

Combining tree-based and dynamical systems for the inference of gene regulatory networks

Vân Anh Huynh-Thu and Guido Sanguinetti

"Network Inference: New Methods and New Data" 3rd September, 2016

Inferring regulatory networks is a challenging problem

Expression data are used to infer networks

There are two main families of methods

Score-based: compute statistical dependencies between pairs of expression profiles (e.g. linear correlation)

Regulating gene

	rarget gene			
	gene 1	gene 2		gene p
gene 1	-	0.05		0.56
gene 2	0.19	-		0.03
	• • • •	• • • •		
gene p	0.11	0.42		-

→ Fast, but can not make predictions

Model-based: learn a model capturing the dynamics of the network (e.g. differential equations)

 \rightarrow Realistic, but are limited to small networks

- Model for gene expression
- Tree-based method for network reconstruction

- Model for gene expression
- Tree-based method for network reconstruction

- Model for gene expression
- Tree-based method for network reconstruction

We use the on/off model of gene expression

For each gene i:

$$dx_i = (A_i\mu_i(t) + b_i - \lambda_ix_i)dt + \sigma dw(t)$$

 $x_i(t)$: gene expression

 $\mu_i(t)$: promoter activity state (0/1)

 A_i, b_i, λ_i : kinetic parameters

We model the expression x_i as a Gaussian process

- x_i is completely described by its mean m_i and covariance K_i
- For every finite set of time points: $\mathbf{x}_i \sim \mathcal{N}(\mathbf{m}_i, K_i)$
- x_i is observed with i.i.d. Gaussian noise: $\hat{\mathbf{x}}_i \sim \mathcal{N}(\mathbf{m}_i, K_i + \sigma_{obs}^2 I)$
- We can compute the likelihood:

$$\log p(\hat{\mathbf{x}}_i) = -\frac{1}{2}(\hat{\mathbf{x}}_i - \mathbf{m}_i)^{\top} (K_i + \sigma_{obs}^2 I)^{-1} (\hat{\mathbf{x}}_i - \mathbf{m}_i) + c_i$$

The likelihood depends on the promoter state μ

Model:
$$dx_i = (A_i \mu_i(t) + b_i - \lambda_i x_i) dt + \sigma dw(t)$$

Likelihood:

$$\log p(\hat{\mathbf{x}}_i) = -\frac{1}{2}(\hat{\mathbf{x}}_i - \mathbf{m}_i)^{\top} (K_i + \sigma_{obs}^2 I)^{-1} (\hat{\mathbf{x}}_i - \mathbf{m}_i) + c_i$$

Goals (for each gene *i*):

- 1. Find the trajectory μ_i that maximises the likelihood
- 2. Find the genes that influence μ_i (network reconstruction)

- Model for gene expression
- Tree-based method for network reconstruction

Tree-based methods have several advantages

Bagging Random Forests Extra-Trees

. .

Can deal with interacting features

Non-parametric

Work well with high-dimensional datasets

Decision trees are used to predict promoter states

Each interior node tests the expression of a regulator.

Each leaf is a prediction of the promoter state of the target gene.

Promoter states are not observed.

 \rightarrow We can not use standard decision trees.

Start with
$$\mu_1(t) = 0, \forall t$$

$$\mathcal{L} = -2.56\,$$

$$\mu_1(t) = \begin{cases} 0, & \text{if } \hat{x}_2(t) < c \\ 1, & \text{if } \hat{x}_2(t) \ge c \end{cases}$$

$$\mu_1(t) = \begin{cases} 0, & \text{if } \hat{x}_2(t) < c \\ 1, & \text{if } \hat{x}_2(t) \ge c \end{cases}$$

$$\mu_1(t) = \begin{cases} 0, & \text{if } \hat{x}_2(t) < c \\ 1, & \text{if } \hat{x}_2(t) \ge c \end{cases}$$

$$\mu_1(t) = egin{cases} 0, & ext{if } \hat{x}_2(t) < c \ 1, & ext{if } \hat{x}_2(t) \geq c \end{cases}$$

$$\mu_1(t) = egin{cases} 0, & ext{if } \hat{x}_2(t) < c \ 1, & ext{if } \hat{x}_2(t) \geq c \end{cases}$$

$$\mu_1(t) = egin{cases} 0, & ext{if } \hat{x}_2(t) < c \ 1, & ext{if } \hat{x}_2(t) \geq c \end{cases}$$

$$\mu_1(t) = \begin{cases} 0, & \text{if } \hat{x}_2(t) < c \\ 1, & \text{if } \hat{x}_2(t) \ge c \end{cases}$$

$$\mathcal{L} = -2.35\,$$

Select the split with the highest likelihood

$$\mathcal{L} = -1.39$$

Repeat the procedure for each child node

$$L = 2.14$$

Stop when the likelihood can not be increased

$$\mathcal{L} = 2.14$$

An ensemble of randomised trees is constructed

Randomise x_i and c

$$\mu_1(t) = egin{cases} 0, & ext{if } \hat{x}_i(t) < c \ 1, & ext{if } \hat{x}_i(t) \geq c \end{cases}$$

Extra-Trees (Geurts et al., Machine Learning, 2006):

- At each node, the best split is chosen among K random splits.
- The prediction of $\mu(t)$ is averaged over the trees.

The tree-based model is informative

The learned model can be used to find the most relevant inputs.

The variable importance is based on likelihood increase

At each tree node \mathcal{N} :

$$I(\mathcal{N}) = \mathcal{L}_{\mathrm{after}} - \mathcal{L}_{\mathrm{before}}$$

 $\mathcal{L}_{\mathrm{after}}$: likelihood after the split $\mathcal{L}_{\mathrm{before}}$: likelihood before the split

Importance of regulator x_i : sum of I values over the nodes where x_i appears

Weight of edge gene $i \rightarrow$ gene j: importance of x_i in the model predicting μ_j

Jump3 predicts the states and the network topology

- Model for gene expression
- Tree-based method for network reconstruction

Jump3 is competitive with existing methods

Jump3 is competitive with existing methods

We used Jump3 to infer the IFN γ network

Hubs TFs contain interferon genes, one gene associated with virus infection, and cancer-associated genes.

Summary and future work

Summary

Jump3: Semi-parametric model-based method for network inference and modelling

Can be applied to large-scale networks

Yields good performances on artificial data

Can generate biologically meaningful hypotheses

Future work

Incorporation of model-based prior knowledge (i.e. dynamical parametric model) within tree-based model.

References

V. A. Huynh-Thu and G. Sanguinetti.

Combining tree-based and dynamical systems for the inference of gene regulatory networks.

Bioinformatics 31, 2015.

Software:

http://www.montefiore.ulg.ac.be/~huynh-thu/software.html

Mean and variance of the Gaussian process

SDE:

$$dx = (A\mu(t) + b - \lambda x)dt + \sigma dw(t)$$

Solution:

$$x(t) = x(0)e^{-\lambda t} + A\int_0^t e^{-\lambda(t-\tau)}\mu(\tau)d\tau + \frac{b}{\lambda}(1 - e^{-\lambda t}) + \sigma\int_0^t e^{-\lambda(t-\tau)}dw(\tau)$$

Mean:

$$m(t) = x(0)e^{-\lambda t} + A\int_0^t e^{-\lambda(t-\tau)}\mu(\tau)d\tau + \frac{b}{\lambda}(1-e^{-\lambda t})$$

Covariance:

$$\operatorname{Cov}(x(t), x(t')) = \frac{\sigma^2}{2\lambda} (e^{-\lambda|t-t'|} - e^{-\lambda(t+t')})$$

Normalisation

For a single tree:

$$\sum_{i\neq j} w_{i\to j} = \mathcal{L}_{\text{fin}} - \mathcal{L}_{\text{init}}$$

 $w_{i
ightarrow j}$: importance of gene i for the prediction of gene j

 $\mathcal{L}_{\mathrm{init}}$: likelihood when $\mu_j(t) = 0, \forall t$ $\mathcal{L}_{\mathrm{fin}}$: likelihood with learned $\mu_j(t)$

1

Positive bias for edges towards genes for which $\mathcal{L}_{\mathrm{fin}} - \mathcal{L}_{\mathrm{init}}$ is high

Normalisation:

$$rac{w_{i
ightarrow j}}{\mathcal{L}_{ ext{fin}}-\mathcal{L}_{ ext{init}}}$$