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Abstract: The aim of this study is to assess the sensitivity of convective precipitation modelled by
the regional climate model MAR (Modèle Atmosphérique Régional) over 1987–2017 to four newly
implemented convective schemes: the Bechtold scheme coming from the MESO-NH regional model
and the Betts-Miller-Janjić, Kain-Fritsch and modified Tiedtke schemes coming from the WRF regional
model. MAR version 3.9 is used here at a resolution of 10 km over a domain covering Belgium using
the ERA-Interim reanalysis as forcing. The simulated precipitation is compared against SYNOP and
E-OBS gridded precipitation data. Trends in total and convective precipitation over 1987–2017 are
discussed. None of the MAR experiments compares better with observations than the others and
they all show the same trends in (extreme) precipitation. Over the period 1987–2017, MAR suggests
a significant increase in the mean annual precipitation amount over the North Sea but a significant
decrease over High Belgium.
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1. Introduction

Precipitation can generally be classified into two main types: (i) stratiform precipitation resulting
from stable stratified clouds and characterized by a large spatial extent, weak vertical velocities and
mostly low precipitation rates and (ii) convective precipitation resulting from convective clouds
(congestus or cumulonimbus clouds) on a smaller areal coverage but with higher vertical velocities
and precipitation rates than stratiform precipitation [1]. In temperate regions, stratiform precipitation
generally results from fronts in mid-latitude cyclones and occurs all year round [2]. On the opposite,
convective precipitation occurs mainly during summer, although it can also appear (less frequently) in
winter [3].

The representation of convective systems in general circulation models (GCMs) or regional climate
models (RCMs) is quite challenging since their spatial dimensions are most of the time significantly
smaller than the spatial resolution allowed by the models. For this reason, contrary to stratiform
precipitation which is explicitly simulated, convective precipitation has to be parameterized. Except
for the convection-permitting RCM simulations which have a kilometre-scale resolution and are thus
adapted to the explicit representation of the convection. However, due to the high computational costs,
this kind of models are not commonly used especially for long climate simulations [4].

Three main types of convective schemes can be defined:
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• moisture budget schemes (e.g., [5]) based on the convective instability and moisture convergence
to parameterize the cumulus convection [6];

• adjustment schemes (e.g., [7,8]) using a mixing line approach for driving the actual lapse rate
toward the moist adiabatic lapse rate [6];

• mass flux schemes (e.g., [9–11]) aiming to calculate the interactions between cumulus ensembles
and their large-scale environment, itself divided into cumulus-covered and clear-sky parts [12].

All these schemes consider a single column of the atmospheric model and their general purpose
is to remove the instability of the air column to reach its equilibrium state. The main consequence of
this atmospheric re-balancing is the production of precipitation, known as convective precipitation.
Some convective schemes can also modify the vertical structure of humidity, temperature and wind in
the free atmosphere as well as in the boundary layer [13].

As the performance of convective schemes is highly dependent on model biases and spatial
resolution, successfully simulating convective precipitation amounts and patterns remains a big
challenge for most of climate models, both for GCMs [14] and RCMs [15–17].

Wyard et al. [18] highlighted the underestimation of convective clouds and summer precipitation
in the version 3.6 of the regional climate model MAR (Modèle Atmosphérique Régional) over
Belgium. Despite some improvements made in the convective scheme of MAR version 3.8 [19],
the underestimation of summer precipitation and clouds remains partly unsolved [20]. This is
why, implementation and sensitivity tests of five convective schemes are made in MARv3.9: one
convective scheme from the regional model MESO–NHv5.3.1, three convective schemes from the
regional model WRF (version 3.9.1.1. from 28 August 2017) and the original scheme used in MAR.
Although precipitation in Belgium has been shown to occur frequently [21,22], the dependency of
simulated precipitation to convective schemes as never been assessed over this region and particularly
with the MAR model.

The aim of this research is thus to assess the sensitivity of convective precipitation modelled by
MAR over 1987–2017 to those five convective schemes. After a brief presentation of the area of interest,
Section 2 describes MAR, the different convective schemes and the in situ evaluation data used in this
research. Results are then presented in Section 3. Section 3.1. presents the comparison of the MAR
results to weather station data. Section 3.2. presents the MAR sensitivity to the convective schemes
by analysing the trends in total precipitation and convective precipitation over the period 1987–2017
before the discussion of the results in Section 4 and conclusion in Section 5.

2. Methods and Data

2.1. Study Area and Evaluation Dataset

Belgium (Figure 1) is mainly influenced by a temperate oceanic climate, implying that precipitation
occurs year round. Prevailing winds from the South-West are responsible for the advection of moist air
from the North–Atlantic Ocean and thus for most of precipitation events. Belgium is divided into three
orographic zones regarding to elevation above sea level (z): Low-Belgium (z < 100 m), Middle-Belgium
(100 m < z < 300 m) and High-Belgium (z > 300 m) with a highest point at 694 m above sea level. In Low
and Middle-Belgium mean precipitation amount of 700–800 mm/year is measured, while precipitation
amount can reach more than 1400 mm/year on the summits of Belgium [21,22]. Thunderstorms mainly
occur between April and September, often originate from the South–West and are the most frequent in
High–Belgium [23].
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range from 3% to 16% depending on the station. The weather stations are listed with their latitude,  

longitude and altitude, as well as the corresponding ones from MAR in Table S1 and are pointed on 
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Figure 1. Model elevation of the study area (in meters) and location of the weather stations of the
surface synoptic observations network (SYNOP) used in this study (black crosses). Dotted black
lines represent the 100 m and 300 m elevation and the blue lines represent the major rivers of our
studied area.

As done in Wyard et al. [18], all weather observation data used for the evaluation of MAR comes
from weather stations of the surface synoptic observations network (SYNOP). These data include daily
precipitation amounts and are available for 20 stations over the whole Belgian territory from 2008 to
2014 from the OGIMET web site [24]. Missing or erroneous observation data range from 3% to 16%
depending on the station. The weather stations are listed with their latitude, longitude and altitude, as
well as the corresponding ones from MAR in Table S1 and are pointed on Figure 1.

In addition to these in situ observations, MAR is also evaluated against the European daily
high-resolution gridded Observations database (E–OBS [25]) from the European Climate Assessment
and Dataset project (ECA&D). These data are based on several precipitation networks, including
SYNOP and are interpolated with a three-step process on four different grids [25]. The uncertainties
mainly depend on the station density [25]. Hofstra et al. [26] have shown that precipitation is
over-smoothed when the station density is weak. Fortunately, Belgium has a high station density and
has the lowest biases (+/−10% of the mean bias averaged over all models and all seasons identified
by Lenderink [27]). ECA&D provides daily weather data (mainly temperature and precipitation)
throughout Europe (e.g., [16,28–30]). In this paper, the version 17.0 (April 2018) of E–OBS at a
resolution of 0.22◦ × 0.22◦ is used. As for the evaluation of MAR, E-OBS data are extracted from the
nearest grid cell to the location of the SYNOP observations.

2.2. The MAR Model and Set-Up

Although MAR has been originally developed for polar regions [19,31,32], the model was adapted
for West-European temperate regions [18,20,33–36]. The MAR model was also applied to West-Africa
tropical regions where the use of a convective scheme is essential to represent the local precipitation
regimes [37–39]. MAR is a hydrostatic primitive equation model in which the cloud microphysical
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parameterization is based on several studies [40–43] and is described in Gallée et al. [37]. The radiative
transfer through the atmosphere is based on Morcrette [44]. The convection in the standard model
configuration is parameterized according to Bechtold et al. [9].

In this study, MAR version 3.9 is used at a resolution of 10 km over a domain covering Belgium
(80 × 75 pixels) for the period 1987–2017 with 4 months of spin-up. Lateral boundary conditions
(temperature, pressure, wind and specific humidity) and sea surface temperature are provided every 6 h
by the 3rd generation ERA–Interim reanalysis [45] available at a horizontal resolution of 0.75◦ × 0.75◦

and 60 vertical levels. The use of the ERA-Interim reanalysis is motivated by the fact that forcing MAR
with this reanalysis led to the best agreement with ground-based meteorological observations over
Belgium among a set of other reanalyses [18]. The spatial resolution jump between the GCM and the
nested model has approximately a ratio of 8. This ratio is appropriate according to Antic et al. [46]
who recommend a maximum of 12 and even according to Giorgi and Gutowski [47] who are more
restrictive and recommend a maximum of 10.

2.3. Description of the Convective Schemes

The standard configuration of MAR uses the mass flux scheme of Bechtold et al. [9]
(hereafter called STD or MAR–STD when used in MAR sensitivity experiments) as convective
parameterization [38]. Our sensitivity study is based on the use of four other convective schemes.
The first one is the scheme implemented in the version 5.3.1 of the MESO-NH regional model [48].
This scheme is also based on the Bechtold scheme but with different optimizations and parameter
adjustments compared to the original convective scheme implemented in MAR for simulating
convective precipitation in Africa [38]. This scheme is called MES hereafter or MAR-MES when
used in MAR sensitivity experiments. The three other schemes come from the version 3.9.1.1. of the
WRF model described by Skamarock et al. [49]:

• the adjustment convective scheme of Betts-Miller-Janjić [7,8] (called BMJ or MAR-BMJ in MAR
sensitivity experiments;

• the mass flux scheme of Kain-Fritsch [10] (called KFS or MAR–KFS in MAR sensitivity experiments);
• the modified Tiedtke mass flux scheme [11,50] (called NTK or MAR–NTK in MAR

sensitivity experiments).

These three convective schemes have been widely used and exhibit overall good results over
Europe [51–53] while NTK seems to be the most suitable for intense convective systems [54,55].
However, there is no consensus in the performance of these schemes. For example, Evans et al. [56]
and Ratna et al. [57] show that BMJ and KFS produce good precipitation patterns respectively in
South–East Australia and in South Africa but they both tend to overestimate precipitation amounts
while it is the opposite in Madala et al. [58] over South East of India. Although Ratna et al. [57] show
that BMJ is closest to the observed precipitation amount than KFS, Pohl et al. [59] show exactly the
opposite over the equatorial east Africa and Ishak et al. [60] show better performance for KFS during
summer and for BMJ during winter over Southwest England. It appears that none of the convective
schemes performs systematically better than the others but instead depend on the region, the season
or the model configuration, as concluded by Ishak et al. [60]. This study pointed that it is essential to
identify the best convective scheme for each given region and each given period.

3. Results

3.1. Evaluation with In Situ Observation of Precipitation

This section presents the statistics of the mean annual precipitation amount and monthly biases, as
well as the monthly normalized root mean square error (NRMSE) and associated monthly correlation
coefficient (R) computed on daily value.
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At the annual time scale (Table 1), MAR–STD underestimates precipitation for almost all stations.
The smallest biases are obtained for the stations in High-Belgium while the largest biases occur for
the stations in Low-Belgium. Results are similar for both MAR-MES and MAR-BMJ, except that their
biases are generally smaller for the stations in Low-Belgium and slightly larger in High-Belgium
compared to MAR-STD. For these three simulations, at an annual time scale, most of the annual
biases range between −33% and +33%. The annual biases of the E-OBS data are larger for the
stations in High-Belgium than in Low and Medium Belgium where E-OBS data compares better than
MAR. Such biases in High-Belgium are explained by the coarse resolution of the E-OBS data which
does not correctly represent the elevation-driven precipitation gradient between Low-Belgium and
High-Belgium. Regarding the average biases for each region, MAR-MES has the lowest one while
MAR-KFS and MAR-NTK present the largest biases. MAR-STD follows the same regional behaviour
as when comparing it to individual stations: it has the lowest biases over High-Belgium and the largest
ones over Low-Belgium.

Table 1. Comparison over 2008–2014 of annual mean precipitation from SYNOP weather stations (and
all stations in each region) with MAR experiments and E-OBS. Column A represents precipitation
simulated by MAR (resp. provided by E-OBS) in mm/year and the corresponding bias in % and
column B represents the mean daily bias in mm/day.
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Uccle 823 649 -21% -0,48 782 -5% -0,12 868 5% 0,10 938 14% 0,28 897 9% 0,18 751 -9% -0,20

Beauvechain 664 666 0% 0,01 784 18% 0,32 883 33% 0,59 908 37% 0,64 867 31% 0,55 697 5% 0,09
Ernage 830 652 -21% -0,49 743 -10% -0,25 870 5% 0,10 884 7% 0,13 840 1% 0,03 732 -12% -0,27
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STATION AND 
REGION

At the monthly scale (Figure 2), MAR-STD underestimates precipitation year round for all stations
except in summer at some stations (e.g., Beauvechain, Schaffen, Spa). This is the opposite situation for
MAR-NTK with almost always positive or close-to-zero biases all around the year for most stations.
MAR-BMJ, MAR-MES and MAR-KFS have a weak bias in winter but they overestimate precipitation
in summer.

In summer, the largest biases are simulated by MAR-KFS and to a lesser extent by MAR-MES and
MAR-BMJ, in comparison to the MAR-STD simulation which shows no clear seasonality in its biases.

It is interesting to note that the NRMSE (Figure S1) of the E-OBS data is generally close or a bit
lower (less than 2 mm/day) than the NRMSE of the different MAR simulations except in winter when
MAR gives better NRMSE results than the E-OBS data, in particular at Mont Rigi. This is probably
linked to the coarse resolution of the E-OBS data compared to MAR whose pixel containing Mont Rigi
station is closer to the real elevation.

During winter for all schemes and for all stations (Figure 3), R is between 0.7 and 0.9 with respect
to daily measurements. In summer, R drops to values between 0.5 and 0.7. MAR-STD, MAR-MES and
MAR-KFS present similar correlations while MAR-BMJ and MAR-NTK show weaker performances.
In winter and spring, these simulations are close to the three others but in summer and autumn, their
R values are rather lower than 0.5.
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Figure 3. Monthly mean correlation (R) of daily precipitation simulated by MAR and provided by
E-OBS with respect to SYNOP observations.

For the E-OBS data, as for the NRMSE analysis, R values are not better than for the MAR
simulations in winter. But in spring and summer, E-OBS data are significantly better correlated to daily
observations than MAR with R values around 0.8.

When analysing each region, Figures S2 and S3A shows that all experiments fit better for
High-Belgium in contrast to E-OBS which fits better over Low and Medium Belgium. In Figure S2,
the interception with the 0–1 line occurs from 1 mm for MAR-STD, around 2 mm for MAR-MES and
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MAR-BMJ, between 3 and 4 mm for MAR-KFS and 3.5 mm for MAR-NTK except for High-Belgium
where MAR-NTK clearly overestimates for all the observed values.

MAR-STD (and MAR-MES to a lesser extent) shows the lowest values for NRMSE (Figure S3B)
and the highest for R values (Figure S3C) while this is the contrary for MAR-NTK and MAR-BMJ to a
lesser extent. For NRMSE (Figure S3B) and R values (Figure S3C), E-OBS shows nevertheless the best
agreements with the SYNOP data than all our experiments for all regions.

Two main conclusions can be drawn in this section. Firstly, all statistical indicators show that
for all convective schemes MAR performs systematically better in winter than in summer. The
implementation of new convective schemes does not improve the comparison suggesting that the
convective scheme is likely not the source of the MAR misleading in summer. In winter, the MAR
performance is even better than E-OBS data. However, it should be noted that the model data are
compared with observational data that are not free from errors. This may explain some large abnormal
differences that can be found for a given station but not for the others (for example the station of Spa
shows the worst values for biases, NRMSE and R for the month of January compared to the other
stations where results are better for the three statistical indexes). In addition, the comparison between
model results and observational data can lead to increase biases due to the isolated measurements
of weather variables. This is especially the case in summer when precipitation is more convective
and thus more localized in time and space (see Appendix A which illustrates two study cases of
this issue). Secondly, MAR-STD, MAR-MES and to a lesser extent MAR-KFS compare the best with
observations. However, MAR-STD tends to underestimate precipitation, especially over Low-Belgium
where MAR-MES tends to slightly overestimate precipitation compared to observational data.

3.2. Changes in Precipitation over 1987–2017 in Belgium

After a brief comparison of the annual precipitation between MAR simulations and observations
and its intra annual variability, this section focuses on convective precipitation to assess the part of
convective and stratiform precipitation in comparison to the different convective schemes and E-OBS
data. Finally, the discrepancies in simulating extreme precipitation following the convective scheme
are analysed. Extreme precipitation is defined here as the annual value of the 95th percentile of daily
precipitation. For each of these indicators, the linear trends are calculated according to the convective
scheme and E-OBS data over the period 1987–2017. The trend significance is assessed following the
uncertainty range of Snedecor for the 95th confidence interval as described in Wyard et al. [18].

3.2.1. Annual Precipitation

The annual mean precipitation amount simulated by MAR over 1987–2017 (Figure 4) shows the
same pattern for each scheme but with different precipitation amounts. MAR-STD simulates the lowest
precipitation amounts (from 600 mm to 1150 mm) while MAR-NTK simulates the largest amounts (from
800 mm to 1400 mm). Compared to the E-OBS gridded observations, MAR-MES compares the best
(from 700 mm to 1200 mm) while MAR-STD underestimates the E-OBS amounts. Finally, MAR-BMJ,
MAR-KFS and MAR-NTK overestimate them. However, concerning High-Belgium, Section 3.1. shows
that E-OBS underestimates the precipitation amounts while MAR-STD and MAR-MES compare
the best.

According to MAR, the annual precipitation amount (Figure 5 and Figure S4) does not show
any significant trend over Belgium except over the North Sea where a significant increase (+20 to
+60 mm/decade) is simulated in MAR-STD, MAR-MES and MAR-BMJ (which also shows a significant
trend over the northern half of Belgium). Although E-OBS have no information over the sea pixels,
the nearest shore grid points also reveal a positive trend (+30 mm/decade) even if it is not significant.
On the other hand, the E-OBS data show a significant decreasing trend over High Belgium (−50 to
−80 mm/decade) and the surrounding regions to the east and to the south. The five MAR experiments
suggest a non-significant decreasing trend in High Belgium.
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3.2.2. Convective Precipitation

The annual mean convective precipitation over 1987–2017 differs significantly from one
experiment to another as shown in Figure 6. MAR-STD simulates an amount of convective precipitation
of about 120 mm/year (in Low Belgium) to 160 mm/year (in High Belgium), while the other
runs simulate greater precipitation amount compared to MAR-STD: +150 mm/year for MAR-MES,
+150 mm/year for MAR-BMJ except over the High Belgium, +350 mm/year for MAR-KFS and
+100 mm/year for MAR-NTK. Unfortunately, the E-OBS data (or any other observation based dataset)
do not allow a distinction between convective and stratiform precipitation.

Beyond this general increase in convective precipitation in the different model configurations, it is
interesting to note that stratiform precipitation reacts also differently. As shown in Figure 7, MAR-BMJ
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and MAR-NTK simulate more stratiform precipitation compared to the MAR-STD while the opposite
stands for MAR-MES and MAR-KFS.
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Figure 7. Idem as Figure 6 but for stratiform precipitation.

The mean annual convective precipitation amount (Figure 8 and Figure S5) significantly increases
over and near the North Sea in all MAR simulations with the highest ranges in MAR-MES, MAR-BMJ
and MAR-KFS (between 20 to 40mm/decade).

Unfortunately, all these trends of convective precipitation cannot be corroborated by any
observational data. Nevertheless, MAR simulations globally agree on the signal trend but not on the
absolute values.
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3.2.3. Extreme Precipitation

All MAR simulations (except MAR-KFS) are in agreement with the average 95th percentile
from the E-OBS data for High Belgium over 1987–2017 (Figure 9) with values between 13 and
16 mm/day while MAR-KFS simulates lower percentiles. For Low and Medium Belgium, MAR-STD
underestimates the 95th percentile, while MAR-MES, MAR-KFS and MAR-NTK compare better. The
best agreement occurs with MAR-BMJ.
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The 95th percentile of daily precipitation simulated (Figure S6) by MAR-STD, MAR-MES,
MAR-BMJ and MAR-NTK show significant positive trends (+0.5 to +1.5 mm/decade) over the North



Atmosphere 2019, 10, 34 11 of 19

Sea while for High Belgium, all simulations agree on a decreasing trend of the 95th percentile of
daily precipitation in agreement with the E-OBS data (Figure S7). The majority of the increase in
precipitation in the North Sea and the decrease in High Belgium may therefore result from the above
mentioned changes in intense precipitation quantities (Figure 5).

4. Discussion

Three main results can be drawn. Firstly, MAR suggests an increase in precipitation over the North
Sea as a result of an increase in the amounts of extreme precipitation in agreement with the coastal
pixels of E-OBS and previous studies [61,62]. According to Joyce [63] and Sherman et al. [64] showing
that the North Sea is one of the region of the North Atlantic Ocean with the highest warming over the
last 25 years, these changes are mainly due to the increase of sea surface temperature providing more
moisture and heat to the atmosphere favouring the development of convective precipitation.

Secondly, both MAR simulations and E-OBS show a decrease in the amount of precipitation
over High Belgium as a decrease in extreme precipitation. Willems [65] and Wyard et al. [18] stated
that extreme precipitation trends are highly dependent on the studied periods because they undergo
multidecadal oscillations. These authors showed that from 1980 to 2000, Central Belgium was in a
phase of increasing extreme precipitation amount, before entering a decreasing phase after 2000. It is
possible that the negative trends calculated in High Belgium are more an artefact highly dependent
on the considered period rather than on a real climate change in High Belgium. During the 20th
century, Moberg et al. [66] found that winter precipitation has increased over Europe but without
an increase in extreme precipitation. As for summer precipitation, the same authors state that it has
not undergone any significant change throughout Europe. Finally, several studies (e.g., [18,67–70])
have shown increasing trends of extreme precipitation in Belgium but these trends only concern
recent periods, highlighting the necessity to have longer time series to detect more robust changes
in precipitation.

Thirdly, all the sensitivity experiments show the same behaviour and approximately the same
trends confirmed by the E-OBS data, there are discrepancies in quantities between each experiment:

• MAR-STD simulates the smallest precipitation amounts, for both total annual precipitation and
convective precipitation;

• MAR-NTK simulates the largest total annual precipitation while MAR-KFS simulates the largest
contribution of convective precipitation;

• MAR-MES behaves in the same way than MAR-STD but produces more mean annual precipitation,
which being thus more in agreement with E-OBS than MAR-STD;

• MAR-BMJ seems to perform better for extreme precipitation events. This suggests that the BMJ
scheme is more reactive to extreme precipitation than the other schemes. In contrast, the STD
and MES schemes, which are the original convective schemes implemented in MAR, are better
on average.

MAR-STD and MAR-MES fit slightly better the observations as well as the E-OBS data, most likely
because the STD and MES schemes are the original convective schemes used in the MAR model, whose
compensation for unknown errors (inherent to any climate model) is itself calibrated on the original
MAR configuration. In contrast, MAR-NTK shows the largest total annual precipitation, probably
because this convective scheme was originally developed for a GCM and particularly for the equatorial
region [11]. Zhang et al. [50] adapted this scheme for a RCM but they recognize that it produced more
intense shallow convection and thus leads to more precipitation than other convective schemes such
as BMJ. In general, each convective scheme has particular parameters or reference profiles for BMJ,
defined by the authors in order to have the best results with their models for a specific configuration.
Even if certain studies tried to have experimental results reproducible as written by Janjić [8], it is
normal that results change when using another model than the experimental one. As introduced in
Section 2.3, results clearly show that no convective scheme performs systematically better than the
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others and that the results are extremely dependent on the internal configuration of the model [52,60].
Despite these individual results, all experiments show that the trends are similar, which suggests that
it would be interesting to use all these experiments as part of a model ensemble, as already proposed
by Pieri et al. [53] and Cortéz-Hernàndez et al. [71].

These sensitivity experiments show that none of the schemes enable an improved representation
of the observed rates, amount and location of convective precipitation compared to the others.
However, it should be noted that quantifying precipitation from observations is a challenging task since
ground-based observations are isolated measurements and convective storms are isolated phenomena.
If the convective storm passes nearby the weather station but not exactly above, no precipitation is
recorded neither in the SYNOP station nor in the E-OBS data. In addition, the gridding procedure
of E-OBS could also filter extreme precipitation events. Two case studies (Appendix A) illustrate
these problems.

As a synthesis, the observation from weather stations or any gridded data coming from these
weather stations, need to be considered with caution for model evaluation, as the convective
precipitation is very localized in space and time. Using other supplementary sources of data (such as
radar or satellite data) to compare these convective precipitation can provide additional information.

Moreover GCM driving the lateral boundary conditions of the RCM play an important role in the
assimilation of a convective event into the RCM. As the convective event is localized in space and time,
if this event occurs during the time interval between two forcings of the RCM, neither the location of
the event nor the associated precipitation amount could be reproduced. Consequently, the driving
conditions, particularly the driving data update frequency and the spatial resolution of the large scale
forcing have a significant influence on the representation of precipitation by the RCM, as shown in
Frigon et al. [72] and Gao et al. [73].

5. Conclusions

The aim of this study was to assess the sensitivity of MAR to different convective schemes and to
determine whether trends in the evolution of convective precipitation exist over the period 1987–2017
in Belgium. Since MARv3.8 has difficulties to simulate summer precipitation [18], four convective
schemes have been implemented in MARv3.9: the Bechtold scheme [9] from the MESO-NH model, the
Betts-Miller-Janjić scheme [7,8], the Kain-Fritsch scheme [10] and the modified Tiedtke scheme [11,50].
These five configurations of MAR were forced by the ERA-Interim reanalysis and compared, on the
one hand, to the SYNOP daily precipitation amount observations and, on the other hand, to the E-OBS
gridded data from the ECA&D network. This evaluation led to the following results:

• The MAR simulations are in better agreement with the SYNOP weather station observations than
the gridded E-OBS data during autumn and winter when stratiform precipitation is dominant and
explicitly simulated by MAR. This is the opposite during summer when convective precipitation is
dominant. The two configurations of MAR using the Bechtold scheme (MAR-STD and MAR-MES)
both give the best results compared to the three other configurations.

• The MAR simulations show a significant increasing trend of the mean annual precipitation amount
during years 1987–2017 over the North Sea and the coastal regions as corroborated by E-OBS. This
increase is most likely due to an increase in convective precipitation over the same period as a
result of a warming of the sea surface temperature favouring the formation of convective systems.

• The MAR simulations also show a significant decrease in precipitation amount over High Belgium
for the period 1987–2017. Such a decrease can also be seen in E-OBS and might be explained by
multidecadal oscillations in extreme precipitation amounts.

• All simulations show the same trends in extreme precipitation whatever the convective scheme
used. The best agreement with E-OBS occurs with MAR-BMJ but the scheme performs less well
than the two Bechtold’s convective schemes in the simulation of the annual averages. It should be
noted that the MAR model has been originally developed with this scheme.
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Unfortunately, despite the implementation of additional convective schemes, the representation
of summer precipitation by MAR has not significantly been improved compared to the standard
model configuration. Improvements other than convective schemes should therefore be carried out in
the soil moisture parameters or the moisture feedback from vegetation, since this has an impact on
the convective precipitation [74], by providing more moisture and/or heat to the air. As shown by
Katragkou et al. [28], the resolution of the sea surface temperature forcing can also improve results.
Holland et al. [75] and Sato et al. [76] have respectively improved the modelling of tropical cyclone
activity in the Gulf of Mexico and summer precipitation in Mongolia by correcting the sea surface
temperature. As MAR does not simulate explicitly the sea surface conditions, it may be interesting
to use other sea reanalyses or to couple an ocean model with MAR to improve the simulation of
precipitation. In addition to these possible improvements, it is necessary to find other sources of
observations for the precipitation comparison, especially for convective precipitation that is very
temporally and spatially localized. Satellite data or radar data could be better to detect convective
precipitation but they may be subject to other sources of error.

Despite these non-improved summer precipitation results simulated by MAR, this study
shows that the different model configurations based on different convective schemes agree on
precipitation trends in Belgium and confirm the trends observed in the E-OBS grid data. It would
therefore be interesting to extend this ensemble of simulations to the future climate and thus
determine the behaviour and trends of convective and extreme precipitation under different climate
forcing conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/1/34/s1,
Table S1. Weather stations of the surface synoptic observations network (SYNOP) used in this study with their true
location (latitude and longitude), their true altitude (z) and location and altitude of the model grid cell containing
the location of the weather station. Light grey accounts for z < 100m, moderate grey for 100m < z < 300m and dark
grey for z > 300m. Figure S1. Monthly mean NRMSE (Normalized Root Mean Square Error) of daily precipitation
simulated by MAR for each experiment and provided by E-OBS with respect to SYNOP observations (in mm/day).
Figure S2. Monthly mean of daily precipitation simulated by MAR for each experiment and provided by E-OBS
situated in the y-axis compared to the SYNOP observation situated in the x-axis (in mm/day). Figure S3. Regional
averages of biases (A), NRMSE (B) and correlation coefficient (C) for each experiment and provided by E-OBS
with respect to SYNOP observations. Figure S43: Evolution of annual precipitation in High, Medium and Low
Belgium (in mm/year) simulated by MAR for each model experiment and provided by E-OBS. The significant
trends are plotted in dotted lines. The delimitation of High (z > 300 m), Medium (100 m < z < 300 m) and Low
Belgium (z < 100 m) areas are based on the MAR 10-km (resp. E-OBS 0.22◦) topography. Figure S5. Idem as
Figure S4 but for convective precipitation over Low Belgium. Figure S6. Trends over 1987–2017 of the yearly 95th
percentile of daily precipitation simulated by MAR for each experiment and provided by E-OBS. Crosshatched
pixels indicate statistically non-significant trends. Figure S7. Idem as Figure S4 but for the 95th percentile of
precipitation over High Belgium.
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Appendix A

The first example took place on 29 May 2008 when a thunderstorm affected the region of Liège
and more particularly the campus of the University of Liège. This convective storm, well documented
in the report [77], came from the south-east. It travelled all night throughout the East of France to
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reactivate in the morning over High Belgium and dump large amounts of rainfall at the same location
between 8 am and 10 am local time. A weather station located on the campus recorded a total of 90 mm
in less than 2 h [77]. Unfortunately, a power cut interrupted the recording but most of the rain had
already fallen. In comparison, the SYNOP data for the Bierset station (used for Section 3.1.) counts
56 mm during the entire day.

Figure A1 shows that all MAR runs simulate precipitation mainly in the eastern half of Belgium but
none of them localize the maximum of precipitation on Liège contrary to the E-OBS data which suggest
a precipitation amount of 35 mm/day over the grid point containing the city of Liège. Nevertheless, it
is interesting to note that this maximum provided by E-OBS is more in agreement with the amount
measured at the Bierset station than the extreme rate measured at the station located on the Campus of
the University of Liège. The maximum of precipitation simulated by MAR are of the same order of
magnitude as E-OBS but all MAR experiments are wrongly located whatever the MAR experiment.
However all schemes lead to a precipitation trace oriented from south to north corresponding to
the direction of the thunderstorm cell. MAR-NTK provides the best results with a maximum of
precipitation at ~50 km south of Liege while MAR-KFS exhibits a weak maximum in the north of
France. None of the MAR experiments can reproduce neither the exact location of the convective
precipitation nor the exact precipitation amounts.Atmosphere 2018, 9, x FOR PEER REVIEW 15 of 20
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The second example took place on 22 May 2016 when warm and unstable air from the Iberian
plateau moves to France, Belgium and the Netherlands thanks to a Low centred near the British
Isles. This convective event provides a lot of severe thunderstorms which travel from France to
the Netherlands. Some SYNOP stations recorded large precipitation amounts as Florennes (with
32 mm) or Deurnes (with 33 mm) in agreement with the E-OBS data. As shown in Figure A2, all
MAR simulations seem to represent the same amount of precipitation for these two stations, even
if MAR-STD and MAR-MES seem to give better results. However the MAR simulations also show
higher values elsewhere. They show precipitation tracks South-West to North-East oriented with
precipitation amounts higher than 40 mm which are not represented in E-OBS because the SYNOP
station are isolated, thus precipitation fall near the station but not directly above it.
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By using the IMERG satellite data [78] (Figure A3), the advantage is that the precipitation fields
are spatially continuous and well represented as shown in Chen et al. [79] because these data are
based on satellite measurements. Thus high values of precipitation in MAR simulations seem to be
represented in the IMERG data especially in the southern half of Belgium with values higher than
30 mm not present in the E-OBS data. The disadvantage is that IMERG data have a short history (only
from 2014), precipitation is globally underestimated [80] and particularly the winter precipitation
where the performance of IMERG data is poor [79].

Atmosphere 2018, 9, x FOR PEER REVIEW 16 of 20

By using the IMERG satellite data [78] (Figure A3), the advantage is that the precipitation fields 

are spatially continuous and well represented as shown in Chen et al. [79] because these data are  

based on satellite measurements. Thus high values of precipitation in MAR simulations seem to be 

represented in the IMERG data especially in the southern half of Belgium with values higher than 

30 mm not present in the E-OBS data. The disadvantage is that IMERG data have a short history 

(only  from  2014),  precipitation  is  globally  underestimated  [80]  and  particularly  the  winter 

precipitation where the performance of IMERG data is poor [79].

Figure  A3. Precipitation  simulated  by  MAR for  each  experiment  and  provided  by  the  IMERG 

satellite data on the 22 May 2016 (in mm/day).

Figure A3. Precipitation simulated by MAR for each experiment and provided by the IMERG satellite
data on the 22 May 2016 (in mm/day).



Atmosphere 2019, 10, 34 16 of 19

References

1. Anagnostou, E.N. A convective/stratiform precipitation classification algorithm for volume scanning
weather radar observations. Meteorol. Appl. 2004, 11, 291–300. [CrossRef]

2. Houze, R. Stratiform precipitation in regions of convection. Bull. Am. Meteorol. Soc. 1997, 78, 2179–2195.
[CrossRef]

3. Ooyama, K. A Theory on Parameterization of Cumulus Convection. J. Meteorol. Soc. Jpn. Ser. II 1971, 49A,
744–756. [CrossRef]

4. Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.;
Wilkinson, J.M.; Kendon, E.J.; et al. Do Convection-Permitting Regional Climate Models Improve Projections
of Future Precipitation Change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [CrossRef]

5. Kuo, H.L.; Kuo, H.L. Further Studies of the Parameterization of the Influence of Cumulus Convection on
Large-Scale Flow. J. Atmos. Sci. 1974, 31, 1232–1240. [CrossRef]

6. Das, S.; Mitra, A.K.; Iyengar, G.R.; Mohandas, S. Comprehensive test of different cumulus parameterization
schemes for the simulation of the Indian summer monsoon. Meteorol. Atmos. Phys. 2001, 78, 227–244.
[CrossRef]

7. Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave,
BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693–709. [CrossRef]
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