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The process of neurogenesis has been demonstrated to occur throughout life in the

subgranular zone (SGZ) of the hippocampal dentate gyrus of several mammals, including

humans. The basal rate of adult hippocampal neurogenesis can be altered by lifestyle and

environmental factors. In this perspective review, the evidence for sleep as a modulator

of adult hippocampal neurogenesis is first summarized. Following this, the impacts of

sleep and sleep disturbances on hippocampal-dependent functions, including learning

and memory, and depression are critically evaluated. Finally, we postulate that the effects

of sleep on hippocampal-dependent functions may possibly be mediated by a change

in adult hippocampal neurogenesis. This could provide a route to new treatments for

cognitive impairments and psychiatric disorders.

Keywords: neurogenic niche, plasticity, cognition, sleep disruption, memory, psychiatric disorders, mood,

depression

INTRODUCTION

Neurogenesis is the process by which new neurons arise from neural stem and progenitor cells,
mature, specialize and become integrated and functional within the neuronal network. Although
originally believed to occur solely during the early stages of development, it was later demonstrated
to be present in adult birds (Goldman and Nottebohm, 1983), rodents (Altman and Das, 1965;
van Praag et al., 1999), monkeys (Kornack and Rakic, 1999), and even humans (Eriksson et al.,
1998; Spalding et al., 2013). Neurogenic niches have been recorded in various specific areas of the
central nervous system in adult rodents, namely the subventricular zone (SVZ) lining the lateral
ventricles, where neuroblasts originate and newborn neurons eventually migrate to the olfactory
bulb (Altman, 1969), and the subgranular zone (SGZ) of the hippocampal dentate gyrus where new
neurons migrate a short distance through the granule cell layer (Altman and Das, 1965). In adult
humans, evidence supports the existence of a similar neurogenic niche in the hippocampal SGZ
(Spalding et al., 2013) but neuroblasts originating from the human SVZ appear to migrate into the
striatum (Ernst et al., 2014).

In this review, we focus on the hippocampal neurogenic niche. The hippocampus has many
interesting higher level functions which these newly formed neurons could potentially become
part of, such as mood and emotion (Miller and Hen, 2015) and learning and memory (Aimone
et al., 2014). Therefore, a change in neurogenesis could affect these hippocampal-dependent
functions. For example, there is experimental evidence linking decreased neurogenesis to impaired
learning, especially in the spatial domain (Shors et al., 2001; Thuret et al., 2009), decreased memory
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retention (Deng et al., 2010), and pattern separation (Clelland
et al., 2009). On the other hand, hippocampal-dependent
learning tasks appear to increase neurogenesis (Dobrossy et al.,
2003). Likewise, computational modeling of the effects of adult
neurogenesis on hippocampal function has generated different
theories for the role of newborn neurons. These include encoding
of temporal information into memories, avoidance of memory
interference and cognitive flexibility during learning of new
tasks and balancing pattern separation/integration (reviewed in
Gonçalves et al., 2016). A reduction in neurogenesis has also
been associated with depressive symptoms (Egeland et al., 2017),
and antidepressant treatments with an increase in neurogenesis
(Grassi Zucconi et al., 2006; Sahay and Hen, 2007; Anacker et al.,
2011). Overall, new theories are emerging linking regulation
of dentate gyrus functions by adult neurogenesis affecting the
cognitive processes which have important implications for both
memory and mood (Anacker and Hen, 2017).

Neurogenesis in adults does not occur at a constant rate and
is affected by many endogenous and exogenous factors, including
hormones (Tanapat et al., 1999), physical and psychosocial stress
(Gould et al., 1999), physical activity (Brown et al., 2003), diet
(Murphy et al., 2014), enriched environments (Brown et al.,
2003), and age (Kuhn et al., 1996). Sleep- and circadian rhythms
have also been suggested to be key modulators of plasticity
in neural networks (Abel et al., 2013; Frank and Cantera,
2014), resulting in alterations in learning and memory, cognitive
performance, as well as emotion regulation (Lo et al., 2012;
Krause et al., 2017). In this context, a role for sleep specifically
in adult neurogenesis has been investigated in the past decades
(Guzman-Marin et al., 2003; Hairston et al., 2005).

This review will summarize and critically evaluate the
evidence of the role of sleep as a modulator of adult hippocampal
neurogenesis, which primarily emerges from studies of acute and
chronic sleep disruption in rodents. We will then discuss the
effects of sleep disruption on hippocampal-dependent cognitive
functions in rodents and humans. Lastly, we will hypothesize
that the negative effects of sleep disturbances on hippocampal-
dependent cognitive functions in humans may possibly occur
due to a decrease in adult hippocampal neurogenesis. If this
hypothesis is ascertained, it could open new avenues for research
and treatments of cognitive disorders and psychiatric diseases.

MODULATION OF ADULT HIPPOCAMPAL
NEUROGENESIS BY SLEEP IN RODENTS

Sleep and the Hippocampus
Sleep is divided into two types, i.e., rapid-eye-movement (REM)
sleep, also known as paradoxical sleep, and non-REM (NREM)
sleep, which encompass deep slow wave sleep. NREM and REM
sleep can bemeasured and identified using electroencephalogram
(EEG) recordings (Dijk, 2009). REM and NREM sleep are
characterized by specific oscillatory rhythms in the EEG, such
as theta rhythms in REM sleep, while slow waves, spindles and
sharp wave ripples are observed during NREM sleep. Some
of these EEG rhythms are associated with the hippocampus,
such as theta oscillations in REM sleep and high frequency

sharp wave ripples in NREM sleep which involve 10 to 18%
of hippocampal neurons (Watson and Buzsaki, 2015). A close
temporal association between hippocampal sharp wave ripples
and sleep spindle oscillations arising from the thalamo-cortical
networks has been established (Siapas and Wilson, 1998; Sirota
et al., 2003). Furthermore, a temporal coupling has also been
observed with cortical slow oscillations (Sirota et al., 2003; Molle
et al., 2006; Sullivan et al., 2011). These EEG rhythms have been
proposed to contribute to memory consolidation (Buzsaki et al.,
1987; Buzsaki, 1989; Wilson and McNaughton, 1994; Girardeau
et al., 2009; Karlsson and Frank, 2009; Buzsaki and Silva, 2012),
transmitting information from the hippocampus to the cortex
and other regions (Buzsaki, 1989; Sirota and Buzsaki, 2005; Hahn
et al., 2007). The different sub-regions of the hippocampus (i.e.,
CA1, CA3, DG) contribute to memory consolidation, and are
characterized by specific population activity patterns that can
be temporally coupled (Daumas et al., 2005; Abel et al., 2013;
Aton et al., 2014; Josselyn et al., 2015). In the DG, dentate
spikes are triggered by the entorhinal cortex and associated with
hilar interneuron activity, while they suppress the CA3-CA1
population activity during SWS (Bragin et al., 1995). A recent
study identified that CA1 parvalbumin-expressing interneurons
show enhanced firing coherence with CA1 theta activity and
mediate hippocampal network oscillations involved in memory
consolidation (Ognjanovski et al., 2017).

Chronic Sleep Disruption
Many studies over the past decades have investigated a potential
role of sleep on neurogenesis, primarily by using chronic sleep
disruption over a large range of durations in rodents (Guzman-
Marin et al., 2003, 2005, 2007; Hairston et al., 2005; Roman
et al., 2005; Tung et al., 2005; Mirescu et al., 2006; Sportiche
et al., 2010; Mueller et al., 2015), as summarized in Table 1. Sleep
disruption have included total sleep deprivation, sleep restriction,
sleep fragmentation, as well as relatively selective REM sleep
deprivation. Thus, methods to induce deprivation/disruption
of sleep are numerous, including treadmill running (Hairston
et al., 2005; Roman et al., 2005; Mirescu et al., 2006;
Sportiche et al., 2010), slow rotating wheels (Guzman-Marin
et al., 2005), and over the water platforms (Guzman-Marin
et al., 2003; Tung et al., 2005). These methodologies are
all associated with potential confounding effects (e.g., stress,
imposed locomotion) but appropriate controls can address some
of these confounders (e.g., locomotion). Another aspect that may
also contribute to discrepancies between studies is the time of
day at which experiments are performed, as many physiological
mechanisms display daily circadian rhythms. Studies addressing
this caveat have not led to a consensus on whether aspects of
neurogenesis exhibit daily rhythms (reviewed in Meerlo et al.,
2009; Fernandes et al., 2015; Mueller et al., 2015), requiring
thus further experiments. Despite this, some coherent results
have been obtained across methodologies, suggesting that sleep
disturbances per se might be responsible for the changes in
neurogenesis.

As neurogenesis depends on cell proliferation and cell
survival, maturation and differentiation, it is important to
categorize and scrutinize the readouts of these reports separately
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TABLE 1 | Studies investigating chronic sleep disturbance and adult hippocampal neurogenesis.

Reference Animal model Sleep disturbance paradigm Adult hippocampal neurogenesis readout

Guzman-Marin et al.,

2003

Adult male Sprague-Dawley

rats

SD for 96 h

Treadmill vs. YC vs. CC

Cell proliferation in DG–54 % reduction in SD vs. YC (p < 0.001)

and 68 % in SD vs. CC (p < 0.001)

Tung et al., 2005 Adult male Sprague-Dawley

rats

SD for 56 h vs. 48 h + 8 h recovery

sleep

Disc over water vs. CC

Cell proliferation in DG–36% reduction in 56 h SD and 39% in 48 h

SD + 8 h recovery sleep vs. CC

Suppression twice as large in posterior as anterior hippocampus.

Mirescu et al., 2006 Adult male Sprague-Dawley

rats

SD for 72 h

Platform vs. YC vs. CC for 72 h

Cell proliferation in GCL–reduced in SD, p = 0.018

Cell survival (1 week) in GCL–reduced in SD (p = 0.006)

Cell survival (3 weeks) in GCL–reduced in SD (p = 0.038)

Cell proliferation in SVZ–no difference (p = 0.14)

Cell differentiation of newborn cells in GCL–70% (in)mature

neurons (1 week, TuJ1), 80% mature neurons (3 weeks, NeuN)

Guzman-Marin et al.,

2005

Adult male Sprague-Dawley

rats

SD for 96 h

Intermittent treadmill vs. YC

Cell survival (3 weeks) in DG–39.6% reduction in SD

Cell differentiation into mature neuron (NeuN)–25.3% reduction in

SD (p < 0.001)

Cell differentiation into immature neuron (DCX) and gliogenesis

(S100 betta)–no difference (p > 0.05)

Hairston et al., 2005 Adult rats SR for 6 h

Enriched environment vs. control

Trained on spatial vs. non-spatial task

Cell survival (17 days) in DG–reduction in SR (p = 0.033)

Cell differentiation into immature neurons (DCX)–increased in

non-SR spatial (p < 0.05)

Performance in spatial task–decreased in SR (p = 0.050)

Performance in non-spatial task–enhanced in SR (p = 0.045)

Sportiche et al., 2010 Adult male Sprague-Dawley

rats

SF for 12 days

Intermittent treadmill vs. SF controls

(SFC) vs. treadmill controls (TC) vs.

CC Barnes maze 2 weeks post SF, 5

days same escape, then 2 days

rotated position

Cell survival (30 days) in DG–32% reduction in SF vs. SFC and TC

(p < 0.05)

Cell differentiation into mature neurons (NeuN)–no difference in SF

vs. SFC (p > 0.4) Performance (progressive decrease in escape

time)–decreased in SF vs. SFC (p = 0.08) and vs. TC and CC (p <

0.05)

Random attempts–increased in SF (p < 0.001)

Roman et al., 2005 Adult male Wister rats SR (4 h undisturbed sleep/day) for 8

days

Slowly rotating wheel vs. YC vs. CC

Cell proliferation–reduction in SR in hilus (p = 0.039) and in SR

and YC in SGZ (p = 0.002)

Cell differentiation into mature neurons (NeuN) and gliogenesis

(GFAP)–no difference (p = 0.94)

Mueller et al., 2008 Adult male Long Evans rats SD for 96 h Platform vs. YC vs. CC Cell proliferation in DG–46% reduction in SD vs. YC and 52%

reduction vs. CC (p = 0.0001)

Cell differentiation into immature neurons (DCX)–no effect (p =

0.94)

Guzman-Marin et al.,

2007

Adult male Sprague-Dawley

rats

SF for 4 and 7 days

Intermittent treadmill vs. YC

Cell proliferation in DG–70% reduction in 4 days SF (p < 0.01) and

in 7 days SF (p < 0.001)

Cell differentiation (3 weeks) into mature neurons (NeuN)–52%

reduction in 4 days SF; 22% reduction in 7 days SF (p < 0.05)

Gliogenesis (S100 beta)–no difference

SD, sleep deprivation; SR, sleep restriction; SF, sleep fragmentation; YC, yoked control; CC, cage control; DG, dentate gyrus; GCL, granule cell layer; SVZ, subventricular zone.

to better understand the impact of sleep on the neurogenic
process. Cell proliferation and survival are generally quantified
using bromodeoxyuridine (BrdU), while the identification of
neurons is achieved using in addition a neural marker such as
NeuN (Mullen et al., 1992). Hence, cells co-expressing these
factors are identified as newly formed neurons. Studies evaluating
sleep disruption on adult neurogenesis have primarily focused
on cell proliferation, survival and differentiation, while the
integration of newborn neurons in existing neural circuits has
received less attention.

Total Sleep Deprivation and Effects on Cell

Proliferation
Total sleep deprivation over a period of 48 h or more has
consistently been reported to decrease the basal rate of cell

proliferation in the dentate gyrus from 30 to 80% (Table 1).
Guzman-Marin and colleagues (Guzman-Marin et al., 2003)
sleep-deprived adult Sprague-Dawley rats for 96 h by subjecting
them to forced locomotion in a treadmill. Rats exhibited a
54% reduction in proliferation in the dorsal hippocampus when
compared to treadmill controls (i.e., displaying similar amount
of locomotor activity) and a 68% reduction when compared to
home-cage controls. However, rats were euthanized 48 h after
BrdU administration, which allowed time for further mitotic
cycles and/or apoptosis. A similar experiment by Tung and
colleagues (Tung et al., 2005) used a disc-over-water paradigm
to induce REM sleep deprivation for 56 h. BrdU was injected
2 h before tissue collection, thus ensuring only cells in the
S phase were labeled. The study showed a 36% decrease in
cell proliferation, confirming the effect across sleep disruption
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methodologies. In addition, this reduction lasted after 8 h of sleep
recovery following deprivation, showing that the effects of sleep
deprivation on neurogenesis were not normalized within this 8 h
sleep recovery period. This specific decrease was mostly observed
in the posterior dentate gyrus. Later studies have confirmed the
specificity of sleep deprivation to dentate gyrus neurogenesis,
while neurogenesis in the SVZ was not altered (Mirescu et al.,
2006).

Total Sleep Deprivation and Effects on Cell Survival,

Maturation and Differentiation
Other studies investigated the effects of sleep deprivation on
cell survival and cell differentiation. Guzman-Marin et al. (2005)
sleep-deprived rats for 96 h using an intermittent treadmill and
administered BrdU 3 weeks before neurogenesis assessment
(Table 1). They observed a 39.6% decrease in BrdU-positive
cells in sleep-deprived rats compared to treadmill controls, and
significant differences in the percentage of cells co-labeling BrdU
and NeuN (46.6 vs. 71.9% respectively) (Table 1).

Other studies investigating cell survival, maturation and
differentiation used other sleep disruption approaches, such as
sleep fragmentation and sleep restriction are discussed below.

Sleep Fragmentation and Sleep Restriction
While total sleep deprivation is a well-established and frequently
used methodology to assess the contribution of sleep to
physiological processes, other types of disruptions, such as sleep
fragmentation or sleep restriction, are closer to sleep disturbances
in humans comorbid with many psychiatric disorders (Baglioni
et al., 2016). Hairston et al. (2005) reduced the amount of
sleep by 50% for 4 days using an enriched environment while
rats were being trained on spatial (hippocampal-dependent)
and non-spatial (non-hippocampal dependent) tasks. A decrease
in cell proliferation and cell survival was observed in sleep-
restricted rats, as well as a decrease in neural differentiation
in sleep-restricted rats which were trained on the spatial task.
Sleep fragmentation induced by enforced locomotion, using an
intermittent treadmill, for 4 or 7 days also induced a 70%
reduction of BrdU- and Ki67-labeled cells (Ki67, marker of
cell proliferation) (Guzman-Marin et al., 2007). The same study
showed that the number of cells expressing a neuronal phenotype
3 weeks after BrdU injection also decreased by 52% and 22%
respectively. Sportiche et al. (2010) also reported a 32% decrease
in BrdU-labeled cells after 12 days of sleep fragmentation, while
Guzman-Marin et al. (2007) examined cell differentiation 3
weeks after a 1-, 4-, and 7-day sleep fragmentation paradigm,
and reported a 30, 52, and 22% reduction of cells expressing
a neuronal phenotype respectively. Rats subjected to 7-day
sleep fragmentation also showed less suppression of REM sleep
(presumably due to an increased homeostatic drive for REM
sleep) which could account for the reduced suppression of cell
differentiation (Table 1).

REM Sleep Deprivation
Studies further investigated whether a specific sleep stage
may be primarily associated with neurogenesis, using different
methodologies to induce sleep disruptions. Several studies used
the platform over water method (Mirescu et al., 2006; Mueller

et al., 2008) and showed reduced cell proliferation. Of note, while
this paradigm primarily suppresses REM sleep, it also decreases
the amount of NREM sleep. Guzman-Marin et al. (2008) used an
alternative approach to attempt to selectively disrupt REM sleep
during 4 days, with a treadmill being triggered when rats enter
REM sleep assessed by online EEG recordings. Cell proliferation
was 63% lower in REM sleep-deprived (REMD) rats compared
to yoked controls (YC) and 82% lower than observed in home-
cage controls. Strikingly, all groups showed a positive correlation
between cell proliferation and the percentage of REM sleep. These
results suggest that lack of REM sleep plays a key role in reduced
neurogenesis induced by sleep deprivation, irrespective of the
methodology used and their potential confounding effects (e.g.,
stress). Although REMD and YC rats did not differ significantly
regarding amount of NREM sleep or EEG-derived slow wave
activity which quantifies the slow wave oscillations (1–4Hz)
characteristic of deep NREM sleep, it cannot be ruled out that the
REMDproceduremay induce other changes, including in waking
behaviors, essential for the proliferative process. In contrast, a
selective effect of REM sleep on cell maturation remains unclear,
with some studies showing no significant differences (Table 1),
while neuronal maturation was lower in REM sleep-deprived rats
using a more selective REM sleep deprivation method (Guzman-
Marin et al., 2008).

Potential Mechanisms Contributing to the Effects of

Sleep Disruption: Stress, Circadian Rhythmicity or

Sleep Disruption Per se?
Even though there is a consensus on the negative effects of
chronic sleep disturbances on neurogenesis, the mechanisms by
which it occurs remain controversial. As acute sleep deprivation
has not consistently been shown to decrease neurogenesis (see
section below) and recovery is not immediate (Tung et al., 2005),
the effects of sleep disruption may be indirect.

Stress and glucocorticoids
It has been established that stress affects neurogenesis (Mirescu
and Gould, 2006) and sleep deprivation methods have been
associated with an activation of the hypothalamo-pituitary-
adrenal axis, widely assessed by increased levels of stress
hormones such as corticosterone and adrenocorticotropic
hormone (Tartar et al., 2009; Mongrain et al., 2010). Hence,
the observed effects of sleep disruption on neurogenesis may
be partly mediated by an increase in glucocorticoid levels and
not a lack of sleep per se. Mirescu et al. (2006) reported that
the reduction of neurogenesis observed in rats sleep deprived
for 72 h was associated with elevated corticosterone levels.
Importantly, using adrenalectomy combined with corticosterone
supplementation in drinking water (to prevent corticosterone
increase) abolished this reduction in cell proliferation. A
further study by Guzman-Marin et al. (2007) reported that
adrenalectomised rats with corticosterone replacement subjected
to sleep fragmentation showed 55% fewer BrdU-positive cells
when compared with adrenalectomised controls.

Circadian regulation
A plethora of functions in the hippocampus show circadian
rhythmicity. For instance, a recent study demonstrated using
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fMRI scheduled throughout the 24 h cycle that the response of
the hippocampus during a sustained attention task exhibited 24 h
rhythmicity (Muto et al., 2016). Neural progenitor cells have a
cell cycle of 24.7 h (Cameron and McKay, 2001), suggesting the
possibility of circadian control. Hippocampal neurogenesis was
suggested to be circadian-dependent under certain conditions
(Goergen et al., 2002). Furthermore, a mouse study showed
that exercise significantly increased neurogenesis only when
administered at specific times during the day (Holmes et al.,
2004). This could suggest that neurogenesis might be regulated
by hippocampal clock genes. For instance, Per1, Cry, or Clock
genes alter cell growth and cell cycle progression in mice (Matsuo
et al., 2003; Gery et al., 2006; Miller et al., 2007). Corticosterone
(CORT), brain-derived neuropathic factor (BDNF) (Sairanen
et al., 2005; Rossi et al., 2006), and melatonin have also been
proposed as mediators in the effect of circadian rhythms on
hippocampal function (Ramirez-Rodriguez et al., 2011). At the
molecular level, a circadian-controlled gene expression has been
observed in the hippocampus in both rodents and humans
(Jilg et al., 2010). In addition, sleep disruption methods alter
the 24 h rest-activity rhythms and related waking behaviors,
such as drinking and eating patterns, or nesting behavior.
However, the contribution of circadian rhythms to different
aspects of neurogenesis has been relatively unexplored. Circadian
disruption imposed with a repeated “jet lag” protocol (i.e., twice-
weekly phase advanced for 4 weeks) induced a reduction in
cell proliferation and neurogenesis in hamsters, associated with
impaired hippocampal-dependent learning and independent of
glucocorticoids alterations (Gibson et al., 2010). Another study
using chronic jet lag in Wistar rats suggests that the effects of
circadian disruption are dependent on the type and duration
of shifts, with phase advance (i.e., “traveling eastbound”) being
associated with a greater decrease in the number of immature
neurons compared to phase delay (“traveling westbound”) (Kott
et al., 2012). Constant bright light conditions in rats, another
approach to induce short- and long-term disruption of circadian
rhythms did not affect cell proliferation and survival (Mueller
et al., 2011). Moreover, several core circadian clock genes
have also been implicated in adult hippocampal neurogenesis.
Bmal1 knockout mice, characterized by arrhythmic wheel-
running activity and loss of circadian rhythmicity for clock gene
expression, showed no significant difference in cell proliferation
levels compared to wild-type controls (Rakai et al., 2014).
However, the number of pyknotic cells, a proxy of cell death,
was reduced and cell survival was enhanced, suggesting a possible
role of the Bmal1 clock gene and circadian rhythmicity in
several aspects of neurogenesis. Another clock gene, Period2,
was proposed to contribute to cell proliferation, generation of
immature newborn neurons and cell survival in the dentate
gyrus (Borgs et al., 2009). Interestingly, a study showed a diurnal
rhythms of neurogenesis in the olfactory bulb in crustaceans,
with the highest rate occurring at the most active time, i.e., dusk
(Goergen et al., 2002). This raises the possibility that hormones
and exercise influence neurogenesis within a circadian control
pathway. Further investigation is needed to further disentangle
the contribution of sleep per se from circadian rhythmicity in
neurogenesis.

Other underlying mechanisms have been proposed to
contribute to the effects of sleep disruption on neurogenesis,
among which alterations in neurotransmitter systems and growth
factors (Meerlo et al., 2009; Garcia-Garcia et al., 2011; Mueller
et al., 2015).

Acute Sleep Disruption
The effect of acute sleep deprivation on cell proliferation and
neurogenesis remains elusive. An increase in cell proliferation
following 12 h gentle handling in rats resulting in 80%
wakefulness has been reported in the dentate gyrus, while no
effects were observed in the SVZ (Grassi Zucconi et al., 2006).
By contrast, Guzman-Marin et al. (2007) reported no difference
in cell proliferation following 1-day of sleep fragmentation
induced by automated intermittent treadmill activation, while
the percentage of new cells expressing a neuronal phenotype
3 weeks after BrdU injection was reduced. One-day sleep
restriction allowing 4 h of undisturbed sleep decreased cell
proliferation in the hilus (Roman et al., 2005). Several studies
reported no significant difference after 1 day of sleep deprivation
using various paradigm, e.g., small platform (Mirescu et al.,
2006), intermittent treadmill (Guzman-Marin et al., 2008) or
deprivation by gentle procedures (van der Borght et al., 2006).

While several studies showing differences regarding species,
age, strains, methods and/or durations led to consistent results
in chronic sleep disturbances (highlighting a role of sleep
disturbance per se), the effects of acute sleep disruption on
neurogenesis remain unclear. This may be primarily due to
differences in methodologies (e.g., duration of acute sleep
disruption, strains, age), but sleep disturbances per se may
directly affect neurogenesis levels. Another confounding effect
could arise from different assessments of neurogenesis and its
dynamics. For instance, Junek et al. (2010) combined BrdU
(incorporated in the S-phase of the cell cycle only) with two
intrinsic cell proliferation markers [proliferating cell neuronal
antigen (PCNA) andKi67 (identifying cells in all phases of the cell
cycle)] and showed that although the number of BrdU-labeled
cells increased after an acute 12 h sleep deprivation, there was no
difference in PCNA- and Ki67-labeled cells compared to controls.
This suggested that the apparent rise in cell proliferation could
be due to a cell cycle acceleration and not an actual rise in the
number of proliferating cells.

It is worth to note that preclinical studies investigating the
contribution of sleep to adult hippocampal neurogenesis have
been primarily using males. Hence, it would be important to
evaluate putative sex differences, especially in the context of
neurogenesis-dependent behaviors and the close association of
neurogenesis with mood and psychiatric disorders.

EFFECT OF SLEEP ON ADULT
HIPPOCAMPAL
NEUROGENESIS-DEPENDENT
BEHAVIORS

In the previous sections, it has been established that chronic
sleep disruption reduces basal levels of neurogenesis in the adult
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hippocampus. The hippocampus is part of the limbic system
and has reciprocal connections with the amygdala and prefrontal
cortex, and is thus important in regulating cognitive functions
and mood (Pitkanen et al., 2000). It is interesting to consider not
only the potential impact of sleep on basal rates of neurogenesis
but also on the mediation of changes in neurogenesis associated
with hippocampal plasticity, cognition and mood.

The function of adult newborn DG neurons has been
involved in many aspects of learning and memory consolidation,
such as contextual fear conditioning and long-term spatial
memory retention, but discrepancies remain. Importantly,
these discrepancies might arise from different environmental
regulation and thereby different experiences during the
maturation of newborn neurons which play a key role in
their integration in hippocampal neural structure (for review
Gonçalves et al., 2016).

Hippocampal-Dependent Cognitive
Processes and Synaptic Plasticity
Sleep has long been thought to play a key role in learning
and memory, partly due to the re-activation of neural
networks involved in information acquisition, which facilitates
consolidation and integration (Walker, 2009; Diekelmann and
Born, 2010). A large body of literature describes in humans and
animals the importance of sleep before learning and for the
consolidation of hippocampal-dependent memory (reviewed in
Abel et al., 2013; Vorster and Born, 2015; Krause et al., 2017).

The time of learning and the timing of sleep after learning
was shown to be important for performance in hippocampal-
dependent episodic-like memory and contextual fear memory
in rodents and humans (Palchykova et al., 2006, 2009; Vorster
and Born, 2015). Sleep deprivation prior learning also affects the
encoding of new hippocampal-dependent memories in rodents
and humans (Yoo et al., 2007; Hagewoud et al., 2010). Such
effects have been reported using other hippocampal-dependent
tasks, such as fear conditioning and episodic memory, but not
for non-hippocampal-dependent memories (McDermott et al.,
2003; Yoo et al., 2007; Tiba et al., 2008; Van Der Werf et al.,
2009). Another study further demonstrated that sleep continuity,
with a minimal unit of uninterrupted sleep, was crucial for
memory consolidation (Rolls et al., 2011). The authors suggested
that this effect was associated with the replay-related events
taking place during sleep. A selective role of NREM sleep and
REM sleep has also been extensively investigated (Diekelmann
and Born, 2010). A recent study demonstrated a causal role of
REM sleep theta oscillations by showing that specific inhibition
of hippocampal theta oscillations during REM sleep disrupts
memory consolidation (Boyce et al., 2016).

The role of sleep for molecular and cellular aspects of
hippocampal synaptic plasticity and consolidation has also
been extensively studied (for review, e.g., Abel et al., 2013;
Kreutzmann et al., 2015; Havekes and Abel, 2017). For instance,
recent studies identified some of the molecular and structural
mechanisms underlying the detrimental effects of acute short
sleep deprivation on memory. These include the attenuation of
mTORC1-dependent protein synthesis, reduction of dendritic

spine density mediated by the increase activity of the actin-
binding protein cofilin, known to play a crucial function in
synaptic structure, and the spatial cAMP degradation (Havekes
et al., 2016; Tudor et al., 2016).

Overall, the detrimental effects of sleep disruption on
neurogenesis, described above, are likely to contribute to the
vulnerability of hippocampal networks associated with cognitive
impairments.

Mood, Emotion Regulation, and
Depressive Disorder
The hippocampus is a limbic structure and contributes to
emotional processing and mood disorders, while alterations in
adult neurogenesis have been reported in major depression
(Miller and Hen, 2015). A growing body of evidence suggests that
sleep modulates the regulation of emotions, and sleep disruption
has a pervasive effect and is particularly associated with negative
emotional experience (Walker, 2009; Harvey, 2011; Palmer and
Alfano, 2017).

It is well accepted that sleep disturbances are comorbid with
many neurological and psychiatric disorders. This association
has been studied for mood disorders, and primarily major
depression. Most individuals suffering from depression (i.e., up
to 90%) complain about sleep disturbances (Nutt et al., 2008)
with a large number experiencing insomnia. Moreover, sleep
disturbances are a risk factor to depression, relapse and suicides
(Hamilton, 1989; Perlis et al., 1997), and a meta-analysis found
that sleep disturbances represent an important risk factor for
depression in the elderly (Cole and Dendukuri, 2003). Recent
meta-analyses confirmed the occurrence of sleep disturbances
by polysomnography recordings in depressed patients, pointing
to REM sleep alterations and disturbed sleep continuity (Pillai
et al., 2011; Baglioni et al., 2016). Interestingly, REM sleep has
been shown to be suppressed by most antidepressant approaches,
including antidepressants, electroconvulsive therapy or sleep
deprivation (Riemann et al., 2001).

These results suggest that sleep disturbances may mediate
the development of depression, and hypnotics (i.e., sleep-
promoting drugs) may have beneficial effects. A double-blind
placebo-controlled trial reported that co-administration of an
antidepressant (fluoxetine; selective serotonin reuptake inhibitor,
SSRI) and a hypnotic (eszopiclone; non-benzodiazepine
compound acting at GABAA receptors) induced greater benefit
in both sleep (i.e., reduced sleep latency and wake after sleep
onset and increased total sleep time) and depression assessed by
the improved Physician-assessed Clinical Global Impression and
HAM-D17 scores, than fluoxetine alone. These beneficial effects
were maintained 2 weeks after eszopiclone discontinuation
(Krystal et al., 2007), while improvement was no longer
observed after 3 months of co-administration of fluoxetine
and clonazepam, a benzodiazepine drug (Smith et al., 2002).
Zolpidem, the most commonly used hypnotic, also improved
sleep in patients with major depressive disorder and persistent
insomnia while under antidepressant treatment. Subjective sleep,
daytime functioning and well-being were improved by zolpidem
(Asnis et al., 1999). In addition, non-pharmacological treatments
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of insomnia, such as cognitive behavioral therapy, improved
the depression and insomnia outcomes (i.e., remission), when
provided to patients suffering of insomnia comorbid with
depression, with escitalopram as antidepressant treatment
(Manber et al., 2008).

These studies suggest that sleep disturbances are a core
symptoms of major depression and may have a role in the
development of depression. Addressing sleep disruption in mood
disorders would improve the treatment of depression.

BRIDGING THE GAP: EFFECTS OF SLEEP
ON COGNITION AND MOOD THROUGH
ADULT HIPPOCAMPAL NEUROGENESIS

As discussed in previous sections, both neurogenesis and
hippocampal-dependent functions are sensitive to sleep. Thus,
we hypothesize that the detrimental effects of sleep on cognition
and mood might be mediated by a decrease in neurogenesis
(Figure 1).

Cognition–Learning and Memory
Several studies have reported that learning a hippocampal-
dependent task leads to an increase in neurogenesis, while
learning deficits are often associated with a decrease in
neurogenesis (Gould et al., 1999; Shors et al., 2001; Dobrossy
et al., 2003). Blocking neurogenesis also results in decreasing
performance in some hippocampal-dependent tasks, such as
formation of trace memories (Shors et al., 2002), trace
fear conditioning (Madsen et al., 2003), place recognition
(Raber et al., 2004), spatial learning in the Morris water
maze (Dupret et al., 2007), and pattern separation (Clelland
et al., 2009). However, Epp and colleagues recently showed
that increasing hippocampal neurogenesis weakens existing
memories and facilitates the encoding of new, conflicting (but
not non-conflicting) information inmice. Conversely, decreasing
neurogenesis stabilizes existing memories, and impedes the
encoding of new, conflicting information (Epp et al., 2016).
It is also worth noting that learning affects newborn neurons
differently depending on their relative ages. For instance, survival
is enhanced in slightly mature neurons whereas apoptosis is
induced in immature cells (Lemaire et al., 2000). These two
processes are inter-linked, and blocking one pathway inhibits the
other one, while also impairing memory. Subsequently, memory
consolidation requires both addition and removal of neurons
depending on their age and functional relevance.

Conditions enhancing or reducing neurogenesis are often
associated, respectively, with enhanced (Kempermann et al.,
1997; van Praag et al., 1999; Leuner et al., 2004; Mirescu and
Gould, 2006) or disrupted (Kuhn et al., 1996; Diamond et al.,
1999; Eisch et al., 2000; Gross, 2000; Lemaire et al., 2000;
Drapeau et al., 2003; Scerri et al., 2006) hippocampal-dependent
learning and memory. Since both hippocampal-dependent
learning/memory and adult hippocampal neurogenesis are
sensitive to sleep disruptions, the negative effects of sleep loss
or sleep fragmentation on hippocampal-dependent learning

and memory could be partly due to reduced neurogenesis,
contributing to the vulnerability of hippocampal circuitries.

One study (Sportiche et al., 2010) investigated the impact of
4-days sleep deprivation on neurogenesis and spatial vs. non-
spatial learning using a watermaze paradigm in rats. Subjects that
had learned the hippocampal-dependent task showed enhanced
cell survival, which was abolished following sleep deprivation.
Unexpectedly, sleep-deprived rats showed impaired performance
in the spatial task, but enhanced performance in the non-spatial
task. In another study (Backhaus et al., 2006), rats subjected to
sleep fragmentation for 12 days showed a 32% reduction of BrdU
labeled cells compared to yoked and home-cage controls. These
subjects were also trained in a Barnes maze paradigm, and the
progressive decline in escape time observed in control animals
was slower in sleep-fragmented rats which also showed more
random, non-spatial search strategies. These results reinforce the
hypothesis that the detrimental effects of sleep disruption on
cognitive performance might be mediated through a decrease in
neurogenesis which has also been proposed to be implicated in
cognitive flexibility (Gonçalves et al., 2016; Anacker and Hen,
2017).

Theories of memory formation acknowledge the importance
of remodeling and alteration of synaptic strength in neuronal
networks, but also the role of sleep in architecting these plasticity
processes (Schmidt-Hieber et al., 2004; Stickgold, 2005; Stickgold
and Walker, 2005). Therefore, the integration, the maturation
and the synaptic strengthening of new neurons to an existing
neuronal circuitry could be a complementary form of plasticity.
Newborn neurons display robust long-term potentiation and
show a lower threshold for their induction (Ramirez-Amaya
et al., 2006; Curtis et al., 2007) making them strong candidates to
be recruited by behavioral activation (Videbech and Ravnkilde,
2004; Kee et al., 2007).

An increasing interest in the role of glia in neurogenesis
has recently emerged. For instance, microglia has been shown
to regulate the proliferation and differentiation of neural
progenitor cells as well as to control the resulting number of
newborn neurons by phagocytosis (Sato, 2015). Astrocytes and
gliotransmission have also been implicated in the regulation of
sleep homeostasis and working memory deficits induced by sleep
deprivation via the adenosine A1 receptor (Halassa et al., 2009;
Frank, 2013).

Mood–Depression
There is strong evidence regarding the involvement of the
hippocampus in depression. fMRI studies have reported reduced
hippocampal volume in depressed patients (MacQueen et al.,
2003; Campbell et al., 2004), and the magnitude of this volume
reduction was correlated with the frequency, as well as the
severity of the pathology (Sheline, 2000). Structural changes
such as gray matter alterations (Frodl et al., 2002) might be
reversed during remission (Bremner and Vermetten, 2004),
and then subsequently associated with fluctuating levels of
adult neurogenesis. Many depressed patients show hippocampal-
dependent cognitive deficits (Brooke et al., 1994) which suggest
hippocampal dysfunction (Brooke et al., 1994; Beason-Held
et al., 1999). Antidepressants have been reported to act at the
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FIGURE 1 | Association between sleep and adult hippocampal neurogenesis in physiological conditions and mood disorders. Several factors including environmental

factors (e.g., exercise, physical/psychosocial stress) and endogenous factors (e.g., trophic factors) have been suggested to modulate adult hippocampal

neurogenesis. While studies investigating the effects of circadian rhythms are sparse, several lines of evidence suggest that sleep acts as a modulator of adult

hippocampal neurogenesis. Sleep disruption (i.e., sleep deprivation; fragmentation; selective REM sleep deprivation) leads to decreased basal rates of cell proliferation

and survival in rodents. A selective role for REM sleep on cell maturation and differentiation remain to be clarified. Moreover, sleep disruption has a negative impact on

synaptic plasticity and hippocampal-dependant functions. Both sleep disturbances and alterations in adult hippocampal neurogenesis have been associated with

major depressive disorders. Based on these different lines of evidence, it can be postulated that sleep effects on hippocampal-dependent functions could be mediated,

in part, by altered hippocampal neurogenesis. EEG, electroencephalogram; NREM sleep, non rapid-eye-movement sleep; REM sleep, rapid-eye-movement sleep.

level of the hippocampus, such as SSRIs and the multimodal
antidepressant vortioxetine (Dale et al., 2016), and to restrain
the hippocampal volume reduction (Sheline et al., 2003) while
improving cognition (Bremner and Vermetten, 2004).

Post-mortem studies investigating the difference in
neurogenesis in depressed versus healthy subjects are
inconsistent. For instance, a study reported an increase in
neurogenesis in patients treated with antidepressants, whereas
no difference between healthy and depressed subjects was
observed (Boldrini et al., 2009). By contrast, other studies
showed either fewer progenitor cells in depressed patients and
no difference following antidepressant treatment (Lucassen et al.,
2010) or no change at all compared to healthy patients (Reif
et al., 2006). These discrepancies may be due to variations in
medication dose and duration, age, length of the disorder, and/or
to focusing on the proliferation stage of neurogenesis only.

However, it does not seem that changes in neurogenesis
are involved in the etiology of depression. Indeed, suppression
of neurogenesis alone in rats did not lead to depressive or
anxious phenotypes (Santarelli et al., 2003; Wang et al., 2008;
Jayatissa et al., 2009; Fuss et al., 2010) while mice did show
neither enhanced depressive-like behaviors (Eisch and Petrik,
2012). However, mice showing lower levels of neurogenesis are
more susceptible to stress and display depressive-like phenotypes
(Egeland et al., 2017). That could support the hypothesis that
a decrease in neurogenesis would need to be associated with
genetic predisposition or an environmental trigger such as
stress in adulthood to lead to depression. For instance, adult
neurogenesis has been proposed to play a role in stress resilience
(reviewed in Levone et al., 2015; Besnard and Sahay, 2016).

On the other hand, neurogenesis seems to be related to
the behavioral symptoms of depression and their treatment.
An increase in neurogenesis was observed following several
antidepressant administrations in rodents, including SSRIs,

monoamine-oxidase inhibitors, serotonin-norepinephrine
reuptake inhibitors and tricyclic antidepressants, all of them
serotonin enhancers (Malberg et al., 2000; Czeh et al., 2001;
Li et al., 2004; Xu et al., 2006), as well as in non-human
primates (i.e., fluoxetine) (Perera et al., 2007). Furthermore,
the mechanisms of action of these compounds have been
shown to be specific to the SGZ (Malberg et al., 2000; Santarelli
et al., 2003; Perera et al., 2007). Studies also reported that
blocking neurogenesis in mice abolished the positive effect
of antidepressant treatment (Santarelli et al., 2003; Surget
et al., 2008). A specific role of neurogenesis in mediating
antidepressant treatment action would also explain the delayed
onset of therapeutic action. For example, it has been reported that
neurogenesis increases following 14- or 28-days of fluoxetine
administration, which coincides with the time required for
therapeutic action to start, but such effects were not observed
following 1- or 5 days of treatment (Malberg et al., 2000). Similar
effects regarding neurogenesis modulation have been observed
by using psychotropic medications reporting antidepressant
effects (Chen et al., 2000; Malberg et al., 2000; Santarelli et al.,
2003; Kodama et al., 2004; Nixon and Crews, 2004), as well
as non-pharmacological treatments such as electroconvulsive
therapy (Scott et al., 2000; Perera et al., 2007) or exercise
(van Praag et al., 2005). In addition, predisposing factors to
depression, such as chronic stress (Czeh et al., 2001; Coe et al.,
2003; Pham et al., 2003), alcohol abuse (Nixon and Crews,
2004), opioid use (Eisch et al., 2000; Krystal, 2012; Scherrer
et al., 2016), and hypothyroidism (Madeira et al., 1991) also alter
neurogenesis. However, it is worth noting that antidepressants
might show both neurogenesis- dependent and -independent
effects (Sahay and Hen, 2007; David et al., 2009). For example,
in some but not all behavioral paradigms, an inhibition of
neurogenesis leads to the effects of fluoxetine being blocked
(David et al., 2009), suggesting that other brain regions such as
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the cingulate cortex could also mediate antidepressant action
(Hajek et al., 2008).

As both neurogenesis and depression are linked to sleep,
it would be reasonable to assume that sleep could partly
affect depression through neurogenesis, and subsequently that
the antidepressant-like effects of hypnotics could be linked
to increased neurogenesis. Twice daily administration of
eszoplicone during 2 weeks increased cell survival by 46%
in the SGZ/granule cell layer in rats while having no effect
on cell proliferation. Most of these cells showed BrdU-NeuN
double-labeling confirming their neuronal identity (Methippara
et al., 2010). Yet, another study (Su et al., 2009) reported
that chronic co-treatment with eszoplicone and fluoxetine
increased cell survival by 50% but again had no effect on cell
proliferation; the observed effects were significantly higher when
drugs were co-administered compared to single drug treatment.
However, acute and chronic administration of zolpidem did
not show similar results (Takase et al., 2009). Nevertheless,
that could be explained by the fact that newborn neurons do
not express GABAA receptor alpha 1 subunit to which binds
zolpidem.

How newly born neurons contribute to mood or to
symptoms of depression is still not fully understood. The
cognitive impairments observed in depression which can be
modulated by neurogenesis are also observed in other psychiatric
disorders. Decreased hippocampal volumes are reported in
patients with schizophrenia, addiction, dementia and anxiety
(Kempermann et al., 2008; Thompson et al., 2008; Revest et al.,
2009), suggesting that neurogenesis might be an important
mediating factor in the pathogenesis. A relevant neuronal
mechanism could thus be a decrease in neurogenesis altering
the mean age and overall characteristics of neurons in the
dentate gyrus, subsequently influencing hippocampal networks’
properties and function (Lucassen et al., 2010). Although
new adult-born granule cells are in minority amongst cells
generated during development, they have been reported to
induce an overall increase in dentate gyrus activity and to
have a disproportionate influence on hippocampal circuitry
and behavior. The way these scarce newborn neurons have
an impact on global brain function could be due to their
capability to serve both as encoding units and modulators of the
patterns and timings of more mature neurons (Ming and Song,
2011).

DISCUSSION

There is accumulating evidence supporting a role for sleep
as a mediator of neurogenesis and its effects on cognition
and mood. However, there are certain limitations which must
be acknowledged. Regarding cognition, different hippocampal-
dependent memories are sensitive to different sleep stages, not
necessarily REM sleep primarily associated with a decrease in
neurogenesis. In addition, many animal and human studies
investigating the impact of sleep on cognition only disturb
sleep acutely whereas chronic sleep disruptions have been
consistently associated with decreased neurogenesis. This could

come from the fact that learning-associated neurogenesis is
more sensitive than basal neurogenesis. With respect to mood,
contradictory results have been obtained when using different
hypnotics or looking at post-mortem studies while the variability
in subjects as well as in methodologies makes comparisons
difficult. It is worth noting there is also some evidences of
an improvement of depressive symptoms after acute sleep
deprivation (Giedke and Schwarzler, 2002) but this does not
rule out a possible opposing effect of chronic sleep disruption
on both depression and neurogenesis. Furthermore, patients
suffering from mood disorders could be “reset” following a one
night sleep deprivation procedure, questioning again the complex
relationship of sleep disturbances with neurogenesis (Krystal,
2012).

The “neurogenic interactome” (Eisch and Petrik, 2012) aims
to explain some of these discrepancies by considering diverse
neurogenesis altering factors, reciprocal connections of the
hippocampus and other areas and behavioral consequences. This
makes the link between the effect of changes in neurogenesis on
cognition with those observed on mood. Decreased neurogenesis
may be detrimental for pattern separation (i.e., the differentiation
of similar memories with overlapping hippocampal inputs
into different representations; McClelland et al., 1995) and
thus lead not only to impaired learning and memory, but
also to the inability to adequately discern danger or stress
signals. Mueller and colleagues (Mueller et al., 2015) also
alluded to pattern separation, suggesting de-correlation of
entorhinal cortex inputs leading to formation of separate
memory representations is involved in antidepressant action.
Kempermann and colleagues (Kempermann, 2008) proposed
adult hippocampal neurogenesis enables adaptation of this
network to novelty and complexity encountered throughout
life which would improve its functioning by separating units
of information. The emotional role of the hippocampus would
be a consequence of memories being linked to emotional
information.

The relationship between neurogenesis and sleep is still a
relatively recent research field and it will greatly benefit from
further research. Studies comparing mice and rats, as well as
different strains and sex, could clarify discrepancies. A key
experiment would involve subjecting rodents to sleep disruption
while selectively pharmacologically preserving hippocampal
neurogenesis to observe whether the cognitive and behavioral
deficits are still observed. It would also be of interest to investigate
the following: whether the reduction in neurogenesis induced by
sleep disruption is normalized by antidepressants, the differential
effects of neurogenesis in the ventral and dorsal dentate gyrus,
the underlying biochemical and molecular mechanisms of sleep
disturbances on neurogenesis, and the effects of disrupted
neurogenesis in structures downstream of the hippocampus.
Technological advances (e.g., pharmacogenetic ablation of
neurogenesis) could potentially allow for the reversible block of
neurogenesis in rodents to investigate its relationship with sleep
in specific stages of learning and memory or specific timings in
mood disorders. It would also be useful to establish standardized
labeling paradigms as the effects on younger and older newborn
neurons may be different.
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This may lead to a better understanding of the role of sleep
and neurogenesis in the adult hippocampus and the potential
clinical benefits in preventing and treating cognitive disorders
and psychiatric diseases.
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