
viruses also induce latency-associated malignancies. EBV infects
>90% of the human population, with seroconversion occurring
early during childhood (Henle et al., 1969; Andersson, 2000).
Whereas EBV latent infection is mostly asymptomatic, a number
of clinical manifestations are associated with EBV infection.
Beside infectious mononucleosis when primary infection occurs
during adolescence (Callan et al., 1996), EBV is further
associated with malignancies including Burkitt’s and Hodgkin’s
lymphomas and other types of cancers (Rezk et al., 2018).
In addition, EBV infection has been positively correlated with
multiple sclerosis (MS). Nonetheless, the exact mechanisms
and the causative role of EBV in MS induction remain
open for investigation (Levin et al., 2010; Munger et al.,
2011; Pender, 2011; Pakpoor et al., 2013; Moreno et al.,
2018). The prevalence of KSHV is more variable and ranges
from 5 to 50% depending on regions across the world.
Like EBV, KSHV infection is in general asymptomatic but
can be responsible for severe malignancies such as Kaposi’s
sarcoma in immunocompromised patients but also other cancers
such as multicentric Castlemans’s disease or primary effusion
lymphoma (Li et al., 2017). Just like EBV and KSHV, animal
gammaherpesviruses are also extensively studied, either for
their veterinary importance or used as experimental models
to study the biology of gammaherpesvirus infection in vivo.
The former category includes MCF-inducing AlHV-1 that is
responsible for the induction of a deadly peripheral T cell
lymphoma-like disease in cattle caused by latently infected
CD8+ T lymphocytes (Dewals et al., 2008, 2011; Dewals and
Vanderplasschen, 2011; Palmeira et al., 2013). MuHV-4 and
SaHV-2 are two examples of animal gammaherpesviruses of
the latter category. Whereas the functions of gammaherpesvirus
GMPs have been extensively investigated for EBV and KSHV in
cell culture in vitro, animal gammaherpesviruses have provided
important insights on the role of GMPs during in vivo
infection.
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GENOME MAINTENANCE PROTEINS
AND THEIR ROLES DURING
GAMMAHERPESVIRUS INFECTION

After primary infection of target cells, gammaherpesviruses
enter the lytic cycle that leads to production of viral particles
and cell death. However, and depending on the infected cell
type, the latent phase of the infection is in general rapidly
established and is accompanied with the production of latency
transcripts, including GMP. All sequenced gammaherpesviruses

encode a predicted GMP (Table 1). In lymphocryptoviruses,
GMPs are encoded by open reading frame (ORF) BKRF1 and are
named according to Epstein-Barr virus (EBV) nuclear antigen 1
(EBNA-1). The GMPs in Rhadinovirus, Percavirus, and Macavirus
genera are encoded by ORF73 and can be named after KSHV
latency-associated nuclear antigen 1 (LANA-1). GMPs are DNA-
binding proteins able to bind sequences within the viral genome
while at the same time interacting with cell chromosome-
associated proteins, to ensure partitioning to daughter cells
during mitosis. Early studies have already demonstrated that

TABLE 1 | Gammaherpesvirus genome maintenance proteins based on functional evidence and/or sequence prediction.

Genus/species Common name
(common abbreviation)

GMP Size
(amino acids)

Central repeat
(size)∗

Central repeat
content†

Accession
number

Lymphocryptovirus

Callitrichine gammaherpesvirus 3 Marmoset herpesvirus ORF39 327 − (NA) – NP_733892

Human gammaherpesvirus 4 Epstein-Barr virus (EBV) EBNA1 641 + (239) GA YP_401677

Macacine gammaherpesvirus 4 Rhesus
lymphocryptovirus
(rhLCV)

rhEBNA1 511 + (47) GSA YP_067973

Papiine gammaherpesvirus 1 Herpesvirus papio baEBNA1 476 + (49) GSA AAA66373

Rhadinovirus

Ateline gammaherpesvirus 3 Herpesvirus ateles strain
73 (AtHV-3)

ORF73 447 + (157) DG(E) NP_048045

Bovine gammaherpesvirus 4 Bovine herpesvirus 4,
Movar virus, V. test virus

ORF73 (boLANA) 243 − (NA) – NP_076567,
AEL29819

Cricetid gammaherpesvirus 2 Rodent herpesvirus Peru RHP73 294 − (NA) – YP_004207909

Human gammaherpesvirus 8 Kaposi’s
sarcoma-associated
herpesvirus (KSHV)

LANA1 1129 + (585) Acidic YP_001129431

Macacine gammaherpesvirus 5‡ Rhesus rhadinovirus ORF73 (rhLANA) 1071§
+/− (521) Acidic ABH07414

Murid gammaherpesvirus 4 Murine
gammaherpesvirus 68
(MHV68)

ORF73 (mLANA) 314 − (NA) – NP_044913

Murid gammaherpesvirus 7¶ Wood mouse herpesvirus ORF73 327 − (NA) – ACY41142

Saimiriine gammaherpesvirus 2 Herpesvirus saimiri (HVS) ORF73 (sLANA) 501#
+ (265) GE/EA CAC84371

Percavirus

Equid gammaherpesvirus 2 Equine herpesvirus 2
(EHV-2)

ORF73 985 + (578) Acidic YP_009118179

Equid gammaherpesvirus 5 Equine herpesvirus 5
(EHV-5)

ORF73 996 + (476) Acidic YP_009118462

Macavirus

Alcelaphine gammaherpesvirus 1 Wildebeest-derived
malignant catarrhal fever
virus

ORF73 (aLANA) 1324 + (986) G(P)E APB09566,
ATI21957

Alcelaphine gammaherpesvirus 2 Topi herpesvirus ORF73 1277 + (913) G(P)E YP_009044454

Ovine gammaherpesvirus 2 Sheep-associated
malignant catarrhal fever
virus

ORF73 (oLANA) 495 + (330) G(P)E YP_438196

∗Presence of a central repeat (CR) domain is indicated. The size of the present CR domain is given for the prototypic sequence for which the genbank accession number
is provided.
† Information on the composition of most represented amino acid residues or the presence of an acidic domain without clear consensus repeat in the CR is given. D,
aspartic acid; E, glutamate; G, glycine; P, proline; S, serine.
‡Macacine gammaherpesvirus 5 are a group of closely related viruses of Old and New World non-human primates that are classified in two lineages within the Rhadinovirus
genus, RV1 and RV2 (Damania and Desrosiers, 2001).
§Only RV1 viruses possess a CR domain. The given accession number is from strain M78114.
¶Murid gammaherpesvirus 7 is phylogenetically related to MuHV-4 and Brest herpesvirus. No GMP sequence is available for the latter (Chastel et al., 1994; Hughes et al.,
2010).
#The GMP of SaHV-2 is given for strain C488.
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GMPs, such as EBNA-1 and LANA-1, are essential for episome
persistence (Ballestas et al., 1999; Ballestas and Kaye, 2001; Sears
et al., 2003). Similar data have been generated for SaHV-2 and
MuHV-4 for which it has been demonstrated that the gene
ORF73 is required for efficient establishment of latency (Fowler
et al., 2003; Calderwood et al., 2005). Likewise, deletion from
the BoHV-4 genome of ORF73 impaired viral persistence in a
macrophage cell line in vitro and in vivo in the rabbit model
(Thirion et al., 2010). In addition, the ORF73-encoded protein
of strain H26-95 of macacine gammaherpesvirus 5 was shown to
bind to the viral episome and to be essential for establishment
of latency (DeWire and Damania, 2005; Wen et al., 2009). The
deletion of ORF73 from the genome of AlHV-1 also rendered
AlHV-1 unable to persist and induce MCF in vivo, whereas
impairment of its expression did not affect viral lytic replication
(Palmeira et al., 2013). To enable partitioning in proliferating cells
and avoid losing the episomal genomes in the cytoplasm, GMPs
bind viral episomes to host chromosomes. Tethering of viral
episomes to host DNA is accomplished by the ability of GMPs to
simultaneously bind to several chromosome-associated proteins,
other cellular components of the mitotic apparatus and specific
viral DNA sequences (Yates et al., 1984; Cotter and Robertson,
1999; Shire et al., 1999; Cruickshank et al., 2000; Wu et al., 2000;
Ballestas and Kaye, 2001; Cotter et al., 2001; Kapoor and Frappier,
2003; Verma and Robertson, 2003; Barbera et al., 2004, 2006;
Calderwood et al., 2004; Waldmann et al., 2004; Kapoor et al.,
2005; You et al., 2006; Kelley-Clarke et al., 2007; Habison et al.,
2012; Verma et al., 2013; Gupta et al., 2016).

Genome maintenance proteins are nuclear proteins with
very little sequence similarity among gammaherpesviruses,
even though GMPs within one genus show higher sequence
similarity. The C-terminal region shows the highest degree
of sequence similarity and is involved in DNA-binding
(Tellam et al., 2012). Regarding protein primary structure,
most GMPs contain a central repeat (CR) domain composed
of repeated amino acid motives that are divergent between
gammaherpesvirus species. Interestingly, the size of the different
GMPs greatly varies due to the presence of the CR domain
(Figure 1). However, such variation in size does not seem to
alter its role in maintaining the viral genome and the CR
domain appears to be dispensable for genome maintenance
properties with some gammaherpesviruses being devoid of
a CR domain, such as MuHV-4 or BoHV-4 (Lomonte
et al., 1995; Bennett et al., 2005). In addition to genome-
maintenance functions, studies performed essentially on EBV
EBNA-1 and KSHV LANA-1 have revealed additional roles
for GMPs during latency and latency-associated diseases.
GMPs are involved in initiating viral DNA replication during
latency to generate sufficient copies of viral episomes prior
to cell division (Wysokenski and Yates, 1989; Harrison et al.,
1994; Yates et al., 2000; Ballestas and Kaye, 2001; Cotter
et al., 2001; Stedman et al., 2004; Wong and Wilson,
2005; Verma et al., 2006; Lu et al., 2012), modulating viral
gene expression to promote latency and repress reactivation
(Gahn and Sugden, 1995; Evans et al., 1996; Schafer et al.,
2003; Lu et al., 2006; Sivachandran et al., 2012), promoting
tumorigenesis (Radkov et al., 2000; Humme et al., 2003;

Altmann et al., 2006; Cai et al., 2006, 2012), and evading the
immune system.

GENOME MAINTENANCE PROTEINS
AND THEIR IMMUNE EVASION
PROPERTIES

To ensure lifelong latency, gammaherpesviruses must maintain
their genomes in dividing cells and remain undetected by virus-
specific CD8+ CTLs. Thus, the GMPs must overcome the
dilemma of efficiently maintaining viral episomes within infected
cells while, at the same time, evading immune surveillance.
Viral proteins are expressed endogenously within cells and are
thus degraded by the proteasome into antigenic peptides before
being translocated from the cytosol to the endoplasmic reticulum
(ER) and loaded on major histocompatibility class I (MHC
class I) molecules to form MHC-I-peptide (MHCp) complexes.
MHCp complexes are exported to the cell surface for recognition
by CD8+ cytotoxic T lymphocytes (CTLs) (Blum et al., 2013)
(Figure 2).

The main source of viral antigens was previously thought to
uniquely arise from the turnover of mature proteins. However,
more recent studies highlighted an alternate hypothesis regarding
the origin of MHC class I-restricted viral peptides, pointing to
a major role of defective ribosomal products (DRiPs) as the
main source of antigenic peptides during viral infection (Yewdell
et al., 1996; Yewdell, 2011). DRiPs are translational products
derived from prematurely terminated or misfolded polypeptides.
Prioritizing DRiPs as the main source of antigenic peptides is
believed to provide opportunities for the immune system to
rapidly detect an active viral infection and thus optimize immune
surveillance (Anton and Yewdell, 2014; Wei and Yewdell, 2018).
Nevertheless, data supporting this hypothesis are still limited
and further studies are necessary to exactly quantify whether
MHC class I antigen presentation can be attributed to DRiPs of
newly synthesized proteins. Indeed, the MHC class I-presented
peptides seem to come from both short-lived and stable mature
proteins depending on the origin of proteins and the biological
status of the cell environment (Rock et al., 2014, 2016). Although
autophagy is in some key aspects involved in the induction of
adaptive immunity and control of some viral infections (Paludan
et al., 2005), it appears that gammaherpesviruses have rather
evolved to develop strategies to co-opt autophagy for viral benefit,
during the lytic cycle but also during latency. However, GMPs do
not seem to be directly involved in such mechanisms [see recent
review (Lussignol and Esclatine, 2017)].

Gammaherpesviruses have evolved to acquire different
strategies to escape the immune response. These mechanisms
have been extensively reviewed in the past (Stevenson and
Efstathiou, 2005; Means et al., 2007; Blake, 2010; Feng et al.,
2013; Hu and Usherwood, 2014; Ressing et al., 2015; Sorel and
Dewals, 2016; Zuo et al., 2017). The significant downregulation
of viral gene expression during latent infection contributes to
immune evasion, with viral gene expression being restricted
to non-coding RNAs and latency proteins, including GMPs.
GMPs must indeed be expressed in infected cells due to their

Frontiers in Microbiology | www.frontiersin.org 4 January 2019 | Volume 9 | Article 3315

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03315 January 4, 2019 Time: 17:18 # 5

Sorel and Dewals Gammaherpesvirus GMPs and Immune Evasion

FIGURE 1 | Schematic representation of representative gammaherpesvirus GMPs. N- and C- terminal domains are separated by a central amino acid repeat domain
(CR), highlighted in orange. Repeat residues are indicated. The RG-rich regions of EBNA-1 are depicted in blue. Genus Lymphocryptovirus: EBNA-1 (EBV, strain
B95.8), rhEBNA1 (rhLCV, strain LCL8664) and baEBNA-1 (baLCV, strain S594). Genus Rhadinovirus: AtHV3 ORF73 (strain 73), LANA-1 (KSHV, strain JK-18), sLANA
(SaHV-2, strain C488), rhLANA (M78114). Genus Percavirus: EHV-2 ORF73 (strain 86/87), EHV-5 (strain 2-141/67). Genus Macavirus: oLANA (OvHV-2, strain
BJ1035), and aLANA (AlHV-1, strain C500).

key functions during long-term latency but at the same time
need to remain hidden from the immune system. In order
to evade CTL recognition of latently infected cells, all studied
gammaherpesvirus GMPs have evolved to put into place immune
evasion mechanisms consisting of the inhibition of their own
presentation in the context of MHC class I on the cell surface,
a mechanism that has been termed “cis-acting immune evasion”
(Figure 2). Pioneer work came from studying EBV GMP where
the CR domain could directly be involved in self-inhibition of
antigen presentation (Levitskaya et al., 1995). Although most
GMPs encoded by gammaherpesviruses contain a CR domain
and are generally involved in the described cis-acting immune
evasion mechanism, GMPs encoded by MuHV-4 (mLANA) or
BoHV-4 (boLANA) do not have a CR domain (Lomonte et al.,
1995; Bennett et al., 2005). While no data are available for
immune evasion mechanism by boLANA, mLANA was able
to inhibit self-presentation in MHC class I despite its lack of
a CR domain (Bennett et al., 2005). Intriguingly, despite the

conserved functions of gammaherpesviruses GMPs, the peptidic
sequence in their repeat regions differs to a great extent from one
ortholog to another. In contrast, comparative mRNA sequence
analysis revealed that the internal repeat regions of GMP mRNAs
displayed high nucleotide sequence similarities (Tellam et al.,
2012). The results detailed in the next sections suggest that GMPs
have evolved to adopt various strategies depending on the viral
species, in order to achieve the ultimate goal consisting of the
inhibition of their own presentation by MHC class I.

GENUS Lymphocryptovirus

Epstein-Barr Virus (EBV)
Epstein-Barr virus EBNA-1 is one of the most studied GMPs
with regards to its different functional aspects, from genome
maintenance (Yates et al., 1984, 1985), to cis-acting immune
evasion. Early studies have demonstrated that EBNA-1 is able to
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FIGURE 2 | Cis-acting immune evasion of MHC Class I antigen presentation of gammaherpesvirus GMPs. The MHC class I antigen presentation pathway is
depicted with described GMP-mediated cis-acting immune evasion mechanisms. Cytoplasmic endogenously expressed viral proteins are degraded by the
proteasome into antigenic peptides that are then translocated from the cytosol to the endoplasmic reticulum (ER) through the transporter for antigen processing
(TAP). Then, antigenic peptides are loaded on MHC class I molecules to form MHC-I-peptides complexes that are subsequently exported to the cell surface through
the Golgi apparatus for recognition by CD8+ cytotoxic T lymphocytes. GMPs have been demonstrated to inhibit this process through various mechanisms:
(1) sLANA and aLANA were shown to decrease their own steady-state RNA levels; (2) EBNA-1 can inhibit pre-mRNA processing of the primary EBNA-1 transcript;
(3) structural constraints, such as G-quadruplexes (G4), contained in aLANA and EBNA-1 mRNA rather than protein sequences can regulate self-translation;
(4) EBNA-1, aLANA, LANA-1, sLANA, and mLANA are able to induce retardation of self-translation; (5) EBNA-1, mLANA, and LANA-1 were shown to be protected
from proteasomal degradation; (6) LANA-1 was reported to hold an inhibitory effect prior to translocation of its own cytoplasmic peptides into the ER.

prevent MHC class I-restricted self-peptide presentation in cis
to CTLs through a mechanism involving its CR domain (GAr)
(Levitskaya et al., 1995). The GAr domain is a region rich in
glycine (G) and alanine (A) residues, which corresponds to 239
aa in strain B95.8 of EBV (Baer et al., 1984). Although its size can
vary based on the strain, all isolates contain a GAr region (Falk
et al., 1995). In order to decipher the immune evasion mechanism
driving this effect, several studies have shown that the GAr
domain provides increased stability to the EBNA-1 protein by
inhibiting proteasome-mediated degradation (Levitskaya et al.,
1997; Sharipo et al., 1998; Heessen et al., 2002, 2003; Hoyt et al.,
2006; Coppotelli et al., 2011). In these studies, increased CTL
responses could be induced with EBNA-11GAr recombinant
proteins, where the GAr was removed. Using conventional

chromium-51 cytotoxicity assays, MHC-tetramer stains and/or
peptide restimulation, it appeared that removal of the GAr
domain resulted in increased presentation of a model T-cell
epitope inserted into the GMP backbone but also increased
presentation of T-cell epitopes of EBNA-1 itself, including
the HLA-B∗35:01-restricted CTL epitope (HPVGEADYFEY).
Despite the potential self-protection of EBNA-1 from MHC
class I antigen presentation, several studies found that EBNA-
1-specific CTLs exist in EBV-seropositive patients (Blake et al.,
1997, 2000; Subklewe et al., 1999; Sim et al., 2013). Whereas
inhibition of proteasome degradation was initially suggested,
other reports found that GAr would more likely self-inhibit
protein translation efficiency to reduce presentation of CTL
epitopes from EBNA-1. These latter observations led to the
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conclusion that the GAr domain could inhibit the production
of translation-dependent DRiPs. However, it remains unresolved
whether control of the production of DRiPs during de novo
translation is the only mechanism explaining EBNA-1 cis-acting
immune evasion. Indeed, additional data contradicted the direct
implication of the GAr domain in protecting EBNA-1 from
proteasome degradation and increased protein stability (Yin
et al., 2003; Lee et al., 2004; Tellam et al., 2004, 2007a; Voo et al.,
2004; Daskalogianni et al., 2008).

What is clear from the studies investigating cis-acting immune
evasion of EBNA-1 is that the GAr-mediated self-inhibition of
antigen presentation to CTLs is not absolute. Indeed, although
reduced in presence of GAr, EBNA-1 can be immunogenic and
lead to the development of EBNA-1-specific CTLs in humans
(Blake et al., 1997, 2000; Subklewe et al., 1999; Sim et al., 2013),
but also in a mouse model where EBNA-1 was transduced using
an adenovirus expression vector (Tellam et al., 2014). Recent
advances have put forward a hypothesis to explain how the GAr
domain is able to reduce self-translation efficiency. Studies which
investigated mRNA translation of EBNA-1 suggested that the
nascent GAr peptide alone was able to delay the assembly of the
translation initiation complex mRNA, therefore reducing mRNA
translation (Apcher et al., 2009, 2010). However, more recent
reports suggested that EBNA-1 mRNA structure itself rather
than the GAr peptidic sequence could regulate EBNA-1 protein
translation (Tellam et al., 2008). Further findings supported
this hypothesis by demonstrating that mRNA sequence could
regulate the level of self-synthesis and antigen presentation of
EBNA-1 in vitro through the GAr domain (Tellam et al., 2012).
These authors highlighted the fact that the GAr domain, but
also most GMP CR domains, display a nucleotidic sequence
bias with enrichment of purines that is associated with reduced
efficiency of protein translation. The role of purine-rich domains
was demonstrated when replacement of the third base position
of codons by pyrimidines led to increased translation of the
protein and CTL activation (Tellam et al., 2008, 2014). Moreover,
generating frameshifts in the EBNA-1 GAr internal repeat
sequence to create alternate peptidic repeats had no effect on
the cis-acting immune evasion (Tellam et al., 2012). Indeed,
EBNA-1 frameshift mutants expressing GQE-rich or GRS-rich
repeats could inhibit the presentation of a linked model epitope
with an efficacy similar to native EBNA-1. Shortly after, the
same group highlighted a key role played by clusters of unusual
structural elements within the EBNA-1 mRNA sequence, named
G-quadruplexes (G4), in the modulation of protein synthesis
(Murat et al., 2014). G4 are secondary structures of nucleic
acids that form within G-rich DNA or RNA sequences (Murat
and Tellam, 2015). Four guanine bases can associate through
hydrogen bonding to form a guanine tetrad and two or more
guanine tetrads can stack on top of each other to constitute a
G4 structure (Metifiot et al., 2014). Globally, these structures
are present in telomeres, promoters, and gene bodies where
they perform important regulatory roles in diverse biological
processes including replication, transcription and translation
(Rhodes and Lipps, 2015). Bioinformatics analysis of the EBNA-
1 mRNA sequence revealed the presence of multiple putative
G4 structures within the GAr domain (Murat et al., 2014).

These authors further demonstrated that destabilization of G4
structures using antisense oligonucleotides led to an increase
of EBNA-1 mRNA translation (Murat et al., 2014). To go
further, as mentioned above, a modification of codon usage
to reduce the purine bias in GAr resulted in reverted in vivo
MHC class I epitope presentation and early priming of CD8+
T cells (Tellam et al., 2014). The mechanism underlying this
effect was suggested to be determined by a capacity of G4
structures present in GAr to alter the association of ribosomes
with EBNA-1 mRNA by inducing premature termination and/or
ribosome stalling, therefore impeding protein translation (Murat
et al., 2014). Nonetheless, whether G4 structures are present
in all gammaherpesvirus GMPs and involved in self-inhibition
of protein translation for immune evasion, needs to be further
elucidated. Interestingly, the generation of memory T cell
response was not affected by the codon-modification within the
GAr domain (Tellam et al., 2014). These results were of high
interest as they reported that promoting CTL priming against
EBNA-1 through impairment of the GAr-dependent cis-acting
immune evasion mechanisms could result in a more rapid CTL
response and the establishment of efficient immune memory.
In addition to translation regulation, previous studies have also
established that EBNA-1 could act at the transcriptional level
through inhibition of pre-mRNA processing of the primary
EBNA-1 transcript (Yoshioka et al., 2008).

Other Lymphocryptoviruses
Studies on the GMPs encoded by baboon lymphocryptovirus
(baLCV) and rhesus lymphocryptovirus (rhLCV), namely
baEBNA-1 and rhEBNA-1, respectively, provided conflicting
data. Indeed, the first results suggested that both the ba- and
rhGSAr domains were not able to prevent MHC class I restricted
peptide presentation in cis (Blake et al., 1999), whereas a second
study showed that rhEBNA-1-specific CTLs expanded in vitro
from rhLCV-infected animals failed to recognize endogenously
expressed rhEBNA-1 (Fogg et al., 2005). A more recent study
provided data supporting the hypothesis whereby rhEBNA-1 and
baEBNA-1 proteins do not possess cis-acting immune evasion
properties (Tellam et al., 2007b). Both proteins were translated
at a higher rate than EBV EBNA-1 with no effect of deletion of
the GSAr domains on translation rates and the rhGSAr domain
could not avoid cis-acting presentation of a model epitope.
A potential explanation for the adversarial result regarding the
lack of recognition of rhEBNA-1 by the rhEBNA-1-specific CTLs
reported in a study by Fogg and collaborators, could be that
the specific clones isolated were of low affinity against the GMP
(Blake, 2010).

GENUS Rhadinovirus

Kaposi’s Sarcoma-Associated
Herpesvirus (KSHV)
LANA-1 is also able to act in cis to inhibit MHC class I-restricted
epitope presentation to CTLs through involvement of the CR
domain (Zaldumbide et al., 2007). LANA-1 is subdivided into
three domains based on the peptidic sequence, with imperfect
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repeats: CR1 (aa 330–442) is a DE-rich region, CR2 (aa 442–
768) is a DEQ-rich region, and CR3 (aa 769–920) consists of
an EQL-rich region (Figure 1). Interestingly, the size of the
CR domain varies between different KSHV strains or isolates
(Gao et al., 1999). While a junctional domain between LANA-1
CR2 and CR3 has been mapped to contribute to retardation of
translation and inhibition of proteasomal degradation of LANA-
1 (Kwun et al., 2007), neither the CR2 nor CR3 domains were
found to be involved in the inhibition of peptide presentation
(Kwun et al., 2011). These data suggested that, in contrast
to EBNA-1, the mechanism combining protection of LANA-
1 from proteasomal degradation and reduction in the DRiPs
generation level is not sufficient to block peptide presentation
on MHC class I. Another notifiable difference with EBNA-
1 is that the retardation of LANA-1 translation seems to be
due to CR amino acid sequence rather than to the nucleotide
level. Indeed, the introduction of a stop codon between CR2
and CR3 resulted in increased translation (Kwun et al., 2007).
This observation is of importance considering the high degree
(about 50% for CR1 and CR2, and about 70% for CR3) of
similarity between EBNA-1 and LANA-1 in terms of nucleotidic
sequence (Tellam et al., 2012). Conversely, CR1 has been
implicated in LANA-1 cis-acting immune evasion through an
apparent inhibitory effect prior to translocation of cytoplasmic
peptides into the ER (Kwun et al., 2011). Here, fusion of a
signal peptide to LANA-1 led to efficient processing of the
protein for MHC Class I presentation. However, the presence
or absence of CR1 had no effect on protein translation or
proteasomal degradation. Using interferon-dependent induction
of proteasomal degradation and proteasome inhibitor MG132,
Kwun and collaborators further highlighted that LANA-1 is
processed for MHC I presentation through the canonical
proteasome pathway with little contribution of autophagy (Kwun
et al., 2007, 2011). Thus, LANA-1 seems to have evolved to
adopt immune evasion mechanisms that differ from EBNA-
1, despite having conserved nucleotide sequence similarities.
Although G4 structures have been involved in KSHV DNA
replication and episomal persistence (Madireddy et al., 2016),
it remains unappreciated whether G4 structures are present in
LANA-1 or not, as demonstrated for EBNA-1. EBNA-1-specific
CD8+ CTLs could be identified in patients (Blake et al., 1997,
2000; Subklewe et al., 1999; Sim et al., 2013). Likewise, several
studies have identified LANA-1-specific CD8+ T-cell responses
in KSHV seropositive subjects, highlighting the premise that the
self-protection of GMPs against MHC class I-restricted epitope
presentation is not absolute (Brander et al., 2002; Woodberry
et al., 2005; Bihl et al., 2007; Lepone et al., 2010). Nonetheless,
to our knowledge, no LANA-1-specific T cell clone is available to
be tested in vitro.

Other Rhadinoviruses
Infection of squirrel monkeys with SaHV-2 results in
asymptomatic latency in T lymphocytes. However, co-
species transmission to New World non-human primates
can lead to the development of acute T-cell lymphomas
(Fickenscher and Fleckenstein, 2001). Interestingly, SaHV-2
can induce transformation of human and rabbit T lymphocytes

(Fleckenstein and Ensser, 2004). The transforming capability
of SaHV-2 has been identified to be mainly driven by two viral
proteins termed Stp and Tip (Fleckenstein and Ensser, 2007).
SaHV-2 infection of T lymphocytes is associated with episomal
maintenance in absence of production of viral particles and the
GMP encoded by SaHV-2 (sLANA) has been demonstrated to
be essential for episomal maintenance (Calderwood et al., 2005).
The CR domain of sLANA varies between strains, with a EG-rich
domain of 15 aa in strain A11 or of 111 aa in strain C488; and
a EA-rich region of 147 and 132 aa in both strains, respectively.
One study thoroughly investigated the role of sLANA in evading
CTL recognition (Gao et al., 2009). In this study, Gao and
collaborators demonstrated that sLANA could reduce the MHC
class I presentation of the linked-OT1 epitope SIINFEKL (Gao
et al., 2009). The authors further observed that the steady-state
levels of sLANA protein were reduced due to the presence of
the CR domain rich in EG and EA residues, an observation
that could be explained by a decrease in the steady-state levels
of sLANA mRNA. Unexpectedly, the CR domain was not
responsible for an increased turnover of sLANA mRNA but
for a better stability over time of sLANA mRNAs compared to
constructs deleted of the EG-EA repeat. Moreover, the authors
showed that neither protein stability nor the efficiency of protein
translation were influenced by the CR region, which revealed
significant differences compared to both EBNA-1 and LANA-1.
Finally, a single copy of the motif EEAEEAEEE, which is present
multiple times in the EA-rich domain of two strains of SaHV-2,
was shown to be sufficient to inhibit MHC class I-restricted
antigen presentation when fused in frame with the sequence
of the heterologous ovalbumin protein (Gao et al., 2009). The
mechanism underlying this effect was suggested to be due to both
stabilization of mRNA and repression of self-transcription. Thus,
the presence of the EA-rich region could potentially influence
the total amount of translated sLANA and protein synthesis
efficiency, which in turn could potentially reduce the generation
of DRiPs although this aspect has not been directly addressed.

MuHV-4 infects and persists in the laboratory mouse.
Following primary infection, usually experimental intranasal or
intra-tracheal infection, MuHV-4 replicates in epithelial cells
and macrophages before reaching secondary lymphoid organs
where the virus is maintained as episomal genomes in memory
B lymphocytes (Barton et al., 2011; Gillet et al., 2015). MuHV-
4 GMP (mLANA) has been demonstrated to be essential for
episome maintenance in vitro but also in vivo as shown using
recombinant strains of MuHV-4 impaired for the expression of
mLANA (Fowler et al., 2003; Forrest et al., 2007; Habison et al.,
2012). Among gammaherpesvirus GMPs, mLANA is probably
one of the most intriguing proteins. Indeed, despite a lack of CR
domain, mLANA has retained the ability of its orthologs to act
in cis to self-inhibit MHC class I antigen presentation through
a region mapped to amino acids 170–220 of mLANA (Bennett
et al., 2005). This region was shown to be able to decrease
the steady-state levels of mLANA protein while at the same
time contributing to enhancing protein stability and protection
from proteasomal degradation (Bennett et al., 2005), similar to
EBNA-1. However, the exact mechanisms of action have not been
fully deciphered and it remains unclear how protein translation
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efficiency and potential G4 structures could be involved. MuHV-
4 provides an invaluable model to study gammaherpesvirus
infection in vivo, including viral pathogenesis and latency (Barton
et al., 2011). Using recombinant strains of MuHV-4 expressing
model T-cell epitopes in tandem under the control of ORF73,
Bennett and collaborators used an internal ribosome entry site
following the ORF73 coding sequence to bypass the cis-acting
evasion of ORF73 and to force expression of a tandem sequence
of three T-cell epitopes in vivo. By doing so, latently-infected
cells could express, in trans, CTL epitopes encoded by the ORF73
mRNA. Using this recombinant virus, infected mice showed a
critical MHC class I-restricted and CTL-dependent reduction in
viral latency, demonstrating that trans-acting immune evasion
could not inhibit peptide presentation to CTLs during latency
but rather indirectly suggests that cis-acting evasion by the
GMP is critical for normal establishment of long-term latency
in vivo. This study was the first to tackle the immune evasion
mechanisms of GMPs in vivo. Interestingly, three recent studies
used chimeric MuHV-4 recombinant viruses where mLANA
was replaced by functional KSHV LANA-1 (Gupta et al., 2017;
Habison et al., 2017; Pires de Miranda et al., 2018). These studies
demonstrated the ability of LANA-1-expressing chimeric MuHV-
4 to be maintained and establish latency in vivo, although at
lower levels compared to wildtype MuHV-4. These studies are
encouraging for future prospects to further investigate the role of
immune evasion mechanisms in vivo that are directly mediated
by LANA-1 or even other related GMPs.

GENUS Percavirus

Numerous clinical syndromes have been identified in equid
species in association with EHV-2 or EHV-5 infection. However,
true evidence for causal implication in the described diseases
remain elusive (Marenzoni et al., 2015), with the exception
of pulmonary fibrosis induced by EHV-5 infection (Williams
et al., 2013). The full sequence of only two members of the
Percavirus genus has been recently obtained. Although originally
thought to not express a GMP (Telford et al., 1995), a recent
report identified ORF73-encoding GMPs in two strains of equid
gammaherpesvirus 2 (EHV-2), including the initially sequenced
strain, and one strain of equid gammaherpesvirus 5 (EHV-5)
(Wilkie et al., 2015). Whereas strain 86/67 of EHV-2 expresses
a GMP of 985 amino acids, strain G9/92 expresses a 949-aa
GMP. Strain 2-141/67 of EHV-5 encodes a GMP of 996 residues.
Although GMPs of EHV-2 and EHV-5 contain a predicted CR
domain, no data is currently available on a potential cis-acting
immune evasion. More studies need be performed to uncover the
role of EHV-2 and EHV-5 GMPs in infection of equids with these
viruses.

GENUS Macavirus

All sequenced macaviruses encode a GMP but only the role
of AlHV-1 GMP (aLANA) has recently been investigated
experimentally (Palmeira et al., 2013; Sorel et al., 2017). AlHV-1

infects and persists in wildebeest asymptomatically and one can
assume that the entire population of free-ranging wildebeest
are infected. However, upon reactivation events, AlHV-1 can
be transmitted to a range of phylogenetically related ruminant
species, like cattle. In these susceptible species, AlHV-1 induces
MCF that ultimately leads to the death of the infected animal.
In both wildebeest and cattle, AlHV-1 establishes latency but
results either in true quiescent/latent infection (in wildebeest) or
latency-associated lymphoproliferation of CD8+ T lymphocytes
(in cattle). During AlHV-1-associated MCF, aLANA is highly
expressed (Palmeira et al., 2013). Thus, an adaptive immune
response is likely induced against the protein, potentially
including CD8+ CTLs that are specific to aLANA-derived
antigenic peptides. However, if such a putative response exists,
it fails to be protective as MCF-susceptible animals ultimately
develop MCF and die upon infection. In our recent study,
aLANA was shown to have acquired cis-acting immune evasion
properties similarly to its orthologs (Sorel et al., 2017). In
particular, this immune evasion mechanism was shown to be
mediated through the CR domain of aLANA that is rich in G and
E residues (termed GE). Importantly, the inhibitory properties
of GE could be transferred to a heterologous protein such as
enhanced green fluorescent protein, which is consistent with
the data obtained with the EA-rich domain of sLANA (Gao
et al., 2009). Mutant constructs expressing aLANA deleted for the
GE-rich domain exhibited similar protein and mRNA turnover
suggesting that GE inhibits proteasome-dependent antigen
presentation through a mechanism that does not involve protein
or mRNA degradation processes (Sorel et al., 2017). Although
these data are consistent with the results obtained with sLANA
(Gao et al., 2009), the internal region of several GMPs, including
LANA-1 and EBNA-1, as well as the amino acid region 170–220
of mLANA were shown to mediate decreased protein turnover
(Levitskaya et al., 1997; Bennett et al., 2005; Kwun et al., 2007).
However, the CR2CR3 region of LANA-1 that was mapped to
inhibit proteasomal degradation was, however, not found to be
involved in the self-inhibition of antigen presentation (Kwun
et al., 2011). Although the mechanisms involved in immune
evasion are not necessarily shared by all gammaherpesvirus
GMPs, these data are nonetheless strengthened by another
study that revealed that the half-life of a polypeptide does not
determine antigen presentation (Apcher et al., 2010). Thus, it
can be suggested that protection of GMPs from proteasomal
degradation might not be sufficient to block antigen presentation.
The lack of aLANA GE resulted in increased protein expression
levels due to a combination of enhanced translation efficiency
and increased steady-state RNA levels (Sorel et al., 2017),
which resulted in increased proteasome-dependent processing of
aLANA for MHC-I presentation. This mechanism was, however,
independent of autophagy, as treatments with the autophagy
inducer rapamycin, or autophagy inhibitors chloroquine or 3-
methyladenine, did not affect peptide presentation by MHC-I.
Thus, these results suggested that the GE-rich domain could
inhibit self-antigen presentation through regulation of both
protein translation and RNA transcription levels, leading as a
consequence to a decrease in DRiPs generation. Several related
gammaherpesviruses were shown to have acquired mechanisms
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that lead to reduced steady-state protein levels of their respective
GMPs (Tellam et al., 2007a; Yoshioka et al., 2008; Gao et al.,
2009), resulting in a potential reduction of DRiPs production.
Thus, targeting pathways leading to DRiPs production seems
to be a valuable mechanism to ensure episome persistence
during latency while avoiding detection by the immune system.
Furthermore, replacing the native GE-rich region of aLANA
by a synthetic codon-modified sequence, in order to reduce
the purine bias in the mRNA sequence without modifying
the protein sequence, similar to EBNA-1 GAr (Tellam et al.,
2014), led to significantly enhanced antigen presentation and
increased activation of antigen-specific CTLs in a mouse model
of DNA immunization (Sorel et al., 2017). These results were
suggestive of potential constraints, such as G4 structures, within
native GE mRNA structure that could limit antigen presentation
in a similar manner as EBNA-1 (Tellam et al., 2008; Murat
et al., 2014). Then, mRNA constraints contained in the GE-
rich domain of aLANA, rather than peptidic sequence, is likely
responsible for CTL immune evasion. However, the GE-mediated
cis-limitation of MHC class I antigen presentation of aLANA
was further shown to be dispensable for the induction of
MCF in the experimental rabbit model (Sorel et al., 2017).
Indeed, a recombinant virus expressing a GE-deleted form of
aLANA could induce MCF in rabbits in a similar manner to a
wild type virus expressing aLANA. Although the viral-specific
CTL response could not be monitored to determine the role
of the GE-rich domain in the efficient priming of CTLs by
aLANA in vivo, it clearly appears that aLANA-mediated cis-
acting immune evasion is not determinant during MCF. While
the mechanisms explaining this finding in the context of MCF
remain to be identified, these results suggest that the immune
evasion functions of aLANA are more likely to play a role in the
context of lifelong infection of the natural host of AlHV-1, the
wildebeest.

CONCLUSION

All sequenced gammaherpesviruses encode a GMP that tethers
viral genomes to the cellular chromosomes, ensuring even
segregation of viral episomes in daughter cells during cell
division (Blake, 2010). Besides their role in viral persistence,
GMPs can also modify the cellular environment to promote
cell immortalization and tumorigenesis in gammaherpesvirus-
induced malignancies. Because of their essential roles in
gammaherpesvirus latency, GMPs need to be expressed while
remaining hidden from immune surveillance in the infected
host. Evasion mechanisms of the cytotoxic T cell response

through self-limitation of MHC class I antigen presentation
constitute unique properties developed by GMPs to ensure
gammaherpesvirus long-term persistence. Importantly, more
questions need to be addressed for a complete understanding
of how GMPs successfully achieve both viral persistence and
escape of the CTL response. Such future understanding is of
interest to develop potential treatments to target and efficiently
disrupt latency. Among these questions, we could ask whether
the presence of G4 structures does represent a major and
common mechanism in gammaherpesviruses to control the
production of DRiPs from nascent GMP proteins during latency?
Moreover, how important is the cis-acting immune evasion
during lymphoproliferation, a hallmark of gammaherpesvirus-
associated malignancies? Indeed, a recombinant strain of AlHV-
1 expressing a mutated aLANA unable to self-inhibit protein
processing for presentation by MHC class I was, however, fully
able to induce normal MCF. Whether this observation after
AlHV-1 infection represents a general rule or just an exception
is unknown. Thus, it makes no doubt that understanding the
degree of involvement of GMP cis-acting immune evasion during
gammaherpesvirus latency will be determined depending on
our understanding of latency mechanisms themselves and, for
instance, how distinct are silent latency in healthy individuals
and latency-dependent lymphoproliferative diseases. In other
words, would self-inhibition of antigen presentation by GMP
represent the essential mechanism to avoid CTL recognition
during gammaherpesvirus-induced lymphoproliferation? We are
eager to uncover future investigations that will clarify these
questions.
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