
Fully leafed induced subtrees (extended abstract)∗

A. Blondin Massé1, J. de Carufel2, A. Goupil2, M. Lapointe1, É. Nadeau1,
É. Vandomme1

1 Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, Canada

2 Laboratoire Interdisciplinaire de Recherche en Imagerie et en Combinatoire,
Université du Québec à Trois-Rivières, Canada

Abstract

Subtrees of graphs, as well as their number of leaves, have been investigated by various
communities: from discrete mathematics to data mining and information retrieval. We
consider a variant where we require the subtrees to be induced and compute their maximal
number of leaves. The problem, which is NP-complete in general, becomes polynomial
in the case of trees. The leaf function associates to a number n the maximal number of
leaves an induced subtree of size n can have. To compute the leaf function, we provide
an efficient branch and bound algorithm. In the particular case of trees, we provide a
polynomial algorithm using the dynamic programming paradigm.

Keywords : graph theory, induced subtrees, optimization problem, number of leaves

1 Introduction

In the past decades, many researchers coming from various communities extensively studied
subtrees of graphs and their number of leaves. For instance in 1984, Payan et al. [9] discussed
the maximum number of leaves, called the leaf number, that can be realized by a spanning tree
of a given graph. This problem, called the Maximum Leaf Spanning Tree problem (MLST), is
known to be NP-complete even in the case of regular graphs of degree 4 [8] and has attracted
interest in the telecommunication network community [3, 4]. The frequent subtree mining prob-
lem [5] investigated in the data mining community, has applications in biology. The detection
of subgraph patterns such as induced subtrees is useful in information retrieval [12] and re-
quires efficient algorithms for the enumeration of induced subtrees. In this perspective, Wasa
et al. [11] proposed an efficient parametrized algorithm for the generation of induced subtrees
in a graph. Note that the induced property requirement brings an interesting constraint on
subtrees, yielding distinctive structures with respect to other constraints such as in the MLST
problem. A first result given by to Erdös et al. in 1986, showed that the problem of finding
an induced subtree of a given graph G with more than i vertices is NP-complete [7].

Among induced subtrees of simple graphs, we focus in particular on those with a maximal
number of leaves. We call these objects fully leafed induced subtrees (FLIS). Particular in-
stances of the FLIS recently appeared in a paper of Blondin Massé et al. [2], where the authors
considered the maximal number of leaves that can be realized by tree-like polyominoes, re-
spectively polycubes. Their investigation led to the discovery of a new 3D tree-like polycube
structure that realizes the maximal number of leaves constraint. The observation that tree-like
polyominoes and polycubes are induced subgraphs of the lattices Z2 and Z3 respectively leads
naturally to the investigation of FLIS in general simple graphs, either finite or infinite.

∗This document is an extended abstract of the paper [1] available on arXiv.

2 Fully leafed induced subtrees
We introduce the decision problem called Leafed Induced Subtree problem (LIS) and its associ-
ated optimization problem MLIS:

LIS. Given a simple graph G and two positive integers i and `, does there exist an
induced subtree of G with i vertices and ` leaves?

MLIS. Given a simple graph G on n vertices, what is the maximum number of leaves,
LG(i), that can be realized by an induced subtree of G with i vertices, for
i ∈ {0, 1, . . . , n}?

We believe that induced subtrees with the maximal number of leaves are interesting candi-
dates for the representation of structures appearing in nature and in particular in molecular
networks. Indeed, in chemical graph theory, subtrees are known to be useful in the compu-
tation of the Wiener index of chemical graph, that corresponds to a topological index of a
molecule [10]. The results of [2] and [10] suggest that a thorough investigation of subtrees, and
in particular induced subtrees with many leaves, could lead to the discovery of combinatorial
structures relevant to chemical graph theory.

Definition 1 (Leaf function) For a graph G = (V, E), the leaf function of G, denoted by LG,
is the function with domain {0, 1, 2, . . . , size(G)} which associates to i the maximum number of
leaves that can have an induced subtree of size i of G. As is customary, we set max ∅ = −∞.
An induced subtree T of G with i vertices is called fully leafed when its number of leaves is
exactly LG(i).

The following observations are immediate. Consider a graph G with at least 3 vertices.
The sequence (LG(i))i=0,1,...,|G| is non-decreasing if and only if G is a tree. Moreover, we have
LG(0) = 0 = LG(1) and LG(2) = 2 if G contains at least one edge. If G is connected and
non-isomorphic to a complete graph, then LG(3) = 2.

While it is easy to determine the leaf function for some well-known families of graphs (such
as complete graphs, wheels etc.), in general the problem is much harder.

3 Complexity and algorithms
First, we prove that the problem LIS is NP-complete by reducing it from the Independent
Set problem. To tackle the MLIS problem and compute the leaf function, we provide a non
trivial branch and bound algorithm. The algorithm is based on a data structure that we call
an induced subtree configuration.

Definition 2 Let G = (V, E) be a simple graph and Γ = {green, yellow, red, blue} be a set of
colors with coloring functions c : V → Γ. An induced subtree configuration of G is an ordered
pair C = (c, H), where c is a coloring and H is a stack of colorings called the history of C.
All colorings c : V → Γ must satisfy the following conditions for any u, v ∈ V :

(i) The subgraph induced by c−1(green) is a tree;

(ii) If c(u) = green and {u, v} ∈ E, then c(v) ∈ {green, yellow, red};

(iii) If c(u) = yellow, then |c−1(green) ∩N(u)| = 1, where N(u) denotes the set of neighbors
of u.

The initial induced subtree configuration of a graph G is the pair (cblue, H) where cblue(v) =
blue for all v ∈ G and H is the empty stack. When the context is clear, C is simply called a
configuration.

Roughly speaking, a configuration is an induced subtree enriched with information that
allows one to generate other induced subtrees either by extension, by exclusion or by back-
tracking. The colors assigned to the vertices can be interpreted as follow. The green vertices
are the confirmed vertices to be included in a subtree. Since each yellow vertex is connected
to exactly one green vertex, any yellow vertex can be safely added to the green subtree to
create a new induced subtree. The red vertices are those that are excluded from any possible
tree extension. The exclusion of a red vertex is done either because it is adjacent to more
than one green vertex and its addition would create a cycle or because it is explicitly excluded
for generation purposes. Finally, the blue vertices are available vertices that have not been
considered yet and that could be considered later. It is convenient to save in the stack H the
colorations from which C was obtained.

Contrary to a naive algorithm that considers all induced subtrees to compute the maximal
number of leaves, the strategy prunes the search space by discarding induced subtrees that
cannot be extended to fully leafed subtrees (see Figure 1). Therefore, given an induced subtree
configuration of n green vertices, we define a function C.LeafPotential(n′), for n ≤ n′ ≤ |V |,
which computes an upper bound on the number of leaves that can be reached by extending
the current configuration C to a configuration of n′ vertices. To compute this upper bound
we consider an optimistic scenario in which all available yellow and blue vertices that are close
enough can be safely colored in green without creating a cycle, whatever the order in which
they are selected.

Proposition 1 Let C be any configuration of a simple graph G = (V, E) with n ≥ 3 green
vertices and let n′ be an integer such that n ≤ n′ ≤ |V |. Then any extension of C to a configu-
ration of n′ vertices has at most C.LeafPotential(n′) leaves, where C.LeafPotential(n′)
is the operator described above.

102

103

104

105

106

107

102

103

104

105

106

107

FIG. 1: Number of induced subtrees visited for samples of 10 random graphs with density 0.3 (on the
left) and with density 0.8 (on the right).

When restricted to the case of trees, we show that the MLIS problem is polynomial using a
dynamic programming strategy.

Theorem 1 Let T = (V, E) be a tree with n ≥ 2 vertices. Then LT can be computed in
O(n3∆) time and O(n2) space where ∆ denotes the maximal degree of a vertex in T .

Notice that a naive greedy approach cannot work, even in the case of trees, because a fully
leafed induced subtree with n vertices is not necessarily a subtree of a fully leafed induced
subtree with n + 1 vertices. Both algorithms are available, with examples, in a public GitHub
repository1.

1https://github.com/enadeau/fully-leafed-induced-subtrees

4 Perspectives
There seems to be some room for improving and specializing the branch and bound algorithm.
For example, we are able to speed up the computations for the hypercube Q6 by taking into
account some symmetries, but significant improvements could be done by discarding more
configurations by exploiting the complete automorphism group of the hypercube. It seems
reasonable to expect similar speed up for other highly symmetric graphs.

From a theoretical perspective, it is not clear if the algorithm described for the trees is
optimal. As a last observation, we believe that it would be interesting to investigate the
natural problems of counting and generating related to the concept of fully leafed induced
subtrees.

References
[1] Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, Mélodie La-

pointe, Émile Nadeau, and Élise Vandomme. Fully leafed induced subtrees.
https://arxiv.org/abs/1709.09808 arXiv preprint.

[2] Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson. Fully
leafed tree-like polyominoes and polycubes. In Combinatorial Algorithms, LNCS 28th In-
ternational Workshop, IWOCA 2017, New-Castle, Australia, Springer. To appear.

[3] Azzedine Boukerche, Xuzhen Cheng, and Joseph Linus. A performance evaluation of a
novel energy-aware data-centric routing algorithm in wireless sensor networks. Wireless
Networks, 11(5):619–635, 2005.

[4] Si Chen, Ivana Ljubic̀, and Subramanian Raghavan. The generalized regenerator location
problem. INFORMS Journal on Computing, 27(2):204–220, 2015.

[5] Akshay Deepak, David Fernández-Baca, Srikanta Tirthapura, Michael J. Sanderson, and
Michelle M. Evominer: frequent subtree mining in phylogenetic databases. Knowledge and
Information Systems, 41(3):559–590, 2014.

[6] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, fourth edition, 2010.

[7] Paul Erdős, Michael Saks, and Vera T. Sós. Maximum induced trees in graphs. J. Combin.
Theory Ser. B, 41(1):61–79, 1986.

[8] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series
of Books in the Mathematical Sciences.

[9] Charles Payan, Maurice Tchuente, and Nguyen Huy Xuong. Arbres avec un nombre maxi-
mum de sommets pendants. Discrete Math., 49(3):267–273, 1984.

[10] Lászlò A. Székely and Hua Wang. On subtrees of trees. Advances in Applied Mathematics,
34(1):138–155, 2005.

[11] Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient enumeration of induced
subtrees in a K-degenerate graph. In Algorithms and computation, LNCS 8889, 94–102.
Springer, Cham, 2014.

[12] Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, 71–80, New York, NY, USA, 2002. ACM.

