Maximal number of leaves in induced subtrees

Élise Vandomme

Joint work with A. Blondin Massé, J. de Carufel, A. Goupil, M. Lapointe \& É. Nadeau

Université du Québec à Montréal

May 7, 2018
Optimization Days, HEC Montreal

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Definition

For a graph $G=(V, E)$ and $n \geq 0$

- $\mathcal{T}_{n}=$ set of induced subtrees with n vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leaf sequence of G : $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$

Particular cases

- Leaf sequences known for $K_{p}, \mathcal{C}_{p}, W_{p}, K_{p, q}$

K_{6}

\mathcal{C}_{6}

W_{6}

$K_{3,2}$

Particular cases

- Leaf sequences known for $K_{p}, \mathcal{C}_{p}, W_{p}, K_{p, q}$

K_{6}

\mathcal{C}_{6}

W_{6}

$K_{3,2}$
- Leaf sequences known for H_{d} with $d \leq 6$

H_{3}

H_{4}

Observations

- The leaf sequence can increase by at most 1 each step.
- The leaf sequence is not always non-decreasing.

Observations

- The leaf sequence can increase by at most 1 each step.
- The leaf sequence is not always non-decreasing.
- The leaf sequence $L_{G}(n)_{n \in\{2, \ldots,|V|\}}$ is non-decreasing iff G is a tree.

Particular cases: infinite lattices

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
The leaf sequences of the square, triangular, hexagonal and cubic infinite lattices satisfy linear recurrences with asymptotic growth $n / 2$ for planar lattices, $28 n / 41$ for the cubic lattice.

Complexity

Problem (LIS)

- Instance: a graph G and two integers n, ℓ
- Question: Is there an induced subtree of G with n vertices and ℓ leaves?

Theorem (Blondin Massé, de Carufel, Goupil, Lapointe, Nadeau, V. 2018) The LIS problem is NP-complete.

Complexity

Problem (LIS)

- Instance: a graph G and two integers n, ℓ
- Question: Is there an induced subtree of G with n vertices and ℓ leaves?

Theorem (Blondin Massé, de Carufel, Goupil, Lapointe, Nadeau, V. 2018)
The LIS problem is NP-complete.
Reduction to the NP-complete problem Independent Set:

- Instance: a graph G and an integer $k \geq 1$
- Question: Is there a subset S of vertices that are not 2-by-2 adjacent such that $|S|=k$?

Optimization problem

Problem (MLIS)

- Instance : a graph G
- Question : What is the leaf sequence $L_{G}(n)_{n \in\{0, \ldots,|V|\}}$ of G ?
\rightsquigarrow Branch and bound algorithm

Elements of the search space

Consider

- a graph $G=(V, E)$
- colorings $V \rightarrow\{$ green, yellow, red, blue $\}$
such that any coloring c satisfies : for all $u, v \in V$
(i) The subgraph induced by c^{-1} (green) is a tree
(ii) $c(u)=$ green and $\{u, v\} \in E \Rightarrow c(v) \in\{$ green, yellow, red $\}$
(iii) $c(u)=$ yellow $\Rightarrow \mid c^{-1}($ green $) \cap N(u) \mid=1$, where $N(u)$ is the neighborhood of u.

A configuration of G is a pair $C=(c, H)$ where c is a coloring and H is a stack of colorings called historic of C.

Exemple de configuration

Branching

The initial configuration is $\left(c_{\text {blue }}, \emptyset\right)$.

- C.AddToSubtree (v) pushes a copy of c on the stack H, turns the color of v into green, update the colors of the neighbors of v.
- C.ExcludeVertex (v) pushes a copy of c on the stack H, turns the color of v into red.
- C.Undo() modifies c into the configuration on the top of the stack H and deletes it from H.

How to choose v

- C.VErtexToAdd() is a non-deterministic function which returns any blue or yellow vertex that can be turned into green without creating any problem. If no such vertex exists, it returns none.

How to choose v

- C.VertexToAdd () is a non-deterministic function which returns any blue or yellow vertex that can be turned into green without creating any problem. If no such vertex exists, it returns none.

Bounding

C LeafPotential $\left(n^{\prime}\right)=$ upper bound on the number of leaves that can be reached by extending the configuration C (with n green vertices and r red vertices) into a configuration C^{\prime} with n^{\prime} green vertices (defined for all n^{\prime} between n and $|V|-r$).

How to compute the potential?

- Discard red vertices
- Partition vertices according to the distance to the inner green vertices
- Be optimistic while extending the green subgraph

C.LeafPotential $\left(n^{\prime}\right)$

$$
n=9
$$

$$
n^{\prime}=20
$$

$\#$ leaves $=3$

$C . \operatorname{LeAFPotential}\left(n^{\prime}\right)$

$$
n=9
$$

$$
n^{\prime}=20
$$

$\#$ leaves $=3$

$C . \operatorname{LeAFPotential}\left(n^{\prime}\right)$

$d=3--\quad$

$$
n=9
$$

$$
n^{\prime}=20
$$

$\#$ leaves $=3$

C.LeafPotential $\left(n^{\prime}\right)$

$d=3--\quad$

Completion

$$
\begin{array}{cll}
n=9 & \Rightarrow 13 & n^{\prime}=20 \\
\text { \#leaves }=3 & \Rightarrow 7 &
\end{array}
$$

$C . \operatorname{LeAFPotential}\left(n^{\prime}\right)$

$d=3--\quad$

Completion $\quad d=1$

$$
\begin{array}{cll}
n=9 & \Rightarrow 13 & \Rightarrow 16 \\
\text { \#leaves }=3 & \Rightarrow 7 & \Rightarrow 9
\end{array}
$$

$$
n^{\prime}=20
$$

C.LeafPotential $\left(n^{\prime}\right)$

$d=3--\quad$
$d=2--$
$d=1$ - -
$d=0-\quad$ -

Completion $\quad d=1 \quad d \leq 2$

$$
\begin{array}{ccccc}
n=9 & \Rightarrow 13 & \Rightarrow 16 & \Rightarrow 19 & n^{\prime}=20 \\
\text { \#leaves }=3 & \Rightarrow 7 & \Rightarrow 9 & \Rightarrow 11 &
\end{array}
$$

$C . \operatorname{LeAFPotential}\left(n^{\prime}\right)$

$d=3--\quad$

$$
\begin{array}{cccccc}
& \text { Completion } & d=1 & d \leq 2 & d \leq 3 & \\
n=9 & \Rightarrow 13 & \Rightarrow 16 & \Rightarrow 19 & \Rightarrow 20 & n^{\prime}=20 \\
\text { \#leaves }=3 & \Rightarrow 7 & \Rightarrow 9 & \Rightarrow 11 & \Rightarrow 11 &
\end{array}
$$

Efficiency

Edge Probability 0.2

Efficiency

Edge Probability 0.8

Efficiency

Edge Probability 0.2

Efficiency

Edge Probability 0.8

What about trees?

Theorem
(Blondin Massé, de Carufel, Goupil, Lapointe, Nadeau, V. 2018)
For a tree T with m vertices, the leaf sequence $L_{T}(n)_{n \in\{0, \ldots, m\}}$ is computed in $\mathcal{O}\left(m^{3} \Delta\right)$ time and $\mathcal{O}\left(m^{2}\right)$ space, where Δ is the maximal degree.

Algorithm based on the dynamic programming paradigm

Could we improve the time and space complexity?

- We cannot hope to obtain a procedure computing $L_{T}(n)$ which deletes leaves successively.
- Counter-example :

$$
L_{T}(7)=5 \quad \text { et } L_{T}(9)=6
$$

For more details

- Both algorithms, implemented in SageMath, are available: github.com/enadeau/fully-leafed-induced-subtrees
- A. Blondin Massé, J. de Carufel, A. Goupil, M. Lapointe, É. Nadeau \& É. Vandomme (2018). Fully leafed induced subtrees. Proceedings of the 29th International Workshop on Combinatorial Algorithms, LNCS. To appear. arxiv.org/abs/1709.09808

