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Input: Sample of interest

Output: .fastq files
.fq.gz

Overview of Sequencing 



FASTQ file

• Standardized output format
• Contains millions of records
• Each record is represented by four lines 

Name

Sequence

Quality score

Base = T
Score = D (ASCII code = 68) = 35

Illumina ASCII_BASE = 33
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QUALITY ASSESSMENT
Quality Assessment & Data Filtering



Aim of QC …

• Assess sequence qualities 
• Collect statistics about NGS runs and 

sequence compositions
• Improving alignment/assembly accuracy
• Removing biases and artifacts: 

• Sequencing adaptors (trimmomatic, Cutadapt)
• Low quality reads (fastx toolkit, PRINSEQ)
• Reads with length < 60 nt
• rRNA and others RNA contaminants (SortMeRNA)



FASTQC

QC = Are the data correct enough for next step?
• A “bad” result from FASTQC doesn’t always 

mean the data are not useful or valuable
• Main FASTQC results:

1. Basic statistics
2. Per base sequence quality
3. Per sequence quality scores
4. Per base sequence content 
5. Per sequence GC content 
6. Sequence duplication levels
7. Overrepresented sequences



1. Basic statistics

Raw data



2. Per base sequence quality

1 error in every 
10 bases  = 90%
accuracy

1 error in every 
100 bases  = 99%
accuracy

1 error in every 
1K bases  = 99,90%
accuracy

1 error in every 
10K bases  = 99,99%
accuracy

Raw data



2. Per base sequence quality
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Raw data



3. Per sequence quality scores

Raw data



4. Per base sequence content

characteristic of
Illumina RNA

-seq data

Raw data



5. Per sequence GC content
(Raw data)

More G/C rich
A lot of t/rRNA
sequenced

More A/T rich
A lot of polyA

sequenced

Raw data



6. Sequence duplication levels

Raw data



7. Overrepresented sequences

rRNA or other contaminantsRaw data



After first pass QC …

We should remove rRNA
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DATA FILTERING
Quality Assessment & Data Filtering



… Filtering

• Getting statistics and quality metrics about 
the NGS runs

• Assessing the quality of the sequencing
• Remove: 

• Sequencing adaptors (trimmomatic, Cutadapt)
• Low quality reads (fastx toolkit, PRINSEQ)
• rRNA and others RNA contaminants (SortMeRNA)



rRNA out-filtering

• Acceptable rate between 0.1% and 3% (rRNA
depletion)

• > 3% may effect the usable number of reads.

• Tool used hereafter: SortMeRNA



SortMeRNA pipeline

R1.fatsq R2.fastq

Merging of the 
paired-end files

Create rRNA
databases (ref. DB)

Indexing of all the 
databases

sortMeRNA

Unmerging 

rRNA aligned 
file

rRNA-free 
file

R1.fastq R2.fastq

--aligned--other



After rRNA filtering

rRNA-free data



After rRNA filtering

rRNA-free data



Quality trimming and adapter removal

• Sequencing process: bases in the later cycles 
receive a lower average quality than the 
earliest cycles.

• Trim low quality bases from the 3’ until the 
quality reaches a selected Phred score 
threshold.

• Presence of partial adapter sequences within 
sequenced reads: Adapter removal

• Tool: Trimmomatic / cutadapt
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Quality trimming and adapter removal

• Sequencing process: bases in the later cycles 
receive a lower average quality than the 
earliest cycles.

• Trim low quality bases from the 3’ until the 
quality reaches a selected Phred score 
threshold.

• Presence of partial adapter sequences within 
sequenced reads: Adapter removal

• Tool: Trimmomatic / cutadapt



Example of adapter contamination



Example of adapter contamination



Example of low/bad quality



General remarks on QC using FASTQC

• A “bad” result from FASTQC doesn’t always 
mean the data are not useful or valuable



Alternate tools for QC and filtering

• FASTQC [Andrews S et al. 2010]: QC Standard tool

• AfterQC [Shifu Chen et al. 2017]

• RSeQC [Liguo Wang et al. 2012]

• RNA-SeQC [David DeLuca et al. 2012]
• Picard [http://picard.sourceforge.net] 

Specific to
RNA-seq data



NORMALIZATION
Normalization for differential expression analysis



What next ? Differential Expression 
(DE) analysis

• Differential expression analysis means taking
the normalized read counts data and
performing statistical analysis to discover
quantitative changes in expression levels
between experimental groups.

• Aim: identify genes that are differentially
expressed between two conditions/groups



Typical DE pipeline

Filtered data

Mapping (STAR)

Summarizing (HTSeq)

RNA-seq raw 
counts data

Low count filtering

Normalization

Correction for batch 
effects (known or 

hidden effects)

DE test

Reference 
genome

Annotation 
file



RNA-seq raw count matrix 

Genes Sample#1 Sample#2 Sample#3 Sample#4 Sample#5 Sample#6

Gene#1 33 18 12 77 33 40

Gene#2 2 1 0 2 3 4

Gene#3 1233 233 2200 120 2900 3300

Gene#4 544 88 110 23 129 455

Condition 1 Condition 2



Normalization

“ Normalization is a data analysis technique that 
adjusts global properties of measurements for 

individual samples so that they can be 
appropriately compared ” 

[Jeffrey T. Leek et al. 2010]



Aims of normalization

• Normalization (including correction for batch 
effects) has a great impact on Differential 
Expression (DE) results (Bullard et al. 2010)

• Accurate estimation of gene expression levels
• Reliable DE analysis
• Reduce FP DE genes

A good normalization method including correction for batch 
effects (even known or hidden) must be carefully selected and applied



Biases

• Within sample biases: gene length, nucleotide
composition (GC content), ...

• Between sample biases: library size (aka.
sequencing depth), known and potential
unknown batch effects



Gene length bias



GC content bias

[Tarazona S et al.  2012 ]



Library size (aka. Sequencing depth) 
bias

RNA-seq

More RNA-seq
Gene A

Gene A Gene B

Gene B Gene C

Gene C

Sample

Sample

20 M

40 M



Normalization methods

• RPKM [Mortazavi et al. 2008]

• UQ, TC 
• CQN [Hansen et al. 2012]

• TMM (edgeR) [Robinson MD et al. 2010]

• DESeq2 [Anders S et al. 2010]
Library size

distribution adjustment of
read counts 

A comprehensive evaluation of normalization methods for Illumina
high-throughput RNA sequencing data analysis [Dillies M.A. et al. 2012] 



Reads Per Kilobase per Million mapped reads
(RPKM) 

• Removing library sizes and gene length effects

= 

Raw count for gene j in sample i

Length of gene jLibrary size for sample i



Total Count (TC) and Upper Quartile 
(UQ) normalizations

• Total Count

 =

స

Total number of samples

• Upper Quartile

 =

స
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DESeq

• Assumption: Most genes are equivalently
expressed (EE) across samples.

• An estimated size factor j (scalable factor) is
calculated for each sample.

• Scale the counts by the corresponding size factor
for each sample



DESeq

• Assumption: Most genes are equivalently
expressed (EE) across samples.

• An estimated size factor j (scalable factor) is
calculated for each sample .

• Scale the counts to the corresponding size factor
for each sample



DESeq – Calculating of size factors

1. Relative expression of gene in sample :

2. Estimated size factor for sample 

Geometric mean of gene i 
across all the samples

Read count for gene i in sample j

j ij
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1. Relative expression of gene in sample :

2. Estimated size factor for sample 

Geometric mean of gene i 
across all the samples
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Trimmed Mean of M-values 
(TMM)

• The same principle as DESeq
• Assume most of genes are not differentially

expressed across samples.
• edgeR package
• TMM normalization factors across several 

samples can be calculated by selecting one 
sample as a reference and calculating the 
TMM factor for each non-reference sample



Trimmed Mean of M-values 
(TMM)

• The same principle as DESeq
• Assume most of genes are not differentially

expressed across samples.
• edgeR package
• TMM normalization factors across several

samples can be calculated by selecting one
sample as a reference and calculating the
TMM factor for each non-reference sample



TMM normalization factors
• Steps:
1. Calculate the M-value for each gene 

2. Calculate the absolute expression level for 
each gene

k’ reference sample

( ࢍ


ᇲࢍ
ᇲ

)



TMM normalization factors
• Steps:
1. Calculate the M-value for each gene 

2. Calculate the absolute expression level for 
each gene (A value)

k’ reference sample
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TMM normalization factors
• Steps:

3.  Trimming of M-values and A-values

M1 M2 M3  M4 … MG

A1 A2 A3    A4  … AG



TMM normalization factors
• Steps:

3.  Trimming of M-values and A-values

M1 M2 M3  M4 … MG

A1 A2 A3    A4  … AG



TMM normalization factors
• Steps:

3.  Trimming of M-values and A-values

M1 M2 M3  M4 … MG

A1 A2 A3    A4  … AG

4. Calculate the weighted mean of the remaining 
M-values



TMM normalization factors
• Steps:

5. We use the set of the genes with a valid 
M-value and A-value to calculate the TMM
normalization factor for each sample using 
a reference sample



EDASeq to correct for GC content bias



Comparison

[Dillies et al. 2012]



Normalization is not enough !

• Normalization does not remove batch effects, 
which affect specific subsets of genes and may 
affect different genes in different ways [Davide
Risso et al. 2015] 

• Most of the normalization methods proposed in 
the literature don't correct for unknown batch 
effects: RPKM, TMM, UQ, DESeq, ... 



Batch effects

• Different sequencing centers
• Chemical reagent lots, 
• Personnel 
• Date of the experiment, and,
• Many other unknown technical variation



What if the batch effect is unknown ?

PCA plot shows no clustering of the
samples according to the factor of
interest
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What if the batch effect is unknown ?

PCA plot shows no clustering of the
samples according to the factor of
interest  a hidden effect that
hampers the data to be clustered 
Hidden noise(s) to be determined and
removed



Methods to correct for unknown batch 
effects

• SVA [Jeffrey T. Leek, 2014]

• Combat [Johnson WE et al. 2007]

• RUVg [Davide Risso et al. 2014]

• ARSyN [Maria j. Nueda et al. 2012]



Example of removing batch effects
Raw data UQ

TMM DESeq After removing UV

RPKM



What next 

• Differential expression analysis
• Alternative splicing analysis



Thank you

Questions ?


