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Abstract 

In recent decades, climate change has become the major constraint for agricultural 
production in Cambodia and leads to future concern of food security. Improving 
effective irrigation management, especially for non-rice crops that use less water is 
urgently needed.  

The aim of this thesis is to contribute the development of vegetable production 
during the dry season in Cambodia. The specific objective of the research is to 
optimise irrigation water use at the on-farm level. We focused on developing a 
methodology for i) characterising soil hydraulic properties for crop models and ii) 
exploring the best irrigation scenarios for vegetable irrigation. Two growing season 
experiments with lettuce were conducted during 2016 and 2017 in five farm fields in 
the Chrey Bak catchment, Kampong Chhnnag Province, Cambodia.  

Two approaches were tested to achieve irrigation water saving. Firstly, a method 
using a soil water model, HYDRUS-1D, was used to inversely estimate the van 
Genuchten soil hydraulic functions in the unsaturated zone. The five experimental 
fields had different soil textures, loamy sand, sand and loam, and the field data (i.e., 
irrigation amounts, weather, lettuce growth data, soil permeability, etc.) were 
collected and measured to feed the given model. To generate the soil parameters, the 
objective functions were generated using inverse data such as measured soil moisture 
dynamics and soil water retention curves, using a combination of a soil moisture 
sensor, 10HS, and soil potential sensor, MPS-2, for a 30 minute time step. Our 
analysis showed that the inverse modelling successfully estimated the soil water 
retention curve and soil water dynamic with reasonable accuracy when compared to 
the observed values. However, uncertainties of the simulation and data measurement 
were observed, especially for the SWRC in dry and wet conditions. For the second 
study approach, to explore irrigation water saving the AquaCrop model was used to 
simulate irrigation scheduling under water stressed conditions.   

In the second study approach, to explore the irrigation water saving, the water driven 
model, AquaCrop was selected for simulating irrigation scheduling under water-
stressed conditions. The crop growth parameters for lettuce were calibrated using field 
data from the 2017 experimental growing season from two fields that have sand and 
loam soil textures. In the calibration process the measured crop growth data were used, 
e.g. canopy cover and above ground biomass collected over a 3 day time step, taking 
into account the other factors of irrigation management such as drip irrigation and 
mulching. Then, the method for optimal irrigation scheduling was described. Two 
main categories of irrigation scheduling for deficit irrigation were developed. The first 
varied thresholds of readily available water content (RAW) for the stop irrigation 
point under different no water stress and stress conditions. The second decreased 
deficit irrigations below field capacity (FC). The results of the calibration for crop 
growth were quite satisfactory. A primer set of adjusted lettuce parameters was 
obtained. The results highlighted limitations of the model in defining heat stress and 
root depth of the vegetable. Primarily, analysis results of irrigation scheduling 
scenarios show the capabilities of the model to identify the optimum water saving 
alternatives under limited water conditions.  
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Overall, this PhD thesis opens perspectives for improving irrigation management 
for increased crop productivity in Cambodia. 
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1 
Introduction  

 

This chapter presents the general context for conducting this research, the thesis 
frame work, thesis objectives and the outline.  
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1.1 Thesis context  

Currently, world agriculture consumes the largest proportion of freshwater 
resources, resulting in one of the greatest pressures on these resources (Saccon 2018). 
There is continuous growth in demand for irrigation water for crop cultivation to 
support the rapid world population growth, which is increasing at a rate of around 1.13 
% or 80 million per year (Ringler et al. 2009; Tripathi et al. 2019). By 2050, the global 
population will be up to 9.6 billion, 34 % higher than today (Tripathi et al. 2019).  

There are concerns that in the decades ahead, water use for irrigation cannot be 
increased in proportion to demand because of current limited natural water resources, 
this leads to the challenge to find sufficient water in the near future (Oki and Kanae 
2006). Another hot topic issue is the effect of global climate change, which presents 
major constraints to agricultural production (Santamarta et al. 2014; Ali and Erenstein 
2017; Saccon 2018; Tripathi et al. 2019).  

Climate change is associated with extreme events such as water shortages, droughts 
and floods which are increasing in frequency and intensity (Capra and Consoli 2008; 
Luo et al. 2018). Over agricultural areas in many regions of the world, disasters arising 
from these extreme events have caused marked damage to agriculture, especially crop 
production, and threaten local to global food security (Lesk et al. 2016). In recent 
years, almost 25% of the damage and losses from climate-related disasters have been 
recorded in the agricultural sector of developing countries (Lesk et al. 2016). 

In this context of population growth and climate change, enhancing future food 
security is the greatest challenge for farmers. This is especially true for poorer farmers 
from developing countries that are reliant on rain-fed agriculture (Poulton et al. 2016). 

Cambodia is a developing country (Ngoc et al. 2018) that will face almost double 
population growth from its current 14.4 million (2014) to between 20.4 and 27.4 
million by 2050 (Wokker et al. 2014).  

Agriculture is among the mainstays of Cambodia’s economy and it contributed 
24.9% (current price) of the gross domestic product in 2017, after the industry and 
service sectors (Ecker and Diao 2011; Silva et al. 2013; Ngoc et al. 2018; MAFF 
2018). Due to climate change effects, the agricultural sector’s contribution to the 
economy has strongly decreased over the last five years (Figure 1.1-1).  
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Figure 1.1-1 Contribution of different sectors to the national economy of Cambodia (MAFF 

2018). 

Cambodia is among the poorest countries in South‐East Asia and the world (Damme 
et al. 2004; Goutard et al. 2015) and the agricultural productivity in Cambodia remains 
among the lowest in Asia and the Pacific (Silva et al. 2013). Eighty percent of 
Cambodia’s population are poor, smallholder farmers who live in rural areas (Morton 
2007; NIS 2015). The workforce in the agricultural sector was 54.2% (in 2010) and 
has decreased to 41.5% (2015), which is due to increasing migration from rural areas 
to urban areas and to other countries (MAFF 2018).  

Rice is the key crop in the country with yields averaging ∼3.0 ton ha−1 in 2013, 
which is a low level compared to China, Vietnam and Myanmar with 6.5, 5.3 and 4.1 
ton ha−1, while Australia and New Zealand have the highest yields of 10.4 ton ha−1 
(Molle 2007; FAO 2013; Martin 2017; MAFF 2018). With cultivated agricultural land 
area totalling 3.7 million hectares in Cambodia, rice crops occupy 76% of cultivated 
land and the remaining 24% is covered by other significant crops such as cassava, 
maize, rubber, soybean, mungbean, sugar cane and vegetables (MWRM 2003; Tong 
et al. 2011; Martin 2017).  

Cambodia has a tropical monsoon climate having two distinct seasons in the year, 
i.e., a rainy season (from May to mid-November) and a dry season with long periods 
of dry days without rain (Miyazawa et al. 2014). The average annual rainfall is 1400 

mm in the central lowland regions (Chan 2015). With favourable precipitation during 
the rainy season, agriculture is heavily based on rain-fed production (Devendra and 
Thomas 2002; Molle 2007). Only 16% of the total cultivated land is irrigated during 
the dry season (Molle 2007).  

The Cambodian agricultural sector faces some significant constraints including 
single crop production, lack of crop diversification, reliance on traditional technology 
and the effects of climate change. Predominantly, Cambodian agriculture is 
characterised by small scale farms with sizes that vary from 0.5 to 4.3 ha (Devendra 
and Thomas 2002), and low levels of technology and education due to the side effects 
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of the Khmer Rouge civil war and limited access to education facilities and poor 
institutional management in remote rural areas (Montgomery et al. 2017). The farmers 
share their traditional irrigation practices for rice cultivation from generation to 
generation without going to training schools. Because they are unable to assess surface 
or groundwater for irrigation during the dry season, farmers commonly can produce 
rice based only on unpredictable precipitation. Being rich in freshwater resources in 
Cambodia, about 2525 irrigation schemes have been developed across major 
provinces, which could potentially irrigate more than 1 million hectares (Silva et al. 
2013; Sithirith 2017). However, most of these schemes are underperforming (Silva et 
al. 2013). Consequently, the vast proportion (96%) of wet rice land remains 
uncultivated during the dry season (Erban and Gorelick 2016).  

During the dry season, in some areas where there is water available for irrigation, 
farm lands have the potential to diversify into high-value crops (e.g., off-season 
vegetables) that use less water. However, non-rice crop farming requires technical 
advice on suitable varieties, fertiliser and pesticide use, and water use efficiency 
(WUE) (Johnston et al. 2013b). Due to a lack of familiarity and limited knowledge of 
those crops, farmers consider that cultivating vegetables is highly risky (Tong et al. 
2011; Silva et al. 2013). Notably, there is still significant importation of vegetables 
and fruits from neighbouring countries to Cambodian markets, especially to urban 
areas (Tickner 1996; NIS 2015). Furthermore, the consumption of vegetables by the 
rural population appears limited (Silva et al. 2013; NIS 2015). 

Cambodia is one of the more disaster-prone countries in Southeast Asia, affected by 
climate change (WBG 2011). Certainly, climate change is a major concern for 
Cambodian agriculture. Severe and extreme events related to flood and drought have 
increasingly damaged the agricultural production of farmers (Kong et al. 2012). Over 
the period 1998‐2002, as much as 70% of rice production loss was attributed to floods 
and 20% to droughts (WBG 2011). The worst flood was recorded in 2000 and severe 
droughts occurred in 2002, 2012, 2015 and 2016 (WBG 2011; Sithirith 2017). The 
growth in agriculture during the last 10 years, as presented by MAFF 2018 (Figure 
1.1-2), indicates that growth has continually decreased over time. This growth 
decreased significantly from 2013 to 2015, i.e., from 4.3% in 2012 to 1.6% in 2013 
and continued to decrease to 0.3% in 2014 and 0.2% in 2015. The decrease was caused 
by natural disasters, especially as a consequence of serious drought in 2014 and 2015 
(MAFF 2018). 
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Figure 1.1-2 Agricultural growth of Cambodia within the last 10 years (MAFF 2018). 

Moreover, due to projected climate changes in the lower Mekong River Basin to 
which Cambodia belongs, there is an expectation that pressures will be further 
exacerbated, e.g., the dry season will lengthen and intensify, and the rainy season will 
shorten and intensify with dramatic increases in rainfall in the wettest months 
(Mainuddin and Kirby 2009; Poláková et al. 2013). This will strongly increase the 
threat to food security in Cambodia.  

Thus, agriculture in Cambodia faces both greatly increased demands for food and 
increased frequent extreme weather threats to production (Morton 2007; Mainuddin 
and Kirby 2009).  

For these reasons, there is clearly an urgent need to improve agricultural water use 
efficiency. This can be an important pathway for poverty reduction and enhancement 
of food security (Zhang and Oweis 1999; Passioura 2006; Ortega et al. 2005; 
Mainuddin and Kirby 2009; Andarzian et al. 2011; Xinchun et al. 2017; Bigelow and 
Zhang 2018). Thus, improving the management of irrigation water is becoming an 
issue of paramount importance (Lorite et al. 2007). To date, the scientific research-
based evidence on irrigation water use efficiency has not yet been established for 
Cambodia.  

1.2 Conceptual framework and thesis objectives  

The question of water use and improving water use efficiency (WUE = crop 
yield/evapotranspiration (ET)) is complex interaction between mainly soil and water 
management, and involves sustainable water use and water efficiency, nutrient 
management, farm measures, water quality, and preventing the loss of soil organic 
matter, etc. (Zhang and Oweis 1999; Rotter et al. 2011; Poláková et al. 2013; Poulton 
et al. 2016) (Figure 1.2-1).  

In irrigated agriculture, to enhance WUE many aspects are considered, e.g., 
increasing the yield per unit of water (engineering and agronomic management 
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aspects), reducing losses of water to unusable sinks, reducing water degradation 
(environmental aspects), and reallocating water to higher priority uses (societal 
aspects) (Hewell 2001). It is believed that substantial changes in agricultural water 
use can be made to farm practices through the integration of scientific research by 
different irrigation stakeholders.  

.  

 

Figure 1.2-1 Potential sustainable soil and water outcomes through improved land and farm 
management (Poláková et al. 2013). 

On the other hand, irrigation approaches are assessed based on different levels (field, 
watershed, basin, irrigation district, catchment, scheme, regional government) 
considering different outlooks, priorities and concerns (Figure 1.2-2) (Hewell 2001; 
Fabiani et al. 2016). For example, the regional managers and governments may focus 
more on investments that jeopardise the environment but create high economic impact 
(Fabiani et al. 2016). 
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Figure 1.2-2 Irrigation management priorities (Fabiani et al. 2016). 

For this present research we focused on the farm level, developing a methodology 
for improving irrigation water use efficiency that can contribute to meeting the 
challenges facing Cambodian farmers in cultivating vegetables during the dry season. 
There are options for improving irrigation WUE, e.g., regarding irrigation water 
management, agronomic or institutional improvement (Figure 1.2-3) (Poláková et al. 
2013). 

 

Figure 1.2-3 Option examples for improving irrigation efficiency at a field level (Hewell 
2001). 
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Specifically, we will focus on water management improvement at the farm level.  

Farmers generally lack the adequate means and incentives to know the crops’ water 
use, actual irrigation applications, crop yield responses to different water management 
practices, and thus current on-farm water-efficiency levels (Levidow et al. 2014). The 
guidelines for irrigation applications should be developed for smallholder farmers, 
which could lead to sustainable use of the water resources allocated to agriculture 
(Geerts et al. 2010).  

At first, we have to understand the concept of water use efficiency and the different 
processes which can affect WUE. The scheme in Figure 1.2-4 gives the processes 
influencing irrigation WUE off- and on-farm and its definition at different scales.  

WUE can be defined by an output to input ratio between the water depth beneficially 
used by the sub-system under consideration and the total water supplied to that sub-
system (Pereira et al. 2012).  

In the case of on-farm application efficiency, the numerator is replaced by the 
amount of water added to the root zone storage and the denominator is the total water 
applied to that field (Pereira et al. 2012). Nowadays, there is a trend to promote 
increased water productivity (WP) as an important issue in irrigation, that may be 
generically defined as the ratio between the actual crop yield achieved (Ya) and the 
water use, expressed in kg/m3 (Pereira et al. 2012). 

Improving WP at a field level can be achieved through proper irrigation scheduling, 
reducing irrigation frequency and amounts (Zhang et al. 2004; Poláková et al. 2013). 
Appropriate irrigation scheduling is an effective way to achieve balanced water-
saving and high crop yields (Wen et al. 2017). Elaborating irrigation schedules merely 
on the basis of field research is rather difficult and time consuming (Geerts et al. 
2010). Irrigation scheduling simulation approaches, on the other hand, allow the 
assessment of crop irrigation requirements, support upgraded irrigation management 
practices, can assess the impacts of water stress on crop yields, as well as aiding the 
search for optimised water saving and environmentally friendly irrigation practices 
(Popova and Kercheva 2004; Geerts et al. 2010; Popova and Pereira 2011). 

The overall objective of this research is to contribute to the development of 
vegetable production during the dry season in Cambodia using on-farm irrigation.  

The specific objective is to optimise irrigation practices on-farm during dry seasons.  

Through two case studies based on primary data in the Cambodian context, we will 
try to address the following two specific research questions: 

(1) How to characterise soil hydraulic properties in order to use a soil water model?  

(2) Which are the best scenarios to maximise water efficiency for vegetable 
irrigation during the dry season in Cambodia? 

The framework of the study is presented in Figure 1.2-5.  
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Figure 1.2-4 Different factors affecting irrigation efficiency off-and on-farm: grey boxes are 
the useful water for crop yield; white boxes are the water losses. water productivity at 

different  scales also presented: (a) the plant, through the water use efficiency WUE; (b) the 
irrigated crop at farm scale (Farm WP); (c) the irrigated crop, at system level (Irrig WP); and 

the crop including rainfall and irrigation water (Total WP) (Pereira et al. 2012). 
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Figure 1.2-5 Framework of the study and research questions. 

1.3 Thesis outline  

This dissertation is structured into 7 chapters.  

Chapter 1 describes the global context related to the water crisis, water issues in 
the Cambodian context, the problem statement and motivation for the thesis.  

Chapter 2 reviews the up-to-date methodologies for defining the basic soil 
hydraulic properties, water flow models and crop models that have been used to 
address irrigation management.  

Chapter 3 describes the environment of the study area addressed. The experiments 
are described.  

Chapter 4 addresses research question 1 on how to characterise soil physical 
properties. There is a focus on the inversion method using water flow models to 
estimate soil water retention curves.  

Chapter 5 addresses research question 2, what are the best scenarios for vegetable 
irrigation during the dry season in Cambodia.  

Chapter 6 discusses the general outputs of the results. Limitations are discussed 
and followed by recommendations for subsequent work.  

Chapter 7 gives a general conclusion and perspectives. It presents the key findings 
of the study approaches in this thesis and discusses some points for improving further 
research. 



 



 

 

 

 

 

 

 

 

 

 

 

2 
Literature Review  

 

This chapter reviews the basics of water flows in soil, as well as different methods to 
determine the soil hydraulic properties. The chapter describes modelling approaches 

that are specific to water flow and irrigation scheduling.  
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2.1 Major soil hydraulic properties   

2.1.1 Soil water retention curve 

The soil water retention curve (SWRC) is a fundamental soil hydraulic property 
(SHP). SWRCs represent the relationship between soil water potential (h) and the soil 
water content (θ). The SWRC is needed to model water and solute movement in 
unsaturated soil (Liang et al. 2016; Hodnett and Tomasella 2002; May and Genuchten 
2008). Therefore, it plays a major role for soil and water management within the frame 
of sustainable and improved agricultural productivity (Shwetha and Varija 2015; Patil 
et al. 2013).  

SWRC is considered to be a difficult-to-measure soil hydraulic property (Botula et 
al. 2014). There are many direct and indirect methods to characterize the SWRC 
(Rashid et al. 2015). Direct measurement can be conducted in the laboratory with a 
small soil sample or in a small-scale in situ experiment using some devices (Le 
Bourgeois et al. 2016). Generally, SWRC is obtained directly by laboratory 
experiments using porous media-based methods such as the sand box, hanging water 
column, pressure cells, pressure plate extractors, and centrifuge (Smagin 2012). 
Tension disc infiltrometer experiments are commonly used for SWRC field 
experiments (Rashid et al. 2015; Ramos et al. 2006; Schwartz and Evett 2002; 
Ventrella et al. 2005; Lazarovitch et al. 2007; Verbist et al. 2009; Latorre et al. 2013). 
Soil moisture and soil water potential probes can also be used to obtain in situ SWRCs 
(Degré et al. 2017). Both laboratory and filed experiments have their own advantages 
and limitations. The field experiments can minimize the disturbance caused by soil 
sampling and unchanged soil boundary conditions, whereas laboratory experiments 
can measure SWRCs in a larger range, especially in the wettest and the driest events 
(Asgarzadeh et al. 2014). However, these direct measurement methods are time 
consuming and expensive (Hopmans and Simunek 1999a). 

Because of the disadvantages of direct measurement, alternative indirect methods 
using computer modelling have been developed for fast and accurate prediction (Li et 
al. 2018b). A rapid approach is the use of pedotransfer functions (PTFs) based on 
easy-to-measure soil data such as soil texture, bulk density, and soil organicity (Wang 
et al. 2016, Van Den Berg et al. 1997).  

PTFs have been classified into 3 types: i) Point/class/static estimation, ii) Parametric 
/continuous/dynamic estimation, iii) Physico-empirical model (Minasny et al. 1999) 
(Assouline and Or 2014). Point estimation involves an empirical function using 
multiple regression analysis that predicts θ(h) at a predefined pressure head values 
mostly at field capacity and wilting point (Minasny et al. 1999; Assouline and Or 
2014).  

Parametric PTFs use hydraulic models that describe the observed data across a range 
of pressure heads in a close-form equation with limited number of parameters to 
describe complete soil water retention curves (Minasny et al. 1999) (Vereecken et al. 
2010). The well-known hydraulic models used include Brooks and Corey (1964), 
Campbell (1974) and van Genuchten (1980). 

Generally a point/class PTF is easier to use, but its accuracy is limited (Reynolds et 
al. 2000). As demonstrated by Gupta and Larson (1979); Rawls et al. (1982) and 
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Wösten et al. (2001), the function used to develop the point PTFs have the general 
form: 

θh = a. sand + b. silt + d. organic matter + e. dry bulk density + ⋯
+ e. variable X 

 

(2.1-1) 

Where, θh is the soil water content at specific pressure head, h and a, b, c, d, e and 
x are regression coefficients. Variable X is any other basic easily-to measure soil 
properties (Wösten et al. 2001).  

In spite of the advantages, the reliability of applying these relationships in other 
contexts is uncertain and requires cautious validation for different regions (Werisch 
et al. 2014). Another indirect method to estimate SWRCs is inverse modelling. This 
process aims to select optimal model parameters in order to match a set of 
measurements (Gutmann and Small 2007) and it is increasingly used to fit effective 
hydraulic properties (Wohling et al. 2008). This method provides an easy, reliable 
procedure and a more flexible experimental set up (Kumar et al. 2010). It requires less 
experimental effort and results in effective flow parameter estimation (Lambot 2002).  

SWRC utilization  

The SWRC have been used to determine the soil water thresholds indicating water 
availability for plant consumption (Datta and Stivers 2017). These thresholds 
indicated in Figure 2.1-1  are important for determining when and how much irrigation 
is needed. 

Field capacity (FC) is un upper limit of soil water availability (de Jong van Lier 
2017), an agronomic measure with prime application in irrigation management. It 
allows the determination of irrigation output without excessive leaching (de Jong van 
Lier 2017). Field Capacity (FC) has been defined as the vertical distribution of water 
content in the soil profile at 48h after sequential ponded infiltration and drainage with 
no evapotranspiration or rain (Ottoni Filho et al. 2014). Traditionally, field capacity 
(FC) is defined as the water content of a soil following saturation with water and after 
free drainage is negligible (Nemes et al. 2011; Meyer and Gee 1999). Field capacity 
can be frequently presented as the soil water content corresponding to measure soil 
matric potentials at different accepted values according to the countries (i.e., – 5 (the 
United Kingdom), -10 (the Netherlands), and – 33 kPa (the United States)) (Reynolds 
et al. 2000).  

Permanent wilting point (PWP) is defined as the largest water content of a soil at 
which indicator plants, growing in that soil, wilt and fail to recover when placed in a 
humid chamber (Tolk 1998). This definition is based on results of numerous plant pot 
experiments in which the plants were well irrigated with ideal nutrient and at some 
growing stage the irrigation was ceased (Novák and Havrila 2006). The – 1500 kPa 
value is commonly used to estimate permanent wilting point. Exceptionally, many 
drought-tolerant crops such as wheat have the ability to survive and extract water at 
levels well below this value (Reynolds et al. 2000).  

Available water storage capacity (AWC) is the water supply capacity of soils to 
crops in which the soil moisture is held between field capacity (FC) and permanent 
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wilting point (PWP) (Kirkham 2014; Berg et al. 1997; Van Den Berg et al. 1997; Kern 
1995; Batjes 1996). 

Readily available soil water content (RAW) refers to the fraction of total available 
water content that a crop can extract from the root zone without suffering water stress 
(Allen et al. 1998a).   

 

 

Figure 2.1-1 The relation between volumetric water content and water tension in different 
soils adjusted from Ehlers and Goss (2003).  

2.1.2 Soil hydraulic conductivity  

Soil hydraulic conductivity (K) plays a significant role in ecological, agricultural, 
and hydrological management (Tian et al. 2018). The hydraulic conductivity 
characterizes the ability of a soil to transmit water (van Genuchten and Pachepsky 
2017). Many factors such as the pore-size distribution of the medium, and the 
tortuosity, shape, roughness, and degree of interconnectedness of the pores affect the 
K (van Genuchten and Pachepsky 2017). The hydraulic conductivity decreases 
considerably when the soil becomes unsaturated (van Genuchten and Pachepsky 
2017). The unsaturated hydraulic conductivity function has a close relation to the 
water content, K(θ), or pressure head, K(h). Accurate measurement and estimation of 
unsaturated hydraulic conductivity K(h) is challenging and of great interest.  

There are numerous methods of hydraulic conductivity measurement both under 
field conditions and in the laboratory (Zeng et al. 2013, Kucza and Ilek 2016). Some 
examples of laboratory and field measurements of K are the falling head, auger hole, 
Guelph permeameter, single-ring infiltrometer, double-ring infiltrometer and the 
inversed-auger-hole method, tension infiltrometers (Zeng et al. 2013). Of these 
options, tension infiltrometers have been increasingly used to measure K at various 
supply pressure heads in the field because they are water saving, repeatable and stable 
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in space and time (Zeng et al. 2013). Alternatively, indirect methods which use pedo-
transfer functions to estimate saturated hydraulic conductivity (Ks) using readily 
available soil properties are often used (Xu et al. 2017; Becker et al. 2018). Some 
proposed PTFs frequently used in the literature to estimate Ks are presented in 
Ghanbarian et al. (2017). Rosetta is a PTF modelling tool that is used to estimate k (h) 
and Ks (Schaap et al. 2001; Elhakeem et al. 2018).  

A large number of functions have been proposed over the years to describe the 
hydraulic conductivity function, K(h) (van Genuchten and Pachepsky 2017) that are 
often used in numerical models. A detailed review of the performance of many of 
these models is given by (Leij et al. 1997). Some known model equations are 
presented here. 

The classical equations of Brooks and Corey (1964) for θ (h), K(h): 

 

θ(h) = { θr + (θs − θr) ⌊
ℎ𝑒
ℎ
⌋
λ

             h < ℎ𝑒

θs                                                 h ≥ ℎ𝑒

 (2.1-2) 

K(h) = KsSe

2
λ+l+1 (2.1-3) 

 

where, as before, θr is the residual water content (L3 L-3), θs is the saturated water 
content (L3 L-3), he is often referred to as the air-entry value (L), l is a pore-size 
distribution index characterizing the width of the soil pore-size distribution, Ks is the 
saturated hydraulic conductivity (LT-1), l a pore-connectivity parameter assumed to 
be 2.0 in the original study of Brooks and Corey (1964), and Se(h) is effective 
saturation given by: 

Se(h) =
θ(h) − θr
θs − θr

 

 

(2.1-4) 

As an alternative, (van Genuchten 1980) proposed a set of equations that improve a 
sigmoidal shape. The Mualem van Genuchten model, which is used to represent the 
functions K(h) and θ(h) in the flow models, is described as follows (van Genuchten 
1980):  

Se(h) = {
(1 + |αh|n)m    h < 0
1                           h ≥ 0

 (2.1-5) 

 

K(h) = KsSe
l [1 − (1 − Se

1/m
)
m
]
2

 (2.1-6) 

where Se(h) is the scaled water content at pressure head, h, 𝛼 is related to the inverse 
of the air entry suction (L-1) and n is the shape parameters, m = 1 − 1/n, (n>1) is 
a measure of the pore size distribution. Of these, θr, θs and Ks have a physical 
meaning, and α, n and l are empirical curve shape parameters (van Genuchten 1980; 
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Šimůnek et al. 2003). The parameter n affects the steepness of the curve. Large values 
of n result in a steeper curve (Radcliffe and Simunek 2010).Water flow models 

Soil water models have been developed to interpret a specific scientific question or 
solve a prescribed practical problem or specific purpose (Ranatunga et al. 2008; 
Romano 2014). Categorisation of the models differs but often relies on the degree of 
complexity (physics-based, mechanistic and empirically-based models) (Ranatunga et 
al. 2008).  

Empirical models are usually data-driven black-box models while inputs and 
outputs are empirical functions (Song-hao and Xiao-min 2011). Principally, they are 
based on field measurement at specified site and weather conditions. Practically, they 
have few parameters and require fewer inputs for those specific conditions.  

Conceptual models are based on the mass water balance of infiltration, rainfall or 
irrigation, redistribution in the soil water zone, plant water uptake or actual 
evapotranspiration and percolation out (Panigrahi and Panda 2003). The models also 
include dynamics of crop root growth function. Similarly, they require fewer inputs 
and are commonly used at field scale and in agricultural water management (Panigrahi 
and Panda 2003).  

Hydrodynamic models, or physically-based models, are more complex because they 
are based on the physical with continuous soil water flow including one or two-
dimensional water flow using the principle of mass conservation and the Darcy’s law 
(Song-hao and Xiao-min 2011; Ranatunga et al. 2008). The equation of Richards is 
well-known and the most widely used in soil moisture dynamic models (Romano 
2014).  

Some of the widely used numerical models for simulating variably saturated water 
flow and solute transport in soils are COUP DAISY, DAISY, HYDRUS, MACRO, 
RZWQM (Simunek 2005). Among these models, the HYDRUS numerical model is 
one of the most advanced and popular numerical computer models for the field of soil 
physics (Radcliffe and Simunek 2010). Therefore, in this research we selected 
HYDRUS for charactersing the soil hydraulic properties. The following, we introduce 
some concepts of Richard’ equation and inverse modelling used in HYDRUS. The 
detail of the HYDRUD can be found in its manual, (version 4.16) (Šimůnek et al. 
2005).  

2.1.3 Richards’ equation  

Richards’ equation (Richards 1931) is known as one of the governing equations of 
water flow and uses the principle of mass conservation and Darcy’s law to describe 
the relationships between water potential, volumetric water content and hydraulic 
conductivity (Song-hao and Xiao-min 2011; Romano 2014).  

∂θ

∂t
=
∂

∂z
[K(h)

∂h

∂z
− K(h)] − S (2.1-7) 

where θ is the volumetric water content, h is the pressure head (L), z is the distance 
from a reference surface (L), t is the time (T), K(h) is unsaturated hydraulic 
conductivity (LT-1) as a function of h or θ, and S = sinks. 
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The Richards’ flow equations can be solved using computer models based on 
relative simple analytical, semianalytical and more complex numerical solutions for a 
wide range of applications in the research and management of natural subsurface 
systems (Simunek 2005).  

To solve practical problems, numerical solutions with increased computing power 
are generally used for dynamic field situations, e.g. under specified, realistic initial 
and boundary conditions, complex natural geologic and hydrologic conditions and 
control parameters in space and time (Romano 2014; Simunek 2005). The 
applications of numerical methods for solving variably saturated flow problems 
generally subdivide the time and spatial coordinates into smaller pieces using different 
methods such as classical finite differences (used in one-dimensional models), 
integrated finite differences, finite volumes and finite element methods (used in two- 
and three-dimensional models) in terms of a system of algebraic equations. The 
history of the development of various numerical techniques used in vadose zone flow 
models has been reviewed by Simunek (2005).  

The initial and boundary conditions are needed to solve Richards’ equation for 
numerical solutions. The initial condition is defined as the distribution of soil water 
contents or soil water pressure heads in the flow domain at the beginning of the 
simulation (Novák and Hlaváčiková 2018). Boundary conditions are prescribed at the 
boundaries of the modelled area, and they define the interaction between the flow 
domain and surrounding environment. The upper and lower boundary can be 
expressed in flux form or in “pressure-head” form. 

2.1.4 Calibration of soil-water flow models 

To simulate the water flow in soil, it is necessary to know all parameters in the 
governing equations that characterise the soil properties, such as the soil water 
retention and hydraulic conductivity functions (Novák and Hlaváčiková 2018). There 
are two methods to obtain these soil properties, e.g. the direct solution by estimations 
taken from field and laboratory measurements, and the inverse solution.  

The parameter estimation or parameter optimisation involves the estimation of the 
unknown soil parameters needed in governing equations, by using relatively easily 
measured water contents, pressure heads and water fluxes (e.g. infiltration rates) 
present during soil-water movement. Aiming to produce minimal differences between 
measured and modelled data, the initial parameters are adjusted.  

2.1.5 Inverse modelling  

In advance of the calibration, “real” inverse modelling consists in running the model 
backwards using observed soil moisture in known conditions in order to deduce 
SWRC parameters and conductivity curve parameters (Hopmans et al. 2002, Vrugt et 
al. 2008, Ritter et al. 2003b).  

Inverse modelling components  

The inverse method integrates three interrelated functional components: i) transient 
flow measurement, ii) a numerical flow model simulating the measurement, iii) the 
optimisation algorithm (Figure 2.2-1) (Hopmans and Simunek 1999b). In the transient 
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flow experiment, the boundary and initial conditions are prescribed and various flow 
variables are measured, such as cumulative infiltration, irrigation, precipitation, 
evapotranspiration, etc. In the numerical flow model, initial parametric soil hydraulic 
functions are defined, which include saturated hydraulic conductivity and saturated 
soil water content using direct measurement or estimation with existing methods such 
as pedotransfer function methods. In the optimisation part, the algorithm estimates 
accurate parameters through the minimisation of an objective function of the 
difference between observed and simulated flow variables, using an iterative solution 
of the transient flow equation. The depth overviews and backgrounds of theory of 
inversion method can be found in (Vrugt et al. 2008; Hopmans et al. 2002; Hopmans 
and Simunek 1999). 

 

 

Figure 2.1-2 Process of inverse modeling approach (modified from Hopmans and Simunek 
1999). 

Parameter Optimization 

The total of the difference between observed and simulated state variables to reach 
the desired hydraulic parameters is expressed by an objective function, ϕ, which may 
be defined as (Hopmans et al. 2002): 

ϕ(β, y) = ∑ vj∑wi,j[yj
∗(z, ti) − yj(z, tj, β)]

2

i=nj

i=1

j=my

j=1

 (2.1-8) 
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where the right-hand side represents the residuals between the measured yj
∗ and 

corresponding model-predicted (yj) space-time variables using the soil hydraulic 
parameters of the optimized parameter vector 𝛽, 𝛽 is the optimized parameter vector, 
𝑡𝑗 denotes time. my is types of all measurements, nj is the number of measurements 
for a certain measurement type j, yj

∗ may represent water flux density, cumulative 
water flow, soil water matric head, or soil water content values, vj is weighting factor, 
wi,j is additional weighting factor to individual data, t is time (T), z is vertical 
coordinate (L). 

The problem of the objective function often becomes ill-posed: unidentifiability (if 
more than one parameter set leads to the same model response, the parameters are 
unidentifiable), instability (small errors in the measured variable or in some fixed 
parameters may result in large changes of the optimized estimated parameters) and 
non-uniqueness (refers to the inverse relationship; if a given response leads to more 
than one set of parameters) (Carrera et al. 2005; Ritter et al. 2003b).  

Inverse algorithm 

An inverse method combines the numerical model with an algorithm for parameter 
estimation (Ritter et al. 2003b). Inverse numerical optimization that can be used with 
specific algorithms (Novák and Hlaváčiková 2018).  Many algorithms have been 
developed to numerically solve and minimise the objective function following their 
own particular strategy, e.g. by a gradient-based search (Ritter et al. 2003).  

The inverse algorithms may be classified into local and global search methodologies 
(Vrugt et al. 2008). The local method seeks a systematic improvement of the objective 
function using an iterative search starting from a single arbitrary initial point in the 
parameter space, while the global method uses multiple concurrent searches from 
different starting points that are conducted within the parameter space (Vrugt et al. 
2008). The search for best parameters should consist of finding the global minimum 
of the objective function. 

In soil hydrology, the simple local-search optimisation methods are the steepest 
descendent method, Newton’s method, Gauss method, Levenberg–Marquardt method 
and the Simplex method. The Levenberg–Marquardt method for derivative-based 
search is commonly used, which evolves toward the true optimum in the search space 
in situations where the objective function exhibits a convex response surface over the 
entire parameter domain (Hopmans et al. 2002). The limitations of these methods are 
discontinuous first derivatives, curved multidimensional ridges, the inability of the 
observed experimental data to properly constrain all of the calibration parameters, 
which lowers the chance of finding a single unique solution (Vrugt et al. 2008).  

More developed and robust global optimisation techniques that have been used for 
the estimation of the unsaturated soil hydraulic properties include the annealing–
simplex method, genetic algorithms, multilevel grid sampling strategies, ant-colony 
optimisation, shuffled complex methods, Bayesian and multiobjective optimisation 
algorithms (NSGA-II, MOSCEM-UA, AMALGAM) (Vrugt et al. 2008).  
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2.2 Irrigation scheduling  

Generally, irrigation is applied to avoid water deficits that reduce crop production. 
It plays an important role in building resiliency to climate variability and ensuring 
food security (Liang et al. 2016; Fereres and Rabanales 2007).  

The irrigation water balance includes evaporation losses from the soil and the crop 
(evapotranspiration), and all the losses resulting from the distribution of water to the 
land (Fereres and Rabanales 2007). Effective irrigation water use needs a proper 
irrigation schedule. Irrigation scheduling involves determining when and how much 
to irrigate, using the proper amount of water to result in maximum crop yields and 
minimise leaching of water and nutrients to the groundwater. (Al-jamal et al. 2002; 
Jones 2004; García-vila and Fereres 2012; Sammis et al. 2012; Cambel and Cambel 
2013).  

Irrigation scheduling can be conventionally based on a water-balance accounting 
method, by monitoring the soil moisture deficit or by monitoring plant-water potential 
(stress) (Sammis et al. 2012; Jones 2004). The soil water measurement based method 
uses the soil moisture status, whether in terms of water content or water potential, as 
indicator of when to irrigate. The soil water balance calculation estimates the water 
balance in soil moisture over a period, given by the difference between the inputs 
(irrigation plus precipitation) and the losses (runoff plus drainage plus 
evapotranspiration). The plant stress sensing method is based on direct or indirect 
measurement of the plant water status or based on plant physiological responses to 
drought.  

2.2.1 Irrigation scheduling models 

In the context of increasing irrigation water scarcity, accurate scheduling using 
soundly based management methods and tools is becoming necessary for optimal 
water saving (Theiveyanathan et al. 2004). As a result, numerous irrigation scheduling 
models have been developed as research and/or management tools (Papajorgji and 
Shatar 2004; Pereira et al. 2003; Kanda et al. 2018). The irrigation scheduling 
simulation models are essentially of two types: water flux simulation models and soil 
water balance simulation models (Pereira et al. 2003).  

Having complex processes of simulation and model parameterisation, the water flux 
models use the water fluxes entering and leaving the root zone to compute the water 
balance and require detailed information on the soil hydraulic properties, crop canopy 
characteristics and other parameters influencing water (and nutrient) extraction by the 
crop roots.  

The soil water balance simulation models adapt the water content estimation using 
the input and output quantities of water to the soil reservoir with a predetermined time 
step. They require only essential soil water characterisation and basic crop data, and 
use simplified water-yield functions.  

The soil water flux models include those using Richards’ equation (Liu et al. 2006), 
e.g. the models SWACROP, WAVE (Vanclooster et al. 1994) and SWAP (Ahmad et 
al. 2002; Jorenush and Sepaskhah 2003). 
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Water-balance models are commonly used for irrigation scheduling as stand-alone 
applications or as components of crop growth models (Liu et al. 2006; Papajorgji and 
Shatar 2004).  

Irrigation-scheduling models that are stand-alone applications include CROPWAT, 
WISE (Leib et al. 2001), ISM (George et al. 2000), SWB and ISAREG (Pereira et al. 
2003). Some models (e.g. the Ritchie model) were integrated into crop simulation 
models such as CERES-Wheat and DSSAT.  

The coupling of both types of model, i.e., water flux models and crop growth 
models, has been assessed (Kanda et al. 2018). Indeed, water flux models used in 
agriculture focus mainly on the soil physical processes and not the crop growth, with 
simplification of transpiration, while crop models focus on the crop development 
process by using the simplified water flow process (Kanda et al. 2018). The 
combination of both approaches therefore opens new perspectives (Li et al. 2011). 

In recent decades, the FAO AquaCrop model has been widely used to predict crop 
productivity, water requirements and water use efficiency under water-limiting 
conditions (Raes et al. 2009b).  

For the purpose of exploring various conditions of the irrigation strategies, we 
selected AquaCrop for estimating irrigation. We used soil parameters obtained from 
HYDRUS as complementary of the AquaCrop model. The following, we highlight 
the concepts of AquaCrop model used in this study approach. A detailed description 
is presented in Steduto et al. (2009a). 

2.2.2 AquaCrop Model 

The AquaCrop model is a crop water-driven productivity model developed by the 
FAO in 2009 Water is the key limiting factor for crop production in this model 
(Razzaghi et al. 2017). Inputs for the AquaCrop model consist of weather data, crop, 
and soil characteristics (soil profile and groundwater), and field management practice 
or irrigation management practices (Steduto et al. 2009a). 

Canopy cover is a crucial feature of AquaCrop (Steduto et al. 2009a). Under 
unstressed condition, the exponential growth equation to simulate canopy 
development for the vegetative stage is:  

CC =  CCoe
CGC×t (2.2-1) 

where CC is the canopy cover at time t and is expressed as fraction of ground 
covered, CCo is initial canopy cover size (at t = 0) as a fraction (%), and CGC is the 
canopy growth coefficient in fraction per growing degree day (GDD), a constant for 
a crop under optimal conditions, but modulated by stresses. 

In the condition of water stress, the CGC is multiplied by a water stress coefficient 
of expansive growth (Ksexp):  

CGCadj  =  Ksexp. CGC (2.2-2) 
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where Ksexp ranges from 1 to 0, canopy growth begins to slow down below the 
maximum rate when soil water depletion reaches the upper threshold, and stops 
completely when the depletion reaches the lower threshold.  

Crop transpiration is proportional to the canopy cover and given by: 

Tr =  KsstoKcTrETo (2.2-3) 

Kssto is the stress coefficient for stomatal closure. KcTr is the crop transpiration 
coefficient (determined by canopy cover and KcTr,x), KcTr,x is the coefficient for 
maximum crop transpiration, and ETo is reference evapotranspiration (mm). 

Biomass production is computed from crop transpiration and crop water 
productivity normalised for ETo and CO2 (Equation (2.3-4)). The extreme effect of 
low temperature on crop phenology, biomass accumulation, and harvest index, is 
considered with adjustment factors (Montoya et al. 2016; Raes et al. 2009b). 

B =  Ksb . fWP.WP
∗.
Tr

ETo
 (2.2-4) 

where B is biomass, Tr is crop transpiration (mm day−1), ETo is reference 
evapotranspiration (mm day−1), and Ksb is the stress coefficient for low-temperature 
effects on biomass production. fWP is the adjustment factor to account for differences, 
if any exist, in the chemical composition of the vegetative biomass and harvestable 
organs. WP∗ is normalised crop water productivity, defined as the ratio of biomass 
produced to water transpired, normalised for the evaporative demand and CO2 
concentration of the atmosphere.  

The AquaCrop stress indicators include water storage (not enough water), 
waterlogging (too much water), air temperature (too high or too low), and soil salinity 
stress (too high). 

2.3 Deficit irrigation  

Under some circumstances, the maximum attainable income for an irrigated field 
may be achieved by deficit irrigation (English 1990). Deficit irrigation can aid in 
coping with situations where there is a restricted water supply or when full irrigation 
is not possible (Fereres and Rabanales 2007). The deficit irrigation (DI) concept was 
established in the 1970s (James and Lee 1971) and refers to irrigation below full crop 
evapotranspiration (ET) by considering the profit-maximising level of water use 
(Capra and Consoli 2008). By definition, DI is an optimisation strategy whereby net 
returns are maximised by reducing the amount of irrigation water applied to a crop to 
a level that results in some yield reductions caused by water stress (Lecler 1998).  

DI has been applied in various aspects (Capra and Consoli 2008). Initially, some 
applications have stressed crops to under-irrigation during their entire biological 
cycle, while other authors have tried to find an irrigation strategy to maximise yield 
with a minimum rate of water application. A recent strategy is to use regulated deficit 
irrigation (RDI) or controlled deficit irrigation (CDI) which is based only on a 
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reduction of irrigation amounts during certain plant cycle phases (Capra and Consoli 
2008).  

DI scheduling strategies and approaches try to answer the questions “under-irrigate 
by how much?”, “when should the deficit be imposed?” and “how should the deficit 
be imposed?” (Capra and Consoli 2008). It is recommended that an analytical 
economic return analysis is performed with all economic factors that influence the 
profitability of irrigation, and that the optimal depth of irrigation water is chosen 
(Capra and Consoli 2008; English 1990). For example, land or water can be the 
limiting factors in choosing the optimum water depth. Therefore, we need to choose 
the main strategic goal between the maximisation of food production and profit (Capra 
and Consoli 2008). The detailed concept of the economic analysis framework for DI 
is presented by English (1990). To quantify the level of DI it is first necessary to define 
the full crop ET requirements (Fereres and Rabanales 2007). Generally, small 
irrigation amounts increase crop ET linearly, and this ends with the curvilinear 
relationship because part of the water applied is not used in ET and is lost (Fereres 
and Rabanales 2007). When yield reaches its maximum value and additional amounts 
of irrigation do not increase it any further. However, irrigation is applied in excess to 
avoid the risk of a yield penalty and considered as full irrigation. In DI, the level of 
water application is less full irrigation and the losses are limited. This results in a 
higher water productivity of irrigation water under DI compared to full irrigation. 

DI has been applied successfully for increased water productivity for various crops 
without causing severe yield reductions (Geerts and Raes 2009a). English and Raja 
(1996) presented three analyses of deficit irrigation in real world situations of wheat 
production in the northwestern USA, cotton production in California and maize 
production in Zimbabwe, taking into account the crop production functions and cost 
functions. Their analysis suggested that i) in land-limiting situations and abundant 
water, the estimated optimal deficit strategy would be 15% or 16%, which represents 
appreciable water savings, resulting in profit gains of 8% to 13%; ii) in situations 
where irrigable land is abundant and water is scarce, optimal deficits were much larger 
in the water-limiting cases, ranging from 28% to 59%, with associated gains in total 
farm income between 44% and 68%; iii) deficits averaging 64% were found to be 
economically equivalent to full irrigation in the water-limiting cases, and deficits 
averaging 30% were found to be equivalent to full irrigation in the land-limiting cases. 
Many studies have shown that deficit irrigation could decrease crop redundant growth, 
minimise water use and improve WUE with little or no yield decline (dos Santos et 
al. 2007; Wang et al. 2015; Yang et al. 2017).  

Because examining the yield response to different water applications in field 
experiments is laborious and expensive, modelling is a tool often used for assessing 
and developing deficit irrigation strategies (Geerts and Raes 2009a). Models allow the 
combined assessment of different factors affecting yield in order to derive optimal 
irrigation quantities for different scenarios of DI, and evaluating the risk-efficiency of 
the strategies (Geerts and Raes 2009; Cortignani and Severini 2009; Peake et al. 
2016).  
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For these reasons, in this present study we have developed a methodology for 
irrigation scheduling considering deficit irrigation for optimised irrigation in the 
context of limited water.



 

 



 

 

 

 

 

 

 

 

 

 

 

3 
Materials and methods 

 

This chapter describes the materials, methods and tools that were used during this 
research. It also presents details of the environment of the study area.  
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3.1 Experimental site environment  

The experimental sites were situated in the Chrey Bak catchment, which has an area 
of approximately 700 km2 (Chem et al. 2011), in the Tonle Sap region. This is located 
at latitude between 11°53 and 12°14 N, and longitude between 104°13 and 104°49 E, 
in Kampong Chhnang Province, 90 km from Phnom Penh, Cambodia (Figure 3.1-1).  

Stung Chrey Bak catchment is one of the areas of focus for irrigation developments 
during the 1980s and 1990s, to address the severe food insecurity that affected the 
country after the Khmer Rouge civil war (1975-1978) and the externally imposed 
economic blockade (1979-1991) (Chann et al. 2011). The existing small scale 
irrigation projects from the Khmer Rouge era have been rebuilt and expanded (Chann 
et al. 2011). The cultivated area of wet and dry rice in the catchment totals around 10 
367 ha (Phalla et al. 2011). Up to 55% of the irrigation system projects function during 
the early dry season from January to March. Accordingly, rice production fields have 
expanded during the dry season around the irrigation system areas. However, those 
irrigation systems do not provide enough water to deliver to all the cultivated land. 
Huge areas of fallow land remain during the dry season (Figure 3.1-2). Alternatively, 
the land could be cultivated with vegetables that use less water compared to rice. This 
region is abundant in groundwater, which can be managed by smallholder farmers to 
irrigate the crop through wells. Moreover, the production of vegetable crops on small 
and family farms is an agricultural sector that can benefit from this agronomic practice 
to increase the income of the farmers (Nascimento et al. 2018). However, most of 
these farmers have limited knowledge of planting as vegetable crops require different 
planting techniques to rice, especially for irrigation. Therefore, in this research we 
have the aim of introducing irrigation management to these farmers. Lettuce is among 
the more valuable and high demand vegetables in the region. Therefore, we selected 
lettuce for the irrigation experiment.  

3.1.1 Climate  

The catchment is influenced by the tropical monsoon which has two seasons: the 
dry season from December to May, and the rainy season from June to November. The 
climate data were collected from weather station W2 (104°40′21.767″ E; 
12°10′45.965″ N), downstream of the catchment, which has been installed in the 
catchment since 2009 (Figure 3.1-1). From data recorded during 2012-2014, the mean 
annual temperature was 27°C. The mean annual minimum and maximum humidity 
ranges from 51 to 92 percent, respectively. Average solar radiation was from 16.8 to 
18 mega joules per square metre per day. Mean annual precipitation ranged from 1600 
mm to 1788 mm.  
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Figure 3.1-2 View of a paddy field during the dry season, downstream of Chrey Bak 
catchment, Kampong Chhnang Province. 

3.1.2 Groundwater in the Chrey Bak catchment 

It was observed that in this research catchment of Chrey Bak, groundwater was 
available in most of the area. There are abundant wells in the region. Most of the time, 
the people use this groundwater for domestic uses not irrigation. In this research, the 
irrigation experiments were conducted using groundwater. This PhD research is a part 
of a research project named “Improved surface-groundwater irrigation for crop 
diversification in Tonle Sap Lake Basin: Case study in Chrey Bak catchment”. In 
another part of the project, the groundwater level was monitored in the Chrey Bak 
catchment during 2016 and 2017. The data from the research part is used to illustrate 
the groundwater variation in Figure 3.1-4. Observations of groundwater levels were 
taken in 15 bore wells throughout the catchment (Figure 3.1-3). The depth of wells 
varies from 2 to 15 m. Measurement with a water level meter was taken once a month 
from upstream (CB04, CB05, CB06, CB07, CB08, CB09 and CB10) to downstream 
areas (CB01, CB02, CB03, CB11, CB12, CB13, CB14 and CB15) from January 2015 
to December 2016. 

Figure 3.1-4 shows the monthly variation in groundwater levels and rainfall at the 
upstream and downstream parts of Chrey Bak catchment over the two years.  
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It is noted that upstream the groundwater varied from 2 to 5 m, while downstream 
it can vary from 1 to 9 m during the dry season. The largest drop in water level was 
recorded in the C13 well.  

 

 

Figure 3.1-3 Location of monitoring wells (CB) in Chrey Bak catchment. 
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3.2 Experimentation   

Five experimental sites indicated in Figure 3.1-1 are located in different villages in 
the lowland downstream of the catchment, named T1, T2, T3, T4 and T5, i.e., site T1 
(104°38′13.539″ E 12°14′33.951″ N, at PreyMorn Village, site T2 (104°38′54.442″ E 
12°9′15.482″ N, Chea Rov Village, site T3(104°38′35.317″ E 12°8′41.929″ N), 
Trapain Trach village, site T4 (104°37′16.24″ E 12°11′52.518″ N), Ou Roung Village, 
site T5 (104°35′15.321″ E 12°6′21.25″ N), Kouk Pouch Village. During the rainy 
season these sites are cultivated with rice and flooded.  

The two seasonal growing experiments of planting lettuce using drip irrigation and 
groundwater were conducted over two years, 2016 and 2017. During the first growing 
season in 2016, the experiment was focused on the estimation of soil hydraulic 
properties in the five experimental sites, T1, T2, T3, T4 and T5. The data analysis of 
this experiment was performed in Chapter 4. The second experiment in 2017 was 
focused on crop growth characterisation in two experimental sites, i.e., T2 and T4.The 
experimental data in 2017 were analysed in Chapter 5. The total land area of each 
field was 400 m2.  

During the first growing season in 2016, lettuce was planted with a density of 16 
plants m−2 in all five experimental sites (Figures 3.2-1 and 3.2-2). Lettuce seeds were 
sown in standard trays (123 holes). After 15 days, seedlings were transplanted into 
raised bed rows (0.30 m in height, with bed tops 0.50 cm wide and a top width of 1 m 
with no mulch cover). The organic compost was basally applied at the rate of 20 ton 
ha−1 before transplantation. Transplantation of the lettuce seedlings and harvesting 
took place on 30 January and 4 March, respectively. The soil was prepared by plowing 
before the construction of the beds. There was no rain during the experiment. 
Irrigation was applied using the drip irrigation system with groundwater pumping. 
The drip line has a 30 cm emitter space with manufacturer’s maximum capacity of 3 
L h−1. The irrigation was performed by the farmers. We asked them to irrigate using 
their usual practices. Therefore, they irrigated twice daily, once in the morning and 
once in the evening. We estimated the irrigation amounts used by the farmers based 
on the fluctuation of measured soil moisture and the manufacturer’s emitter irrigation 
rate.  

For the second experiment for the second approach in chapter 5, the cultivation 
process was similar to that of the first growing season experiment. The second 
growing season for the lettuce experiment was conducted in August and September in 
2017. Notably, this experiment took place during the rainy season due to time 
constraint during the research. Transplantation of the lettuce seedlings at sites T2 and 
T4 took place on 13 and 21 August, respectively. The harvesting of T2 and T4 took 
place on 27 and 24 September, respectively. This time, we used plastic covers to 
minimise soil moisture evaporation. We controlled the irrigation ourselves, dependent 
on the soil moisture depletion. As the lettuce cannot be grown well under heavy rain, 
UV plastic was used as a roof to cover bed rows to protect the crop. Due to the intense 
rain which flowed between the crop rows, water ponding at 20 cm below the top bed 
row level was observed between the lettuce rows at both sites during almost the entire 
growing period. This ponding kept the soil wet during the growing period. At site T4 
irrigation was not applied after a week after planting, due to the benefit of water 



3- Materials and methods   

 

37 

ponding. At site T2, even though there was also water ponding in the field, the 
irrigation was applied every other day. The irrigation was determined by checking soil 
moisture (SM) using the feel and appearance method of Klocke and Fischbach (1984). 
The irrigation was performed when the SM was depleted below field capacity in the 
root zone at 5 cm, as lettuces were observed having a root depth of 5–10cm. 

 

  

  

Figure 3.2-1 Views of the experimental sites during the growing season in 2016. a) site T1, 
b) Site T2, c) site T3, d) site T4. 

d) 

b) 

c) 

a) 
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Figure 3.2-2 Views of the experimental sites during the growing season in 2016 at site T5. 

3.3 Measurement of soil properties  
3.3.1 Soil profile description  

Five pits of experimental sites with 1 metre depth (Figure 3.3-1) were dug at the 
beginning of the research in April 2015 to describe the soil profiles according to the 
United Nations’ Food and Agriculture Organization (FAO) soil description guide 
(FAO 2006). Four of the sites presented as coarse soils, e.g. T1, T2, T3 and T5. The 
detailed soil description is presented in Table 3.3-1.  
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Figure 3.3-1 Soil pits at the experimental sites. a) site T1, b) Site T2, c) site T3, d) site T4. 
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Figure 3.3-2 Soil pits at the experimental site, T5. 
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Table 3.3-1 (Part I) Soil description of the study sites.  

Sites Soil FAO Description 

T1  

Horizon 1 (Ap): Depth: 0–20 cm, texture: loamy sand, structure: 

blocky subangular, soil colour: 10YR3/3, consistency of soil when 

dry: very friable, soil stickiness: slightly sticky, soil plasticity: 

slightly plastic, bulk density: 1.4–1.6 kg dm−3. 

Horizon 2 (B1): Depth: 20–50 cm, texture: loamy sand, structure: 

blocky subangular, soil colour: 7.5YR7/6, consistency of soil when 

dry: very friable, soil stickiness: non-sticky, soil plasticity: non-

plastic, bulk density: 1.4–1.6 kg dm−3. 

Horizon 3 (B2): Depth: 50 cm+, texture: loamy sand, structure: 

single grain, soil colour: 7.5YR7/8, consistency of soil when dry: 

very friable, soil stickiness: non-sticky, soil plasticity: non-plastic, 

bulk density: 1.4–1.6 kg dm−3. 

T2  

Horizon 1 (Ap1): Depth: 0–10 cm, texture: sand, structure: single 

grain, soil colour: 7.5YR5/3, consistency of soil when dry: loose, soil 

stickiness: slightly sticky, soil plasticity: slightly plastic, bulk 

density: 0.9–1.2 kg dm−3. 

Horizon 2 (Ap2): Depth: 10–40 cm, texture: sand, structure: single 

grain and subangular, soil colour: 7.5YR7/3, consistency of soil 

when dry: loose, soil stickiness: slightly sticky, soil plasticity: 

slightly plastic, bulk density: 1.2–1.4 kg dm−3. 

Horizon 3 (B): Depth: 40 cm+, texture: sand, structure: single grain 

and subangular, soil colour:7.5Y5/4, consistency of soil when dry: 

loose, soil stickiness: slightly sticky, soil plasticity: slightly plastic, 

bulk density: 1.2–1.4 kg dm−3. 

T3  

Horizon 1 (Ap): Depth: 0–20 cm, texture: sand, structure: single 

grain to subangular, soil colour: 7.5YR5/6, consistency of soil when 

dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly 

plastic, bulk density 1.2–1.4 kg dm−3. 

Horizon 2 (B): Depth: 20–60 cm, texture: sand, structure: single 

grain to subangular, soil colour: 7.5YR5/6, consistency of soil when 

dry: loose, soil stickiness: slightly sticky, soil plasticity: slightly 

plastic, bulk density 1.2–1.4 kg dm−3. 

Horizon 3 (C): Depth: 60 cm+: Bed rock. 
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Table 3.3-1 (Part II) Soil description of the study sites. 

Sites Soil FAO Description 

T4  

Horizon 1 (Ap1): Depth: 4–17 cm, texture: loam, structure: 

subangular, soil colour: 7.5YR5/3, consistency of soil when dry: 

hard, soil stickiness: sticky, soil plasticity: plastic, bulk density: 1.4–

1.6 kg dm−3. 

Horizon 2 (A2): Depth: 10–40 cm, texture: loam, structure: massive 

subangular, soil colour: 7.5YR6/3, consistency of soil when dry: very 

hard, soil stickiness: very sticky, soil plasticity: very plastic, bulk 

density: 1.0–1.2 kg dm−3. 

Horizon 3 (B): Depth: 17 cm+, texture: silty clay, structure: massive 

subangular, soil colour: 7.5YR7/3, consistency of soil when dry: 

extremely hard, soil stickiness: very sticky, soil plasticity: very 

plastic, bulk density: 1.0–1.2 kg dm−3. 

T5  

Horizon 1 (Ap): Depth: 0–30 cm, texture: loamy sand, structure: 

single grain to subangular, soil colour: 7.5YR5/4, consistency of soil 

when dry: soft, soil stickiness: slightly sticky, soil plasticity: slightly 

plastic, bulk density: 0.9–1.2 kg dm−3. 

Horizon 2 (B): Depth: 30 cm+, texture: sandy loam, structure single 

grain to subangular, soil colour: 7.5YR7/3, consistency of soil when 

dry: hard, soil stickiness: sticky, soil plasticity: plastic, bulk density: 

1.4–1.6 kg dm−3. 

 

3.3.2 Determination of the physicochemical properties 

After pedological characterisation, soil samples were collected to measure soil 
chemical and physical parameters as indicated in (Table 3.3-2). The samples were air-
dried and passed through a 2 mm mesh sieve for chemical analyses at the peodological 
laboratory, Gembloux Agro-Bio Tech. Some of the physical parameters, bulk density 
and pF curves were measured at the soil laboratory, Institute of Technology of 
Cambodia. The soils of each field were used to determine the soil texture, bulk density 
(BD) and SWRC with three replications at the laboratory. The soil textures were 
measured using a pipette method (Pansu and Gautheyrou 2007). The bulk densities 
were measured by the core method (Margesin and Schinner 2005). Porosity (∅) and 
void ratio (e) were calculated from bulk density (Bd) assuming an average mineral 
density of 2.65 g cm−3 (Andersland et al. 2004). pH of the water was measured by 
potentiometry (Liénard and Colinet 2018). Cation exchange capacity (CEC) was 
measured by exchangeable cations method described in Sparks et al. (1996). Electrical 
conductivity (EC) was measured by electrical conductivity meter (EC meter). We used 
colorimetric method described in Sparks et al. (1996) to measure extractable 
phosphors (P), extractable potassium (K). Soil organic carbon (C) was measured using 
Walkley-Black method. Kjeldahl Method was used to measured total nitrogen (N) 
concentrations. 
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3.3.2.1 Soil permeability 

Soil permeability of the experimental sites was measured in-situ using a tension 
infiltrometer (Eijkelkamp Agrisearch Equipment, Giesbeek, Netherlands) (Figure 
3.3-3). The supply pressure heads during the measurement were -5, -10, -15 cm. The 
Wooding (1968) method was used to analyse tension infiltrometer data to determine 
saturated hydraulic conductivities (Ks).  

 

Figure 3.3-3 Hydraulic conductivity measurement with tension infiltrometer at the 
experimental fields. 

3.3.2.2 Determining laboratory soil water retention curve (SWRC) 

pF curves were measured using ceramic pressure plate plate (Eijkelkamp Agrisearch 
Equipment, Giesbeek, Netherlands) (Figure 3.3-4) with the head range of 6, 10, 30, 
70, 100, 500 and 1500 kPa. The relative soil moisture was measured using oven dry 
during 24h at 75oC (Dane et al. 2002a).  
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Figure 3.3-4 pF cure measurement with ceramic pressure plate.  

3.3.2.3 Determining in-situ soil water retention curve (SWRC) 

In the first experiment in 2016, in situ SWRC data collection was conducted in the 
five experimental fields during the development stage of lettuce under drip irrigation 
during 2016 starting from 14 February (site T1), 18 February (sites T2 and T3), 23 
February 2016 (sites T4 and T5). The SWRCs were measured using coupled 
inexpensive Decagon Devices sensors, e.g., soil moisture sensor 10HS (Decagon 
Devices, Pullman, WA, USA) and a soil water matric potential sensor MPS-2 
(Decagon Devices, Pullman, WA, USA) connected to Em50 data logger (Decagon 
Devices, Pullman, WA, USA) (Fisher and Gould 2012). The sensors were installed 
horizontally near each other at depths of 10 cm and 20 cm below the soil surface 
between irrigated lettuces (see Figure 3.3-5) at sites T1, T2, and T3 and below the 
bare soil at sites T4 and T5. The sensor record was from 1 to 21 March 2016 at site 
T1, from 22 February to 21 March at site T2, from 14 February to 21 March at site 
T3, from 22 February to 21 March at sites T4 and from 7 to 21 March at site T5. Data 
from the sensors were recorded at 30 min intervals. The sensors of 10HS and MPS-2 
for SWRCs measurement were available only at 20 cm depth at T1 and 10 cm depth 
at T5. The sensors are described below.  

MPS-2 is the dielectric water matric potential sensor (Decagon Devices 2016). 
MPS-2 measures the water content of porous ceramic discs using a capacitive reading 
and converts the measured water content to water potential using the ceramic moisture 
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characteristic curve. The range of the measurement is from –10 to –500 kPa (pF 2.01 
to pF 3.71). Sensor accuracy is ± 25% of the reading between –9 and –100 kPa. MPS-
2 has been confirmed to have good reliability in its respective range (Degré et al. 
2017). Accuracy can decrease up to approximately ± 35% and ± 50% at – 300 kPa 
and – 500 kPa, respectively (Decagon Devices 2011). The MPS-2 is pre-calibrated by 
the manufacturer and is not affected by soil type but requires correct installation with 
adequate hydraulic contact. The 10HS is a capacitance sensor related to dielectric 
permittivity (Decagon Devices 2010). 10HS has a measurement range of 0–0.57 cm3 
cm−3 and an accuracy of ± 0.03 cm3 cm−3. It operates at a frequency of 70 MHz and 
can be used at temperatures between 0 and +50°C with a permittivity measurement 
volume of 1 dm3 (Visconti et al. 2014). Mittelbach et al. (2012) reported that the 10HS 
sensor fails to measure soil moisture (θ) above 0.4 cm3 cm−3 and presents decreasing 
sensitivity in measuring θ with increasing θ, resulting in a poor ability to represent the 
variability in θ for moist conditions. The 10HS sensors in this study were calibrated 
following Decagon’s step-by-step instructions (Cobos and Chamber 2005) using the 
calibrated equation in Table 3.3-2. 

Table 3.3-2 Calibrated equations for 10HS at the different sites. 

Site Calibration Equation R2 

T1 VWC = 0.0005 raw − 0.3715 0.98 

T2 VWC = 0.0005 raw − 0.3712 0.95 

T3 VWC = 0.0004 raw − 0.2591 0.98 

T4 VWC = 7 × 10−7 raw2 − 0.0008 raw + 0.2724 0.99 

T5 VWC = 0.0005 raw − 0.3196 0.98 
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Figure 3.3-5 In-situ soil water retention curve measurement with a combination of 10HS and 
MPS-2 sensors. Installation of sensors (the picture was taken before inserting the sensors into 

the soil) at 10 and 20 cm depths. 

3.3.2.4 Result of measurement of physicochemical soil properties  

Table 3.3-3 presents the basic soil physical properties obtained from the 
measurement such as soil texture, soil bulk density, saturated hydraulic conductivity, 
and saturated soil moisture.  

Some physicochemical soil properties are presented in Figures 3.3-6 to 3.3-11. 

Among the sites, the percentage of sand, silt and clay ranged from 34 to 91%, 6 to 
66% and 3 to 33%, respectively (Figure 3.3-6). Sand is the dominant particle in the 
area. Only T4 has fine soil, with similar sand and silt particles at 40 to 55%. Generally, 
all soils are acid having a pH below 7 (Figure 3.3-7). The pH ranged from 4.3 to 6.4. 
The highest pH values were observed in the fine soil at site T4, while the coarse soils 
tend to have low pH values, especially in deeper soil. Seng et al. (2005) characterised 
the chemical properties in Prey Khmer village, which has a sandy soil texture, and 
found a similar pH of 5.6. Soil organic carbon (C) ranges from 0.06 to 1.5% (Figure 
3.3-8). The fine soil at T4 had the highest C and the coarse soils at the other sites were 
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relatively very low in C. Total nitrogen (N) concentrations, extractable phosphorous 
(P) and extractable potassium (K) in all sites ranged 1.2 to 15 mg/100 g, 0.01 to 2.8 
mg/100 g and 0.3 to 49 mg/100 g, respectively (Figure 3.3.9). Unsurprisingly, K and 
N are dominant at T4 in the first surface layer and decreased significantly in the deeper 
layer. P has very low values in all sites. Overall, the coarse soils in other sites have 
very low N, P and K. Thus, the experimental sites are low in nutrients. It is noted that 
only the top soil of site T4 has very significant electrical conductivity (EC) of 141 μS, 
while the other soil layers and sites have low EC between 10-32 μS(Figure 3.3-10). 
The cation exchange capacity (CEC) ranged from 0.25-6.17 cmol+/kg(Figure 3.3-11). 
As expected, the coarse soils have very low CEC and the highest CEC was found for 
the finer soil at T4. 
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Figure 3.3-6 Soil particles for each site. Note: T1-T5 are site T1-T5, H1-H3 are soil horizon 
1-3.  

 

Figure 3.3-7 Soil pH for each site. Note: T1-T5 are site T1-T5, H1-H3 are soil horizon 1-3.  

-20

0

20

40

60

80

100

T1H1 T1H2 T1H3 T2H1 T2H2 T3H1 T4H1 T4H2 T4H3 T5H1 T5H2

C
la

y,
 s

ilt
, s

an
d

 (
%

)

Sites

Clay Silt Sand

0

1

2

3

4

5

6

7

T1H1 T1H2 T1H3 T2H1 T2H2 T3H1 T4H1 T4H2 T4H3 T5H1 T5H2

p
H

(-
)

SitespH (H2O) pH(KCl)



Assessing irrigation water saving for crop production in Cambodia 
 

50 

 

Figure 3.3-8 Soil organic carbon (C) for each site. Note: T1-T5 are site T1-T5, H1-H3 are 
soil horizon 1-3.  

 

Figure 3.3-9 Total nitrogen (N) concentrations, extractable phosphors (P), extractable 
potassium (K) for each site. Note: T1-T5 are site T1-T5, H1-H3 are soil horizon 1-3.  
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Figure 3.3-10 Electrical conductivity (EC) for each site. Note: T1-T5 are sites, H1-H3 are 
horizons.  

 

 

Figure 3.3-11 Cation exchange capacity (CEC) for each site. Note: T1-T5 are site T1-T5, 
H1-H3 are soil horizon 1-3.  
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3.4 Estimation of soil water retention curves (SWRC) 

3.4.1 Comparison of different methods in estimating SWRC  

We compared different methods: the Rosetta method, fitted field SWRC method, 
fitted laboratory SWRC method, and inverse solution modelling to evaluate their 
performance in estimating SWRC. The field data during the growing season in 2016 
were used.  

Rosetta method, Method 1 (M1) 

The Rosetta pedotransfer function (Schaap, et al. 2002) was used to calculate the 
unknown van Genuchten parameters, 𝜃𝑟, 𝜃𝑠, 𝛼, n  by considering the soil texture and 
bulk density. 

Fitted field SWRC method, Method 2 (M2) 

The field SWRCs were obtained from coupling the soil moisture sensor 10HS and 
potential sensor MPS-2 at depths of 10 cm and 20 cm in each field. The SWRC 
calculated using the van Genuchten (vG) equation (Equation (2.1-5)) was fitted to the 
field SWRC data by minimising the root mean square error (RMSE) (Equation (3.4-
1)) between the model and the data using the SOLVER routine of Microsoft Excel 
software (Microsoft Company, Redmond, WA, USA). The initial values of vG 
parameters from the Rosetta method were used. 

RMSE = √
∑ (θf,i − θvG,i)

2n
i=1

n
 

(3.4-1) 

where 𝜃f,i denotes the experimental data, i.e., the measured 10HS soil water content 
at a given MPS-2 pressure head, θvG,i is the corresponding modelled soil water 
content, and n is the number of the (h, θ) data pairs. 

Fitted laboratory SWRC data method, Method 3 (M3) 

The same procedure as Method 2, the van Genuchten Equation were fitted with the 
the laboratory SWRC data by minimizing the objective equation (3.4-2), were used to 
obtain vG parameters from laboratory SWRC. The initial values of vG parameters 
from the Rosetta method were used.  

RMSE = √
∑ (θlab,i − θvG,i)

2n
i=1

n
 

(3.4-2) 

where θlab,i is the measured oven soil water content at a given pressure plate head, 
θvG,i is the corresponding modelled soil water content, and n is the number of the (h, 
θ) data pairs. 

Inversion method, Method 4 (M4) 

The inverse modeling using HYDRUS-1D was used to fit the in-situ SWRC.  

Root water uptake S(h) of lettuce crop was simulated using the model of Feddes et 
al. (1978).  

𝑆(ℎ) = 𝛼(ℎ) × 𝑆𝑝 (3.4-3) 
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where α is the dimensionless function and varies between 0 and 1 depending on soil 
matrix potentials, Sp (L-3L-3T-1) is the potential root water uptake and assumed to be 
equal to potential transpiration (Tp).  

The upper condition for water flow was an atmospheric condition influenced by 
irrigation supply, and potential evapotranspiration, ETp (LT-1) with a surface layer. 
The initial soil moisture profile at each layer site was set to the initial observed 
moisture data. The free drainage was considered as a boundary at the bottom of the 
soil domain. ETp was calculated from the reference evapotranspiration, ETo (LT-1) 
by the equation below.  

ETp = Kc × ETo (3.4-4) 

where Kc is crop coefficient computed by Feddes et al. (1978). Default crop 
parameters of lettuce in Hydrus 1D were used. Daily ETo was simulated based on the 
FAO Penman-Monteith method (Allen et al. 1998b) in Hydrus-1D using daily 
meteorological data (e.g. precipitation, air temperature, solar radiation, relative 
humidity, and wind speed recorded in 5 min time steps) from weather station W2 
(Figure 3.4-1). 

Then, ETp was separated into potential evaporation, Ep (LT-1) and potential 
transpiration, Tp (LT-1) based on Beer’s Law. 

Ep = ETp × e
−k.LAI  (3.4-5) 

Tp = ETp − Ep  (3.4-6) 

where k = extinction coefficient with default value of 0.463, LAI = leaf area index 
(L2L-2).  

It is noted that at T4 and T5, the sensors were placed in the soil where the plants did 
not grow, therefore, no crop condition was considered for these sites. Also, there was 
only the retention curve data for 20 cm depth at T1.  

The van Genuchten models for deriving the retention curve and the hydraulic 
conductivity function were adopted. Unknown parameters e.g. θr, θs, α, n, and l given 
were optimised to match the daily average observed soil water contents with the 
inversion algorithm implemented in the Hydrus-1D mode.  

Observation nodes were set at 10 and 20 cm following the location of the 10HS and 
MPS-2 sensors. The Marquart-Levenberge nonlinear minimisation method (Gutmann 
and Small 2007; Levenberg 1944) used in Hydrus-1D is sensitive to the initial vG 
parameter values (Wang et al. 2016). The initial vG parameters predicted using 
Rosetta program of Method 1 were applied.  
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Water flow simulation  

To test the capability in hydrodynamic performance, all the parameters obtained 
from different methods were applied in a Hydrus-1D model to simulate the water flow 
and root water uptake. For the three methods (methods 1, 2, and 3), the saturated 
hydraulic conductivity obtained from tension infiltrometers was used in the hydraulic 
properties and the l parameter of vG model was fixed at l=0.5.  

Model performance  

Three widely used statistical parameters were applied to evaluate the performances 
of the different methods to simulate the water flow processes, e.g. root mean square 
error (RMSE), Nash-Sutcliffe coefficient (Nash), and correlation coefficient (R2).  

RMSE = √
∑ (Oi − Si)

2n
i=1

n
 (3.4-7) 

Nash = 1 −
∑ (Oi − Si)

2n
i=1

∑ (Oi − O̅)
2n

i=1

 (3.4-8) 

R2 =

(

 
∑ (Oi − O̅)(Oi − S̅)
n
i=1

√∑ (Oi − O̅)
2n

i=1 ∑ (Oi − S̅)
2n

i=1 )

 

2

 (3.4-9) 

where O and S = observed and simulated values at time/place i respectively; n= total 
amount of the data. When Nash and R2 are close to 1, it is considered to be satisfied 
(Krause and Boyle 2005). RMSE should be close to zero for a good performance. The 
unit of RMSE is in cm3 cm-3. 

The result of this comparison of the different methods are presented in Appendix. 



 

 



 

 

 

 

 

 

 

 

 

 

 

4 
Estimating Soil Water Retention Curve by 

Inverse Modelling from Combination of In 

Situ Dynamic Soil Water Content and Soil 

Potential Data 

 

This chapter focused on estimating the soil hydraulic properties using inverse 
modelling. This work has been published in Soil System Journal. 
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4.1 Introduction 

In agriculture, soil water in unsaturated porous soil media is crucial for crop 
development (Zijlstra and Dane 1996). Adequate characterization of soil water 
movement can improve agricultural water management fundamentally and 
economically (Schwen et al. 2011; Huang et al. 2018; Lai and Ren 2016). The soil 
water retention curve (SWRC) is considered to be a paramount and a priori property 
of the hydraulic behavior of soils (Schwen et al. 2011; Le Bourgeois et al. 2016; 
Vereecken et al. 2016; Peters and Durner 2008; Moret-Fernández and Latorre 2017; 
Hopmans and Simunek 1999). SWRCs are essentially required to estimate the soil 
water availability for plant use, and to simulate water and solute flow in vadose zones 
(Gupta and Larson 1979). The definition and measurement of the SWRC are described 
in the section 2.1.1 (Chapter 2).  

In recent decades, an inverse solution has appeared as an attractive procedure to 
obtain SWRCs (Abbaspour et al. 2001; Wohling et al. 2008). Inversion estimation can 
be an easy and reliable procedure (Kumar et al. 2010). Several existing simulation 
model software tools include inverse estimation as embedded functions within the 
program (Osorio-Murillo et al. 2015). This approach involves estimating a set of 
limited unknown model parameters by using easily measurable variables (model 
output) such as water flow to compare to observation through the process of objective 
function optimization (Hopmans and Simunek 1999; Abbaspour et al. 2001). The soil 
hydraulic functions for inversion are described principally by analytical functions 
(van Dam et al. 1992) such as Gardner Gardner (1958), Durner (1994), Campbell 
(1974), and van Genuchten (1980). van Genuchten has gained wide recognition in 
generating a reasonable SWRC from various laboratory and field experiments 
(Lambot 2002). However, this model may not properly describe the hydrodynamic 
functioning of clay soils (Fuentes et al. 1992). Obtaining accurately the important 
parameters of the function is still a great challenge (Shi et al. 2015). The limitations 
of inverse modelling are mostly related to the solution uniqueness, and insufficient 
data due to limited measurement range of instruments used (Hopmans and Simunek 
1999; Li et al. 2018). Minimization of the these problems can be obtained with the 
following precautions: (i) it should have inverse input data for objective function with 
a wide range of water content, soil pressure head and additional retention curve data 
from simultaneously measuring pressure head and water content data in the soil profile 
(Kool et al. 1985, Toorman et al. 1992, Eching and Hopmans 1993, Simůnek and van 
Genuchten 1997); (ii) initial soil parameter values should be reasonably close to their 
true values (Kool et al. 1985). Some studies proved that including water content or 
infiltration rate alone will not provide uniqueness of the optimized parameters in the 
inverse solution (Eching and Hopmans 1993; Simůnek and van Genuchten 1997). 
Schelle et al. (2013) recommended that instrumentation of a lysimeter equipped with 
pressure head sensors can significantly improve parameter identifiability of the 
inverse solution. 

The inverse solution has been successfully applied to laboratory experiments with 
quick and precise results (Le Bourgeois et al. 2016; Simůnek and van Genuchten 
1997; Schelle et al. 2013; Kechavarzi et al. 2009). A recent laboratory method for 
SWRC determination using transient water release and imbibitions (TWRI) method 
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was developed by Wayllace and Lu (2011). This transient method involves using 
physical tests using electrical balance, and numerical tests using inverse modelling 
with HYDRUS and the van Genuchten model (Wang and Xiang 2014). The procedure 
presents a fast, accurate, and simple testing tool for obtaining SWRC and hydraulic 
conductivity functions of various types of soils under drying and wetting conditions. 
To date, this approach has been applied in geotechnical engineering with few 
experimental results establishing its validity and generality (Wang and Xiang 2014; 
Lu 2014; Mun et al. 2016; Lu et al. 2013; Lu and Godt 2013). 

In the field conditions, numerous studies of the inverse estimation technique have 
been applied (Wang et al. 2016; Simůnek and van Genuchten 1997; Ritter et al. 2003). 
Notably, the HYDRUS model has increasingly and successfully been used for inverse 
estimation particularly in in situ conditions (Le Bourgeois et al. 2016; Verbist et al. 
2009; Wohling et al. 2008; Köhne et al. 2009; Filipović et al. 2018). Lai and Ren 
(2016) determined soil hydraulic parameters at field scale by inverse modelling using 
combined HYDRUS-1D and PEST models. The authors confirmed that there are no 
unique effective average properties for a heterogeneous field to simulate field water 
content. Their results showed that the inverse modelling approach simulated soil water 
dynamics well, but still needs to be improved for layered soils, especially with fine-
textured soil layer. Inverse modelling with the HYDRUS model was successfully 
performed by Filipović et al. (2018) who used infiltration experiments with tension 
disc infiltration data to estimate soil hydraulic properties. Similarly, Rashid et al. 
(2015) conclude that the HYDRUS inverse solution approach applied to infiltration 
data measured with a tension disc infiltrometer is a useful method to characterize soil 
hydraulic properties. Le Bourgeois et al. (2016) investigated an inverse modelling 
method using HYDRUS-1D and the NSGA-II algorithm to estimate soil hydraulic 
properties from in situ water content measurement. Their calibrated Mualem–van 
Genuchten parameters had very low uncertainty and could still result in a good 
simulation of water flow. 

Previous studies on earlier inverse modelling studies mostly using HYDRUS 
focused on identifying soil hydraulic properties using infiltration experiments based 
on using tension disc infiltrometer data as discussed above. Thus, it is more interesting 
to inverse the soil hydraulic properties using field retention curve data with a fine 
timestep of dynamic soil moisture content and pressure head measured 
simultaneously. 

The objectives of this study are twofold: (i) to estimate soil properties for retention 
curve using inverse modelling with HYDRUS-1D with input field data of dynamic 
water content and SWRCs; and (ii) to evaluate its ability to simulate the water flow 
process in a case study of Cambodian soils. 

4.2 Materials and Methods 

The experiment of lettuce irrigation was conducted in five experimental sites (T1, 
T2, T3, T4 and T5) in 2016. The experiment and data collection were described in 
Chapter 3.  
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4.2.1 5-Min Timestep Reference Evapotranspiration 
Computation 

The reference evapotranspiration (ETo) was calculated based on standardized 
American Society of Civil Engineers (ASCE) Penman-Monteith equation (ASCE-
PM) (Irmak et al. 2005; Allen et al. 2005) using meteorological data collected in 5-
min timesteps (e.g., precipitation, air temperature, solar radiation, relative humidity, 
and wind speed) from the weather station (Figure 3.1-1). The standardized ASCE-PM 
equation is: 

ET𝑜 =
0.408∆(Rn − G) + γ

Cn
T + 273

U2(es − ea)

[∆ + γ(1 + CdU2]
 (4.2-1) 

where ET𝑜 is the standardized grass-reference evapotranspiration( ET) (mm 5-
min−1), ∆ is the slope of saturation vapour pressure versus air temperature curve (kPa 
°C−1), Rn is the calculated net radiation at the crop surface (Mega Joule (MJ)  m−2 5-
min−1), G is the heat flux density at the soil surface (MJ m−2 5-min−1), T is the air 
temperature at 1.5 to 2.5 m height (°C), U2 is the wind speed at 2-m height, es is the 
saturation vapour pressure (kPa), ea is the actual vapour pressure (kPa), γ is the 
psychrometric constant (kPa °C−1). Cn is the numerator constant that changes with 
reference surface and calculation timestep (900 °C mm s3 Mg−1 day−1 for 24 h 
timesteps, and 37 °C mm s3 Mg−1 h−1 for hourly timesteps for the grass-reference 
surface, so 3.083 °C mm s3 Mg−1 h−1 for 5-min timestep). Cd is the denominator 
constant that changes with reference surface and calculation timestep (0.34 s m−1 for 
24 h timesteps, 0.24 s m−1 for hourly timesteps during daytime, and 0.96 s m−1 for 
hourly night time for hourly or shorter time steps for the grass-reference surface) 
(Allen et al. 2006). The values for Cn and Cd are associated with bulk surface 
resistance (rs) and aerodynamic roughness of the surface (ra) (Irmak et al. 2005, Tolk 
et al. 2015). The values rs−daytime = 50 s m−1 and rs−nighttime = 200 s m−1 were 
adapted in this study. The 5-min step G was a function of Rn (G5min−day time = 0.1 
Rn and G5min−night time = 0.5 Rn). 

4.2.2 Partitioning Crop Evapotranspiration 

When the soil has full canopy cover, crop evapotranspiration (ET𝑐) is often assumed 
to be similar to transpiration (Kool et al. 2014). The soil not shadowed by crops is 
exposed to radiation, which is considered to be soil evaporation (Paredes et al. 2014). 
Therefore, crop transpiration is closely related to canopy cover. Partitioning of crop 
evapotranspiration (ET𝑐, mm min−1) into soil evaporation (E, mm min−1) and crop 
transpiration (T, mm min−1) was based on the method proposed and described by 
Gallardo et al. (1996). Crop transpiration (T) was estimated according to reference 
evapotranspiration (ET𝑜) and ground canopy cover (G) using the following equation. 

T = ET𝑜K𝑐 𝑚𝑎𝑥 (0.63 + 1.373G − 0.0039G
2)/100 (4.2-2) 

where T is the crop transpiration (mm min−1), ET𝑜 is the reference 
evapotranspiration (mm min−1). K𝑐 𝑚𝑎𝑥 is the maximum crop coefficient (K𝑐) value. 
When ground cover is less than 10%, a K𝑐 of lettuce is about 1.05 if it is well irrigated 
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(Doorenbos and Pruitt 1977). When a canopy cover reaching about 75%, lettuce has 
a K𝑐 > 1.05 and K𝑐 𝑚𝑎𝑥 = 1.10 was adapted for lettuce during the mid-season. G is the 
ground cover percentage, 𝐺 = 𝐺𝑥/[1 + 𝑒(𝑎+𝑏𝑁)]. 𝐺𝑥 is maximum ground canopy 
cover (%). The coefficients a = 6.58 and b = −10.02 were adapted in this study. N is 
normalized accumulative reference evapotranspiration. 

Soil evaporation (E) was partitioned with below equation. 

E = ET𝑜K𝑐 𝑚𝑎𝑥 − T (4.2-3) 

At site T4 and T5, sensors were placed in the soil profile where plants did not grow. 
Therefore, there was no partitioning ET𝑐 at these sites. The crop input data for 
partitioning are shown in Table 4. The maximum crop canopy covers were measured 
using a smartphone camera at 1 m height at harvest time and converted into canopy 
cover percentage using the Canopeo smartphone app. 

Table 4.2-1. Crop data for partitioning crop evapotranspiration. 

Sites Growing Stage K𝑐 G𝑥 (%) 

T1 Mid-season 1.1 35 

T2 Mid-season 1.1 57 

T3 Development stage 0.78 to 1.1 44 

4.2.3 Model Set-Up 

We used the HYDRUS-1D software (version 4.16) (Šimůnek et al. 2005) for 
parameter estimation by inverse method. HYDRUS-1D simulates nonequilibrium 
procedures based on the governing modified Richards’ equation (Equation (2.2-1)) to 
simulate water flow (May and Genuchten 2008; Richards 1931). 

The van Genuchten (vG) model (van Genuchten 1980) was selected to describe the 
soil water retention functions (Equation (2.1-5)). The soil hydraulic conductivity, K(θ) 
was based on the Mualem (1976) model (Equation (2.1-6)). l of the equation Mualem 
was set to be 0.5 recommended by Mualem (1976).  

The period of simulation was 21, 28, 36, 29 and 12 days at sites T1, T2, T3, T4 and 
T5 respectively during February and March 2016 according to the available data from 
the soil sensors, 10HS and MPS-2. 

Air-Entry Value 

The air-entry value (AEV) is a critical and commonly used variable obtained from 
the SWRC for estimating other unsaturated soil properties, i.e., permeability (Soltani 
et al. 2017; Zhai and Rahardjo 2013). AEV is defined as the suction at which drainage 
of the soil pores begins (Radcliffe and Simunek 2010; Barbour 1998). AEV occurs 
usually between –h = 1 to 10 kPa (Radcliffe and Simunek 2010). The AEV reflects 
the maximum soil pore size and the soil texture (Assouline and Tessier 1998). A 
decrease in soil grain size leads to an increase in AEV and flattening of the SWRC 
slope (Barbour 1998). A coarse-grained soil has a lower air-entry value, and lower 
residual suction than a fine-grained soil (Gallage and Uchimura 2010). Besides soil 
texture, other effects listed by Wang et al. (2000) are soil structure, initial water 
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content, contact angle, organic matter, clay content, and bulk density. Gallage and 
Uchimura (2010) found that soils with low density have lower AEV and residual 
suction than soils with a high density. Numerically, AEV is related to the α and n 
parameters of the vG model (Assouline and Tessier 1998). Lower values of α indicate 
that the air-entry region is broad (Radcliffe and Simunek 2010). Soltani et al. (2017) 
has proposed simplified methods to determine AEV as below. 

hAEV =
10

m+1
2.3nm

[1−(
m+1
m

)
m
]

αm
1
n

 (4.2-4) 

4.2.4 Time-Variable Boundary and Initial Conditions 

HYDRUS-1D input data components in this study include input data for the variable 
boundary condition (i.e., evapotranspiration, transpiration, and irrigation), soil 
hydraulic properties and inverse input data (soil moisture in time and retention curve 
data). The variable boundary condition of this study is illustrated in Figure 4.2-1. 

The upper boundary condition was set to an atmospheric condition influenced by 
irrigation supply, and crop evapotranspiration with a surface layer as indicated in the 
following equation: 

−K(
∂h

∂z
+ 1) = qo(t)     z ≥ 0;  t = 0 (4.2-5) 

where qo(t) is the difference between irrigation, transpiration, and evaporation rate. 

The free/zero-gradient drainage boundary condition is suitable for water flow 
simulation of unsaturated soil in which the soil domain of interest is not affected by 
groundwater (Seki et al. 2015; Yates 2000). The process allows water to leave a flow 
domain by gravity, assuming a unit vertical hydraulic gradient without external forced 
drainage conditions (Yates 2000). Based on these conditions and the assumptions of 
no influence of the groundwater to the studied soil profile, the free drainage was 
considered at the bottom of the soil domain. The free drainage condition is represented 
as follows:  

−K(
∂h

∂z
+ 1) = 0        z = L𝑠𝑝;  t > 0 (4.2-6) 

Where L𝑠𝑝  is the soil profile assumed at 40 cm depth. 

HYDRUS-1D can give water flow at any specific soil depth (Mazzacavallo and 
Kulmatiski 2015). The observation nodes were set at 10 and 20 cm following the 
location of the 10HS and MPS-2 sensors. The soil moisture at the beginning of the 
simulation in the soil profile domain was set to the initial observation from these 10HS 
sensors. 
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Figure 4.2-1 Scheme of boundary condition of HYDRUS in present study. 

The initial soil hydraulic parameters (e.g., θr, θs, α, n and l) were determined by the 
Rosetta method of Schaap et al. (2001) based on soil texture, and initial Ks parameters 
were obtained from tension infiltrometer measurement. 

Table 4.2-2 Initial input van Genucten (vG) parameters for inverse modelling. 

Sites 
Soil 

Depth 

vG Parameters 

θr  
(cm3 cm−3) 

θs  
(cm3 cm−3) 

α  

(cm−1) 

n  

(-) 

Ks  
(mm min−1) 

l  

(-) 

T1 10 cm 0.057 0.41 0.0124 2.28 1.41 0.5 

(Loamy sand) 20 cm 0.057 0.41 0.0124 2.28 1.41 0.5 

T2 10 cm 0.045 0.43 0.0145 2.68 0.46 0.5 

(Sand) 20 cm 0.045 0.43 0.0145 2.68 0.46 0.5 

T3 10 cm 0.045 0.43 0.0145 2.68 1.45 0.5 

(Sand) 20 cm 0.045 0.43 0.0145 2.68 4.95 0.5 

T4 10 cm 0.078 0.43 0.0036 1.56 0.26 0.5 

(Loam) 20 cm 0.078 0.43 0.0036 1.56 0.26 0.5 

T5  

(loamy sand) 
10 cm 0.057 0.41 0.0124 2.28 0.31 0.5 

4.2.5 Inverse Solution 

In HYDRUS-1D, the Marquart-Levenberge method is used to optimize the soil 
hydraulic parameters (Wang et al. 2016, Gutmann and Small 2007; Levenberg 1944; 
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Vrugt et al. 2001). The optimization process to generate vG parameters by the model 
in this study is to minimize the difference between simulated and observed values of 
water content, θ(t), and soil water retention data, h(θ) through an objective function, 
Φ(θ(t), h(θ)) as described below (Šimůnek et al. 1998). 

Φ(b, p) =∑∑[pij
∗ − pij(b)]

2

nj

i=1

m

j=1

 (4.2-7) 

where m is the two types of dataset, i.e., soil water content θ(t), and retention curve 
h(θ), nj is the number of measurements of the jth dataset, pij

∗  and pij(b) are the 
observations and predictions for the jth measurement set, b (e.g., θr, θs, α, n, and 
Ks) is the vector of optimsed parameters. The first set of measurements is water 
content in time, θ(t) using 10HS measurement, and the second is the retention curve 
h(θ) from simultaneous measurement of 10HS soil water content and MPS-2 soil 
water potential. The hydraulic parameters for two soil depths at 10 and 20 cm were 
optimized simultaneously in the inversion process. 

To evaluate the model performance, we used three fitted statistical indicators, e.g., 
the root mean square error (RMSE), the Nash and Sutcliffe model efficiency (NSE), 
and the coefficient of determination (R2) with the following expressions. 

RMSE = √
∑ (pij

∗ − pij(b))
2nj

i=1

nj
 

(4.2-8) 

NSE = 1 −
∑ (pij

∗ − pij(b))
2nj

i=1

∑ (pij
∗ − pij

∗̅̅ ̅)
2nj

i=1

 (4.2-9) 

R2 =

(

 
∑ (pij

∗ − pij
∗̅̅ ̅)(pij

∗ − pij(b)̅̅ ̅̅ ̅̅ ̅̅ )
nj
i=1

√∑ (pij
∗ − pij

∗̅̅ ̅)
2nj

i=1
∑ (pij

∗ − pij(b)̅̅ ̅̅ ̅̅ ̅̅ )
2nj

i=1 )

 

2

 (4.2-10) 

where pij
∗  and pij(b) are the observation and simulation as described above, nj is 

total amount of the data. R2 ranges between 0 and 1. Value 1 indicates that the 
simulation dispersion is equal to the observation, whereas R2 equals to 0, there is no 
any correlation between them (Krause and Boyle 2005). The lower RMSE value is, 
the better model performs (Moriasi et al. 2007). NSE values are between −∞ and 1.0 
(1 perfect fit) (Moriasi et al. 2007). If 0 < NSE < 1.0, it is considered to be an 
acceptable performance, otherwise a negative NSE indicates unacceptable 
performance (Moriasi et al. 2007; Autovino et al. 2018; Jiang et al. 2016). 
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4.3 Results 

4.3.1 Evapotranspiration Computation 

4.3.1.1 5-Min Timestep 𝐄𝐓𝒐 

Figure 4.3-1 illustrates the result of reference evapotranspiration (ET𝑜) computed 
based on the Penman-Monteith equation (Equation (4.2-1)) by using meteorological 
data collected at 5 min resolution over the growing season from February to March 
2016. 5-min ET𝑜 between February and March ranged from 0.000143 to 0.075 mm 5-
min−1, with a mean value of 0.017 mm 5-min−1. The accumulative 5-min ET𝑜 in daily 
estimates ranged from 4 to 6 mm day−1, which are reasonable values for this study 
area climate. Nobuhiro et al. (2010) found that the average daily evapotranspiration 
levels during the late rainy season and the middle of the dry season in central 
Cambodia were 4.3 and 4.6 mm day−1, respectively, and the maximum daily ET𝑜 
levels were 5.2 and 5.7 mm day−1 respectively. 

 

Figure 4.3-1 5-min timestep reference evapotranspiration during growing season in 2016, 
estimated based on standardized ASCE Penman-Monteith approach. 

4.3.1.2 Partition of Crop Evapotranspiration 

Results of estimation of transpiration and evaporation from partitioning crop 
evapotranspiration (ET𝑐) based on the method proposed by Gallardo et al. (1996) at 
sites T1, T2 and T3 are presented in Figure 4.3-2. The transpiration estimation at site 
T1 and T2 was done during mid-season with full canopy cover of 35% and 57% 
respectively and during development stage at T3 reaching the full canopy cover of 
44%. The results show that soil evaporation was the main part of ET𝑐 during the 
growing season. The soil evaporation ranged from 47% to 67% at the maximum 
canopy cover stage in the three sites. 
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Figure 4.3-2 Partitioning crop evapotranspiration. ET is crop evapotranspiration, E is 
evaporation, T is crop transpiration, (a) at site T1; (b) at site T2; (c) at site T3. 

4.3.2 Inversion Estimation 

4.3.2.1 Estimated Parameters and Model Evaluation 

The inverse estimation technique using HYDRUS-1D has been successfully used to 
determine the soil hydraulic function of van Genuchten (vG) parameters in the two 
soil depths of 10 cm and 20 cm in the five experimental sites. Table 4.3-1 shows the 
results of optimised vG parameter sets in all experimental sites. The estimated θs 
ranged from 0.35 to 0.43 cm3 cm−3 for loamy soils (T1 and T5), 0.30 to 0.35 cm3 cm−3 
for sand soils (T2 and T3) and 0.32 to 0.37 cm3 cm−3 for loam soil (T4). It was noted 
that these estimations are similar to the measured values. At site T4, the estimated θs 
(ranging from 0.32–0.37 cm3 cm−3) is much lower than the measured value (0.43 cm3 
cm−3). Commonly, the laboratory-measured θs can be smaller than in situ values 
because of incomplete saturation and air entrapment of the soil (Verbist et al. 2009, 
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Schwartz and Evett 2003), while it is possibly over/underestimated in the laboratory-
measured θs (Abbasi et al. 2003). 

For the computation of saturated hydraulic conductivity parameters, it was noted 
that inputting low initial measured saturated conductivity in sand soil during the 
optimization process with Ks = 0.43 mm min−1 at site T2 and Ks = 1.45 mm min−1 at 
site T3 resulted in a divergence of the model. In that case, initial Ks were estimated 
using Rosetta method of Schaap et al. (2001) based on soil texture. Therefore, Ks = 
4.95 mm min−1 from Rosetta method at sites T2 and T3 was selected as the initial 
value and resulted in convergence. It highlights the need for reasonable input values 
before an inversion process. 

The fitted Ks in Table 4.3-1 were quite higher than the measured values from the 
tension infiltrometer (TI) in sites T1, T2, T3. The difference between in situ measured 
and simulated values of Ks is most probably due to the different time and space at the 
measurement from the scale at which the processes are modelled (Verbist et al. 2009). 
It is commonly known that agricultural soils frequently exhibit extensive spatial and 
temporal changes in pore characteristics that cause variation change in soil hydraulic 
conductivity, K(h). On the other hand, it was noted that Ks were measured by TI at 
the soil surface. Thus, it caused the limitation both on K(h) extrapolation towards 
saturation and on its application to extended depth (10 and 20 cm) (Yoon et al. 2007). 
Another potential reason can be due to the limitations of TI method in measurement 
in the coarse soil texture. The result study of March (2000) suggested that TI method 
underestimated Ks under high permeability conditions. Similarly, Yoon et al. (2007) 
observed that there was greater fluctuation in measuring hydraulic conductivity near 
the saturated condition especially for sandy soil affected by the presence of irregular 
distribution of macropore possibly with entrapped air. The other limitations were 
described by Roulier et al. (2000) mainly associated with the simplifying assumptions 
of the analysis methods and instrumental restriction (Yoon et al. 2007). Indeed, Ks 
obtained from TI was estimated indirectly and assuming only matrix flow, that might 
lead to inaccurate Ks (Rezaei et al. 2016). 

Therefore, the inverse model estimation suggested a reasonable value of Ks using 
the observed soil water dynamic. There were low estimated Ks of coarse soils at this 
soil depth at site T3 at 20 cm and T5 at 10 cm. The soil compaction at 20 cm soil depth 
could be the reason of the low estimated permeability at site T3. It was noted that at 
site T5 the second soil layer below 15 cm depth was highly compacted and that could 
lead to the low Ks estimation for this loamy sand at 10 cm depth. In contrast, the 
measured Ks in T4 and T5 are similar to the optimized values. This suggests that a 
tension infiltrometer might be useful in determining Ks for inverse estimation for fine 
soil type. 

These results also suggest that for further work, a sensitivity analysis of the vG 
parameters could be interesting, to investigate the constraints of its impact on the 
simulation.  
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Table 4.3-1 Soil hydraulic vG parameter sets derived from inversion estimation. 

Sites Depth θr  θs  α  n  Ks l 𝐡𝐀𝐄𝐕  

T1 10 cm 0.041 0.35 0.0009 2.46 4.95 0.5 5.75 

(Loamy 

sand) 
20 cm 0.044 0.43 0.002 1.85 4.95 0.5 2.28 

T2 10 cm 0.038 0.30 0.0033 1.52 2.43 0.5 1.32 

(Sand) 20 cm 0.003 0.35 0.0053 1.26 2.43 0.5 0.86 

T3 10 cm 0.015 0.33 0.0005 2.33 4.95 0.5 100.9 

(Sand) 20 cm 0.026 0.35 0.0004 2.34 0.26 0.5 12.64 

T4 10 cm 0.08 0.32 0.0013 1.61 0.38 0.5 3.37 

(Loam) 20 cm 0.08 0.37 0.0009 1.93 0.15 0.5 5.16 

T5  

(loamy 

sand) 

10 cm 
7.9871 × 

10 −6 
0.35 0.0005 2.09 0.29 0.5 9.60 

Note θr and θs in cm3 cm−3, α in mm−1, Ks in mm min−1, hAEV in kPa.  

 

Tables 4.3-2 and 4.3-3 show the evaluation model performances of the inverse 
estimation to generate SWRCs and water flow, respectively. After inversion, the 
results showed the improvement of model performance in SWRC simulation with 
lower RMSE (ranging from 0.01 to 0.04 cm3 cm−3) and higher coefficients of NSE 
(ranged from 0.53 to 0.99) and determination (R2) (ranging from 0.78 to 0.99) (Table 
4.3-2). Similarly, water flow simulation resulted in satisfied performance with RMSE 
ranged from 0.02 to 0.03 cm3 cm−3, NSE from 0.64 to 0.83 and R2 from 0.85 to 0.99 
(Table 4.3-3). Overall, these results confirm that the inverse modelling with 
HYDRUS-1D can predict soil water retention curve and dynamic water content in the 
soil profile with a reasonable degree of accuracy. 
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Table 4.3-2 Evaluation of model performance in simulation of soil water retention 

curve (SWRC) before and after inversion. 

Sites Depth 

Simulation with Initial Input 

Parameters 
After Inversion 

RMSE  

(cm3 cm−3) 
NSE R2 

RMSE  

(cm3 cm−3) 
NSE R2 

T1 20 cm 0.044 −3.78 0.20 0.010 0.73 0.99 

T2 
10 cm 0.08 −5.06 0.16 0.016 0.75 0.91 

20 cm 0.04 0.36 0.92 0.002 0.99 0.99 

T3 
10 cm 0.05 −0.14 0.85 0.048 0.00 0.78 

20 cm 0.06 0.31 0.90 0.024 0.83 0.97 

T4 
10 cm 0.019 0.32 0.76 0.015 0.53 0.94 

20 cm 0.028 0.75 0.98 0.026 0.78 0.98 

T5 10 cm 0.038 −0.13 0.86 0.012 0.89 0.99 

Table 4.3-3 Evaluation of model performance in simulation of water flow before 

and after inversion. 

Sites Depth 

Simulation with Initial Input Parameters  After Inversion 

RMSE  

(cm3 cm−3) 
NSE R2 

RMSE  

(cm3 cm−3) 
NSE R2 

T1 
10 cm 0.05 0.41 0.99 0.02 0.84 0.99 

20 cm 0.03 0.45 0.99 0.02 0.72 0.99 

T2 
10 cm 0.11 −5.66 0.14 0.02 0.64 0.85 

20 cm 0.13 −12.40 0.07 0.02 0.75 0.99 

T3 
10 cm 0.05 0.42 0.99 0.03 0.83 0.99 

20 cm 0.06 0.31 0.90 0.02 0.83 0.97 

T4 
10 cm 0.08 −1.64 0.31 0.03 0.65 0.98 

20 cm 0.07 −0.20 0.53 0.03 0.82 0.99 

T5 10 cm 0.05 −1.09 0.41 0.02 0.67 0.96 

 

 

 

 

 

 



4- Estimating soil hydraulic properties   

 

71 

4.3.2.2 Soil Water Retention Curves 

Figure 4.3-3 and 4.3-4 show the soil water retention curves before and after 
inversion. Simulated SWRCs are close to the observation in all sites and depths. The 
excellent fits were at site T1 at 20 cm depth (loamy sand soil) (RMSE = 0.01 cm3 

cm−3) and at site T2 at 20 cm depth (RMSE = 0.002 cm3 cm−3). Otherwise, the other 
SWRCs in the other sites and depths fitted fairly well with RMSE, ranging from 0.016 
to 0.048 cm3 cm−3. 

The data of field SWRC at near-saturated and driest points in all experimental sites 
were not presented because of data inaccuracy and limitation from the sensors (10HS 
and MPS-2) at these wet and dry ranges. MPS-2 is unable to provide accurate 
pressures at the wet end of the SWRC because of the air-entry limit (Degré et al. 
2017). The acceptable measured ranges of the sensors were selected for inverse input 
data. Despite its limitations, MPS-2 can be useful in a drier range and to pilot irrigation 
(Degré et al. 2017). Similarly, the errors from the 10HS sensor can be due to its 
accuracy limitations in measuring the water content in moist conditions (Mittelbach 
et al. 2012). On the other hand, the effect of temperature on the 10HS sensor response 
could have caused significant data errors in the fine soil and for high water content, 
especially at upper soil layers where there is higher temperature fluctuation (Kargas 
and Soulis 2011). 
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Figure 4.3-3 SWRC in before and after inversion solution. (a) SWRC at 20 cm depth at site 
T1; (b) SWRC at 10 cm depth at site T2; (c) SWRC at 20 cm depth at site T2; (d) SWRC at 

10 cm depth at site T3, (e) SWRC at 20 cm depth at site T3. The measured soil water 
potential (h) ranged from −20 to −95 kPa at site T1, from −13 to −99 kPa and −15 to −48 kPa 
at soil depth of 10 and 20 cm respectively at site T2, from −14 to −476 kPa and −48 to −608 

kPa at 10 and 20 cm respectively at site T3. 
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Figure 4.3-4 SWRC in before and after inversion solution. (f) SWRC at 10 cm depth at site 
T4; (g) SWRC at 20 cm depth at site T4; (h) SWRC at 10 cm depth at site T5. The measured 
soil water potential (h) ranged from from −11 to −69 and −10 to −111 kPa at 10 and 20 cm 

respectively at T4, from −48 to −212 kPa at 10 cm at site T5. 

The estimated AEV of the tested soils are shown in Table 4.3-1. AEV ranged from 
0.86 to 12.64 kPa. AEV of loamy sand were from 2.28 to 9.60 kPa, sand were from 
0.86 to 12.64 kPa, and loam were 3.37 to 5.16 kPa. Reference (Hao et al. 2015) 
showed that the soil with higher sand content has smaller AEV using laboratory 
pressure plate extractor test. They also found the effect of initial water content on the 
AEV. The sand soil with higher initial water content has larger AEV (i.e., the soil with 
sand content of 20% to 60% resulted in AEV of 6.04 to 1.94 kPa respectively). 
Similarly, Konyai et al.(2009), using pressure plates for defining SWRCs, found the 
AEV of loamy sand ranged from 1.30 to 2.00 kPa and loam soil of 0.90 kPa. However, 
those results were from the laboratory. It is seen that the generated SWRC at site T3 
with high sand content proposed a higher AEV of 10.09 and 12.64 kPa. The physical 
environmental effects to the SWRC of sand soil are complex in their observations at 
near real AEV. The limitation of sensors to catch the accuracy of the low range of 
suction can be the main reason for the high estimated AEV of the sand soil at T3. In 
Figures 4.3-4 and 4.3-5, the generated initial SWRC from the Rosetta method are often 
obtained from laboratory SWRC. The inverse estimated SWRC reflected the effect of 
the dynamic physical environmental. Therefore, it is interesting to investigate the field 
SWRC with the influence of the in situ environment. 

 

  



Assessing irrigation water saving for crop production in Cambodia 
 

74 

4.3.2.3 Dynamic Soil Water Content 

Observed and simulated soil water content distributions in the soil profile at 10 and 
20 cm at the 5 experimental sites are shown in Figures 4.3-5 and 4.3-6, respectively. 
The fluctuation of soil water content was coming from only irrigation applied at sites 
T1, T2, T3 and T4. The water flow simulation in all sites gave good and excellent 
correlations between observed and simulated water contents in the soil profile (i.e., R2 
values ranged from 0.85 to 0.99). It is noted that the water flow simulation was similar 
to the soil moisture observation in the wet range but widely over/underestimated in 
the end dry events after the inversion (i.e., RMSE ranged from 0.02 to 0.03 cm3 cm−3 
and NSE ranged from 0.67 to 0.84). The important factor influencing the simulation 
model performance is the assumption of homogeneous soil properties through the 
entire simulation. This assumption is not flexible to real phenomena e.g., the dynamic 
change of soil hydraulic properties during the growing season, the macropore flow, 
and lateral flux of soil moisture. Schwen et al. (2011) revealed that the accuracy of 
the soil water flow simulation, especially of that near the surface, can be improved by 
using time-variable hydraulic parameters. Despite several simplifying assumptions of 
HYDRUS-1D model, the results of the inversion yet provided reasonable estimates of 
water dynamics and a better improvement from the initial simulation. 
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Figure 4.3-5 Observed and simulated dynamic soil moisture in 30-min timestep using 
inversion approach during the growing season in 2016 at different sites at 10 cm depth. (a) at 

site T1; (b) at site T2; (c) at site T3; (d) at site T4; (e) at site T5. 
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Figure 4.3-6 Observed and simulated dynamic soil moisture in 30-min timestep using 
inversion approach during the growing season in 2016 at different sites at 20 cm depth. (a) at 

site T1; (b) at site T2; (c) at site T3; (d) at site T4. 
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4.4 Conclusions 

In this study, inversion approach using HYDRUS-1D based on only in situ 
measurement of soil hydraulic properties were used to estimate the van Genuchten 
(vG) parameters of the soil properties in experimental fields with different soil types 
including loamy sand, sand, and loam soil, in Chrey Bak Catchment, Cambodia. The 
in situ soil hydraulic measured data that were used as inverse input data included 
saturated hydraulic conductivity using tension infiltrometer, observed dynamic soil 
water content and SWRC from simultaneous measures of Decagon 10HS soil 
moisture and MPS-2 soil water potential sensors. To apply this approach, first we 
computed 5-min timestep reference evapotranspiration based on the ASCE Penman-
Monteith equation and obtained reasonable results. Then we partitioned the crop 
evapotranspiration based on the Gallardo et al. (1996) method in the field after lettuce 
was planted. 

Analyzing the SWRC shows that the simulated SWRC using optimum vG 
parameters of the inversion closely and fairly matched the field SWRC data, with 
RMSE ranging from 0.002 to 0.048 cm3 cm−3. The fair match was due to the limitation 
in measurement of the sensors in the wet and the driest range of moisture condition in 
the field. In testing water flow simulation, generally the model resulted in a good 
simulation performance for predicting the soil water content in the experimental 
period in all the studied soil textures, with the RMSE ranging from 0.02 to 0.03 cm3 
cm−3. The results proposed that soil hydraulic properties can be estimated effectively 
and rapidly with inverse modelling using only the information from the field soil 
hydraulic measurement without the required expensive laboratory data. We found that 
a tension infiltrometer might be useful in determining saturated hydraulic conductivity 
(Ks) for inverse estimation for fine (loam) soil texture, as the generated Ks was slightly 
changed from the initial measured values after inversion. We confirmed that the 
inverse process in the model is sensitive to initial hydraulic soil parameter input, and 
can lead to model divergence. For further work, validation on another data set should 
be investigated. 

It is recommended that more additional experimental data, particularly accurate 
field dynamic SWRC in the wet and dry encompassing new technics and methods, 
should be included to improve the inversion approach in further research. 
Additionally, the dynamic change of soil properties should be considered in the 
inversion model to improve the accuracy of water flow prediction.



 



 

 

 

 

 

 

 

 

 

 

 

5 
Simulation of Crop Growth and Water-

Saving Irrigation Scenarios for Lettuce: A 

Monsoon-Climate Case Study in Kampong 

Chhnang, Cambodia 
 

This chapter describes the development of methodology for irrigation water saving 
using crop growth model. This work has been published in Water Journal.   
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5.1 Introduction 

Humanity’s environmental footprint is unsustainable within the Earth’s limited 
natural resources and assimilative capacity (Hoekstra and Wiedmann 2014). Climate 
change and growth in the global population are increasing pressure on these scarce 
environmental resources, notably water (Bae and Dall’erba 2018; Rodríguez-Ferrero 
et al. 2010; Chartres 2014). Particularly, increasing relative evapotranspiration from 
flow regulation and irrigation over the past century raises the global human water 
consumption and footprint (Jaramillo and Destouni 2015). Improving food production 
with less water and benchmarking efficiency of resource use is therefore a great 
challenge of our time, and urgently needed to ensure food security (Hoekstra and 
Wiedmann 2014; Toumi et al. 2016; Linker and Ioslovich 2017). 

Cambodia is considered to be the country most vulnerable to climate change in 
Southeast Asia (Touch et al. 2016). In recent decades, extreme events, such as floods 
and droughts, have negatively affected the livelihoods of farmers, especially in terms 
of the loss of crop production (Kong et al. 2012). Cambodian farmers are generally 
conscious of these changes and challenges (Kong et al. 2012). Guidelines for 
agricultural adaptation to improve crop productivity and the sustainability of the 
farming system and to minimise vulnerability to climate change, are therefore crucial 
(Touch et al. 2016; Montgomery et al. 2017). Currently, the production of vegetables, 
like lettuce, poses more challenges in term of managing irrigation water efficiently, 
due to the crop’s sensitivity to water shortage (Moreira et al. 2014;, Valenzuela et al. 
1996;, Cahn and Johnson 2017). Lettuce, the most widely consumed leaf vegetable, is 
also one of the most widely cultivated vegetables in the world (Domingues et al. 
2012). It is also an important to local vegetable production in Cambodia (Chhean et 
al. 2004; De Bon et al. 2010). Improving strategies for vegetable farming productivity, 
including lettuce, for Cambodian farmers, is being increasingly considered (Morris et 
al. 2013). 

Many irrigation strategies have been investigated for improving irrigation water 
productivity (IWP) during recent decades, with IWP defined as the ratio of 
agricultural output to the amount of irrigation water use (Xue et al. 2018). Full 
irrigation via water application with the crop evapotranspiration requirements (ETc) 
method is an effective irrigation practice for crop production (Adu et al. 2018; Liu 
and Luo 2010; Verstraeten et al. 2008; Hunsaker et al. 2015). In traditional irrigation 
scheduling, a technique to meet full irrigation, as well, the soil moisture in the root 
zone is allowed to fluctuate between an upper limit approximating “field capacity” 
and the lower limit of the readily accessible water (RAW), referred to as “the 
threshold”, somewhat above where a crop begins to experience water stress 
(Thompson et al. 2007; Ferreira et al. 2017). These methods have been applied to 
improve crop water productivity in various regions of the world, including Asian 
regions (Li et al. 2008; Kashyap and Panda 2001; Inthavong et al. 2011; Davis and 
Dukes 2010; Kukal et al. 2005; Pereira et al. 2009). Nevertheless, deficit irrigation, as 
an adaptation strategy for regions with limited water resources or prone to drought, 
has been proven to be worth considering (Pereira et al. 2012; Afzal et al. 2016).  

Deficit irrigation is an irrigation practice whereby a crop is irrigated with an amount 
of water below the full requirement for optimal plant growth, thereby saving water 
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and minimising the economic impact on the harvest (Adu et al. 2018). By limiting 
water applications to drought-sensitive growth stages such as, the vegetative stages 
and the late ripening period, the aims of this approach is to maximise water 
productivity and to stabilise, rather than maximise yields (Geerts and Raes 2009). 
Water deficit can be defined at five levels: severe deficit (with soil moisture (SM) less 
than 50% of field capacity (FC)), moderate deficit (SM < 50–60% of FC), mild deficit 
(SM < 60–70% of FC), no deficit or full irrigation (SM > 70% of FC), and 
overirrigation (application above water requirements) (Chai et al. 2016). Crops under 
deficit irrigation will experience some level of water stress, and often have lower 
yields than fully irrigated plants (Lopez et al. 2017). Deficit irrigation can allow 
irrigation water savings of up to 20–40% at yield reductions below 10% (Kögler and 
Söffker 2017), and has been widely investigated in dry regions (Kögler and Söffker 
2017). Deficit irrigation can be based on applying irrigation water under crop 
evapotranspiration. Patanè et al. (2011) found that deficit irrigation at 50% of ETc for 
tomato plants resulted in no biomass (B) loss and high irrigation water-use efficiency. 
Experimental results obtained by Abd El-Wahed et al. (2017) suggested that deficit 
irrigation at 85% of ETc is favourable to save 15% of water provided, with no 
reduction in the bean crop. The study results of Samperio et al. (2015) offered deficit 
irrigation at 20% and 60% of ETc during stage II and postharvest, respectively, to 
“Angeleno” Japanese plum as a water-saving strategy, without negatively affecting 
crop yield. Results from Yang et al. (2015)confirmed that the yield loss for cotton was 
less than 10% under deficit irrigation of 70% of ETc and 85% of ETc. Meanwhile, 
crop sensitivity to water deficit can be affected by many factors, including climatic 
conditions, crop species and cultivars, and agronomic management practices, amongst 
others (Chai et al. 2016). Payero et al. (2006) suggested that deficit irrigation is not a 
good strategy for improving the crop water productivity of maize in a semi-arid 
climate. A study on deficit irrigation treatment on lettuce showed that water stress 
caused by deficit irrigation at 20% and 40% of ETc significantly reduced leaf number, 
leaf area index, and dry matter accumulation (Karam et al. 2002). Final fresh weight 
was reduced by 20% to 30% when compared with full irrigation. Kuslu et al. (2008) 
concluded that for lettuce grown in semi-arid regions, full irrigation should be used 
under no water shortage, and deficit irrigation by 60% of ETc could be used for 40% 
water saving with a 35.8% yield loss where irrigation water supplies are limited. 

Elaborating irrigation strategies merely on the basis of field research is difficult and 
time consuming (Geerts et al. 2010; Geerts et al. 2010). Crop models are effective 
decision-support tools to investigate irrigation scenarios and to develop improved 
irrigation strategies (Linker and Ioslovich 2017; Hassanli et al. 2016; Abderrahman et 
al. 2001). They can provide a rapid and reasonable accurate prediction of the response 
of agriculture over a range of environmental conditions (Wolf et al. 1996). The model 
AquaCrop, developed by the Food and Agricultural Organisation of the United 
Nations (FAO), is a water-driven crop model that simulates daily crop growth (e.g., 
canopy cover and biomass production) and final crop yield, with a balance between 
accuracy, simplicity, and robustness in incorporating various agronomy practices 
(Ran et al. 2017; Steduto et al. 2009). It is considered as a valuable tool for improving 
irrigation water productivity in crop production planning (Toumi et al. 2016; Singh et 
al. 2013). AquaCrop has been calibrated and parameterised to various crops under 
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various environmental and irrigation conditions, including barley (Tavakoli et al. 
2015), soybean (Paredes et al. 2015), sunflower (Todorovic et al. 2009), cotton 
(Farahani et al. 2009, Hussein et al. 2011), corn (Hsiao et al. 2009), sugar beet (Malik 
et al. 2017), wheat (Andarzian et al. 2011, Mkhabela and Bullock 2012), potato 
(Rankine et al. 2015; Casa et al. 2013), cabbage (Wellens et al. 2013), and rice (Deb 
et al. 2016). However, this has not yet been done in the case of lettuce. Most of these 
studies proved that the model is capable of accurately simulating crop growth and 
yield. However, some case studies still report some flaws in simulation of crop 
evolution and yield, especially under severe deficit irrigation and heat stress 
conditions. Adeboye et al. (2017) found that biomass of soybean simulated by 
AquaCrop was overestimated under deficit irrigation conditions. Zeleke et al. (2011) 
found that AquaCrop simulated the canopy cover and biomass growth of canola well, 
but the model was less satisfactory under severe water stress conditions in a semi-arid 
region. Similarly, a reduction in model reliability in biomass and canopy cover 
prediction for maize under the severe stress conditions of deficit irrigation in a tropical 
environment was indicated in a study of Greaves and Wang (2016). AquaCrop 
performed well in biomass simulation of potato in the experiment under deficit 
irrigation at 120, 100, 80, and 60% of ETc (Montoya et al. 2016). However, the potato 
yield simulation was overestimated due to the heat stress, with the authors suggesting 
the incorporation of a temperature stress coefficient into AquaCrop when a crop is 
affected by high temperatures. Further research is therefore required to improve the 
performance of AquaCrop. Furthermore, its performance simulating lettuce growth in 
Cambodian conditions has not yet been tested. The main objective of this study is to 
improve the water productivity of lettuce under limited irrigations in the Cambodian 
climate. More specific objectives are (i) to parameterise the crop model AquaCrop 
using data from farmer fields, since lettuce is not yet available in the AquaCrop 
catalogue; and (ii) to assess the impact of water-saving scenarios in full and deficit 
irrigation in silico using this calibrated model.  

5.2 Materials and Methods 

5.2.1 Experimental Sites 

The field experiments were conducted with lettuce plants (Lactuca sativa var. crispa 
L.) which are widely used in the study area, during a period from August to September 
2017 in two experimental sites located in the villages of Chea Rov (site T2) and Ou 
Roung (site T4) in the province of Kampong Chhnang, Cambodia (see Figure 3.1-1).  

5.2.2 Data Collection and Measurement 

5.2.2.1 Climate Data  

Weather data for the experimental sites were collected from the meteorological 
station of first approach (chapter 4). Daily maximum and minimum temperature, 
relative humidity, wind speed, rainfall, and solar radiation were recorded 
automatically at a five minute time step. The daily reference evapotranspiration (ETo) 
for the growing season, used as input data in AquaCrop, was calculated using the ETo 
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calculator based on the FAO’s Penman–Monteith method (Allen et al. 1998) (Figure 
5.2-1).  
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5.2.2.2 Soil Data 

The physical and chemical soil characteristics which were measured are listed in 
Table 5.2-1 and 5.2-2. The detail of soil data measurement methods is described in 
Chapter 3. Field capacity and wilting point, were derived from inverse modelling as 
presented in section 3.4-1. 10HS and MPS-2 sensors were used to measure soil 
moisture and soil potential.  

Table 5.2-1. Measured soil characteristics. 

Parameters 
Experimental Sites 

Chea Rov (T2) Ou Roung (T4) 

Texture Sand Loam 

Clay (%) 4.39 7.80 

Silt (%) 9.56 41.15 

Sand (%) 86.03 51.04 

Bulk density (g cm−3) 1.5 1.5 

Field capacity (m3 m−3) 

(sand: at −10 kPa, Loam: at −33 kPa) 
0.11 0.14 

Wilting point (m3 m−3) (at 150 kPa) 0.05 0.06 

Soil saturation (m3 m−3) 0.27 0.43 

Available water content (AWC) (mm m−1) 62.48 81.43 
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Table 5.2-2 Measured chemical soil characteristics.  

Site 
Sampling 

Time 

pH-

H2O 
EC  OM  N  P  K  CEC  

T2 

Before 

transplanti

ng  

6.28 108 20.31 0.098 13.29 0.77 2.80 

At harvest  6.84 97.4 20.85 0.126 17.08 0.4 4.40 

T4 

Before 

transplanti

ng  

6.7 223 19.51 0.238 24.07 2.31 7.60 

At harvest  6.8 218 19.78 0.126 15.91 1.45 5.40 

Note: EC is electrical conductivity (uS cm−1); OM is organic matter content (%); N is total nitrogen 

(%); P is available phosphorous (ppm); K is exchangeable potassium (meg 100 g−1); CEC is cation 

exchange capacity (cmol kg−1). 

 

5.2.2.3 Crop Data 

Canopy cover was measured at three-day intervals during the growing stage. Four 
pictures of 1 m² were taken randomly using a digital compact camera (Nikon Coolpix 
p600, Tokyo, Japan) at a fixed height of 1 m above ground level. The canopy cover 
was analysed using image processing with ImageJ® software (https://imagej.nih.gov). 
Aboveground dry biomass was determined by harvesting 10 heads at the surface level 
of each site, oven-drying plant samples at 70 °C for 48 h, and weighing them (Gallardo 
et al. 1996).  

5.2.3 Model Parameterisation 

We used the AquaCrop for estimation of crop growth and simulation of water saving 
scenarios. Some equations used for this approach are presented in section 2.3.2 
(Chapter 2). 

The process of parameterisation of AquaCrop model in this study is illustrated in 
Figure 5.2-2. The vegetative stage of lettuce refers to the growing period of lettuce 
growth after germination until harvest. A growing period during the vegetative stage 
of 59 days after transplanting was simulated in this study. 
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Figure 5.2-2 Flow chart of parameterisation of AquaCrop in this study (adjusted from 
Steduto et al. (2009b)). T is temperature, ETo is potential evapotranspiration, gs is stomatal 

conductance, WP is water productivity coefficient, Ks is stress coefficient, Es is soil 
temperature, Tr is crop transpiration. 

As lettuce is a crop which is not yet parameterised in AquaCrop, calibration of the 
model involved adjusting the model parameters to make them match the observed data 
(Farahani et al. 2009; Steduto et al. 2012). 

The primary variables of lettuce growth, e.g., canopy cover and aboveground 
biomass were parameterised. For the calibration of the curves, the measured data in 
two experimental fields at the Chearov site (T2) (having sand soil) and Ourong site 
(T4) (with loam soil) were used, during the growing season in 2017. The AquaCrop 
model does not allow the use of observed data to build the canopy cover and biomass 
curves, but allows the data to be used to calibrate the canopy cover and biomass curves 
(Paredes et al. 2014). 



Assessing irrigation water saving for crop production in Cambodia 
 

88 

Canopy cover curves are a plot of the development of leaf expansion response to 
growing time per day, based on Equation (2.3-1). Biomass curves are a relationship 
plot of the growth of lettuce biomass response to growing time per day, based on 
Equation (2.3-4). The calibration of simulated canopy and biomass curves is based on 
one-at-a-time (OAT) methods (i.e., changing one parameter at a time while holding 
others constant) (Morris 1991) and adjusting the parameters by trial and error, by 
comparing simulated and observed field data, and minimising the function of root 
mean square error. 

We parameterised the canopy cover curve, which is important to the model for 
transpiration and evaporation (Paredes et al. 2014). The main parameters of Equation 
(2.3-1), e.g., CCo and CGC for canopy cover curve determination, were adjusted to 
match the observed canopy cover data. In addition, adjusting the maximum canopy 
cover (CCx), time to reach maximum canopy cover, and time to recover, is crucial in 
order to obtain correct simulations of canopy cover growth. Subsequently, the focus 
was on adjusting the biomass curve of Equation (2.3-4). WP* and KcTr,x (coefficient 
for maximum crop transpiration) are the main parameters for regulating biomass 
curves in AquaCrop (Razzaghi et al. 2017). As lettuce is a C3 crop type (Stott 2002), 
the recommended values for WP* lie between 15 and 20 g m−2. All calibrated crop 
parameters are shown in Table 5.2-3.  

Table 5.2-3 Calibrated parameters of lettuce growth. 

No Calibration Step Calibrated Parameters 

1 Canopy cover calibration 

Time to recover of transplant, Time to reach the 

maximum canopy cover, Initial canopy cover (CCo), 

Canopy growth coefficient (CGC), Maximum canopy 

cover growth coefficient (CCx) 

2 Biomass calibration  
Coefficient for maximum crop transpiration (KcTr,x), 

Normalised biomass water productivity (WP*) 

 

The model performance for canopy cover and biomass simulation was evaluated 
using statistic indicators, including root mean square error (RMSE) (Equation (3.4-
7)), Nash–Sutcliffe coefficient (N) (Equation (3.4-8)), and coefficient of 
determination (R2) (Equation (3.4-9)). 

AquaCrop requires the selection of inputs related to the irrigation method, such as 
sprinkler, drip, or surface. These methods determine the fraction of the soil surface 
made wet by irrigation (Wellens et al. 2017) and the impact on irrigation efficiency 
(Zhuo and Hoekstra 2017).  

Default AquaCrop settings for field management include mulching, and use an 
adjusted factor for the effect of mulches on soil evaporation. It varied between 0.5 for 
mulches derived from plant material, and 1.0 for plastic mulch (Raes et al. 2009a).  
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The drip irrigation method with plastic mulch was applied as the input for field 
management in the model during the parameterisation, as this is the actual practice of 
the experiment in this study.  

The soil water balance calculation, including soil moisture simulation in AquaCrop, 
is based on the storage capacity of the soil layers, described in (Raes et al. (2017), and 
previously in the BUDGET model (Raes et al. 2006). 

During the experimental period, water ponding at 15 cm and 20 cm below the bed 
soil at site T2 and T4 respectively, which was observed during the experiment, was 
taken into account as a boundary condition during the parameterisation of the model. 
This water ponding resulted in wet soil during the growing period. The values of 
physical soil available data in the Section 3.3.2 were adopted to simulate soil moisture 
in this study.  

It was noted that the plantation experiment was during the rainy season when 
irrigation was not needed. The crop parameters obtained after parameterisation are 
important for the investigation of the irrigation scenarios for water saving when 
irrigation is necessary, especially during the dry season.  

5.2.4 Irrigation Scenarios  

In the current study, AquaCrop was used to simulate the full and deficit irrigation 
scenarios described below (and in Table 5.2-4), in order to identify the optimal water 
use efficiency for lettuce.  
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Table 5.2-4 Irrigation Scenarios. 

Scenario Code 
Short Description 

T2 (Sand) T4 (Loam) 

Varied readily available water (RAW) threshold irrigation scenarios 

S0RAW L0RAW irrigate at 0% of RAW and refill to field capacity (FC) 

S50RAW L50RAW irrigate at 50% of RAW and refill to FC 

S80RAW L80RAW irrigate at 80% of RAW and refill to FC 

S100RAW L100RAW irrigate at 100% of RAW and refill to FC 

S120RAW L120RAW irrigate at 120% of RAW and refill to FC 

S130RAW L130RAW irrigate at 130% of RAW and refill to FC 

S150RAW L150RAW irrigate at 150% of RAW and refill to FC 

S180RAW L180RAW irrigate at 180% of RAW and refill to FC 

S200RAW L200RAW irrigate at 200% of RAW and refill to FC 

Varied field capacity threshold irrigation scenarios  

S100FC L100FC 
full irrigation-daily irrigation at 100% of field 

capacity (FC) 

S70FC L70FC deficit irrigation at 70% of FC 

S60FC L60FC deficit irrigation at 60% of FC 

S50FC L50FC deficit irrigation at 50% of FC 

S40FC L40FC deficit irrigation at 40% of FC 
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5.2.4.1 Varied RAW Threshold Irrigation Scenarios  

Figure 5.2-3 presents the calculation process of varied RAW threshold irrigation 
scenarios. 

 

 

Figure 5.2-3 Schematic representation of the crop response to varied RAW threshold 
irrigation scenarios simulated by AquaCrop (adjusted from Steduto et al. (2012)). RAW is 
readily available water content, TAW is total available water content, CC is the simulated 

canopy cover, CCo is initial canopy cover size, CGC is canopy growth coefficient in fraction 
per growing degree day (GDD), Kssto is the water stress for stomatal closure, KcTr is the 

crop transpiration coefficient (determined by CC and KcTr,x at maximum canopy cover), ETo 
is the reference evapotranspiration, Ksb is the stress coefficient for low-temperature effects 
on biomass production, fWP is the adjustment factor to account for differences in chemical 

composition of the vegetative biomass and harvestable organs, WP* is the normalised water 
productivity. 

These irrigation scenarios applied irrigation scheduling based on soil moisture 
depletion (Henrich et al. 2016) by applying readily available water depletion in the 
default option in AquaCrop. The time and irrigation dose were calculated with the 
criteria below:  

1. Soil water content depleted until a fixed lower threshold (RAW) and refill to field 
capacity (time criteria).  

2. Irrigation dose can be determined by the following Equation (5.2-4) (Raes et al. 
2017a). 
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ID =  AD × RAW (5.2-1) 

where ID is irrigation depth (mm), RAW =  p TAW =  p 1000(FC − PWP)Zr, p 
is soil water depletion threshold, set to 0.3 for lettuce recommended by (Allen et al. 
(1998), and Zr is root depth (m). TAW is the amount of water that a crop can extract 
from its root zone (Allen et al. 1998a). FC is field capacity, that is, the amount of water 
well-drained soil should hold against gravitational forces (m3 m−3) (Allen et al. 1998a). 
PWP is permanent wilting point, referring to soil water content when a plant fails to 
recover its turgidity on watering (m3 m−3) (Allen et al. 1998a). RAW is readily 
available soil water, referring to the fraction of TAW that a crop can extract from the 
root zone without suffering water stress (Allen et al. 1998a). AD is allowable 
depletion, defined as the percentage of RAW that can be depleted before irrigation 
water has to be applied. 

Full irrigation scenarios with varied RAW thresholds were simulated by selecting 
allowable depletion levels at 0, 50, 80, 100% in AquaCrop, that avoid drought stress 
during the growth stage (Yang et al. 2015). The irrigation schedule is generated by 
selecting a so-called “time” and “depth” criterion, with “back to field capacity” and 
“allowable depletion”, respectively. In other words, the different full irrigation 
scenarios result in decreasing irrigation frequency. 

Deficit irrigation scenarios with varied RAW thresholds were similar to the full 
irrigation scenario criteria, but applied allowable depletion levels at 120, 130, 150, 
180, and 200%. These levels result in drought stress during the growing stage, since 
soil moisture can decrease to a level below RAW before an irrigation event is triggered 
(Yang et al. 2015).  

5.2.4.2 Varied Field Capacity Threshold Irrigation Scenarios 

Figure 5.2-4 illustrated concept of the varied field capacity threshold irrigation 
scenarios. The full irrigation scenario, based on a fixed irrigation frequency 
maintained the soil moisture in the root zone at field capacity on a daily basis, since 
the literature claims this is the optimal status to maximise lettuce yield (Sutton and 
Merit N 1993). The irrigation schedule was generated with a fixed time interval (daily) 
(time criteria) and refill to field capacity (depth criteria).  

Deficit irrigation scenarios with varied field capacity threshold reduce the irrigation 
dose below the dose at field capacity but keeping the same irrigation frequency, as in 
full irrigation scenario. Daily generated irrigation doses obtained in full irrigation 
scenario were reduced by 70, 60, 50, and 40%.  
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Figure 5.2-4 Schematic illustration of the soil water reservoir concepts of varied irrigation 
depth under field capacity irrigation scenarios (adjusted from Lamn et al. (2015)). FC is field 

capacity, full ID is full irrigation depth. 

Irrigation water productivity (IWP) was used to evaluate the irrigation scenarios for 
efficient irrigation water use (Pereira et al. 2012; Tan et al. 2018). IWP is the ratio 
between the yield and the irrigation water use (Pereira et al. 2012).  

IWP =  
Y 

I
 (5.2-2) 

where IWP is irrigation water productivity (kg m−3), Y is simulated yield (kg ha−1) 
and interest yield in this study is biomass, and I is irrigation water use (mm).  

The adjusted crop parameters obtained from the parameterisation process were used 
in the scenario simulation under the same weather conditions, using no soil surface 
cover in model field management, and no ground water at bottom soil profile 
boundary condition. 
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5.3 Results 

5.3.1 Plant Growth and Soil Moisture Status  

Figure 5.3-1 shows both the lettuce growth measurement and simulation by 
AquaCrop. Biomass accumulated at a very low rate during the first two weeks of the 
growing season, and increased sharply in the final week. This trend accords with 
results obtained by Gallardo et al. (1996). 

The measured canopy cover and biomass yields were 34% and 0.11 ton ha−1, 
respectively, at site T2 with sand soil, and 18.5% and 0.11 ton ha−1, respectively, at 
site T4, which has loam soil. The measured results are comparable with Fazilah et al. 
(2017), who found observed canopy cover of 33% and biomass yields of 0.22 ton ha−1 
for lettuce under similar tropical conditions. Zhang et al.(2017) (Zhang et al. 
2017)found higher measured biomass for lettuce with a range of 0.33 to 0.63 ton ha−1 
under lower temperatures of 20–25 °C. Thus, high day temperatures above 23 °C often 
limit lettuce production (Dufault et al. 2009). Optimum growth for lettuce occurs 
between 15–20 °C (Valenzuela et al. 1996). Unfavourable weather conditions, of high 
average temperature 33/25 °C (day/night) during the experiment, can be the reason of 
the low measured biomass yields for this study.  
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Figure 5.3-1 Observed (Obs) data and simulation (Sim) of lettuce growth of AquaCrop: (a) 
canopy cover at site T2 (CC-S) (sand soil) and site T4 (CC-L) (loam soil); (b) 

aboveground biomass at site T2 (B-S) and site T4 (B-S). The error bars were based 
on 10 biomass samples, except the last observed, which was based on 60 samples at 

harvest time. Sim CC-S is simulated canopy cover at site T2, Sim CC-L is 
simulated canopy cover at site T4, Obs CC-S is observed canopy cover at site T2, 

Obs CC-L is observed canopy cover at site T4, Sim B-S is simulated biomass at site 
T2, Sim B-L is simulated biomass at site T4, Obs B-S is observed biomass at site 

T2, Obs B-L is observed biomass at site T4. 
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5.3.2 Model Parameterisation and Evaluation 

The primary crop variables calibrated for daily lettuce growth were canopy cover 
and biomass, with the daily soil moisture simulated by AquaCrop, by adapting 
available physical soil data.  

Table 5.3-1 presents the adjusted model parameters for canopy cover and biomass 
curve simulation of lettuce growth. The time to recovery of transplant, the time to 
reach the maximum canopy cover, the initial canopy cover (CCo), the maximum 
canopy cover growth coefficient (CCx), the coefficient for maximum crop 
transpiration (KcTr,x), and the normalised biomass water productivity (WP*) were 
mainly calibrated.  

WP* was adjusted at 16 gm−2 for both sites, within the recommended range. KcTr,x 
was adjusted at 0.65 and 0.5 for site T2 and T4, respectively. These adjusted KcTr,x 
are lower than crop coefficient for the mid-season (Kcb,mid = 1) proposed by FAO-
56. The difference between the values proposed by FAO-56 and the adjusted KcTr,x 
values is due to the fact that the FAO crop coefficients were obtained for specific 
agroclimatic conditions, which are different from the conditions of this study (Paredes 
et al. 2014).  

In addition, KcTr,x is a major requisite for estimating crop transpiration and biomass. 
The low adjusted value of this parameter resulted in low simulated biomass yields to 
fit to measured values. 

High temperature stress observed during the experiment could be the reason for the 
low observed lettuce biomass production (Valenzuela et al. 1996). This observation 
leads to a recommendation for further development of a heat stress factor in relation 
to canopy cover and biomass simulations for lettuce. 

The minimum root depth cannot be adjusted under 0.1 m, while the root 
development of lettuce was under this limit. Thus, root development in the model 
requires further modification (Tan et al. 2018). 

The crop growth simulation of canopy cover and biomass fitted the observed data 
well (Figure 5.3-1). The statistical values for model evaluation in Table 5.3-2 were 
satisfactory, resulting in R2 = 0.99, RMSE < 0.8%, N < 4.6 for canopy cover, and R2 
> 0.98, RMSE < 0.01 ton ha−1, N < −0.07 for biomass. Thus, the model has ability to 
simulate well the growth of lettuce in both soil types at the two experimental sites. 
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Table 5.3-2. Statistical evaluation of model simulation. 

Statistical Criteria Sites Canopy Cover (%) Biomass (ton ha−1) 

RMSE 
T2 0.69 0.012 

T4 0.84 0.01 

R2 
T2 0.99 0.98 

T4 0.99 0.99 

N 
T2 1.1 −0.015 

T4 4.6 −0.07 

 

The measured and simulated soil moisture, at both soil depths of 5 and 15 cm in 
both sites, also matched well (Figure 5.3-2). The soil moisture simulation resulted in 
good accuracy with low RMSE of 0.18 and 0.14 m3 m−3 at depths of 5 and 15 cm, 
respectively, at site T2, and 0.05 and 0.06 m3 m−3 at depths of 5 and 15 cm, 
respectively, at site T4. 
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5.3.3 Irrigation Scenarios 

5.3.3.1 Irrigation and Soil Moisture Response 

The cumulative irrigation in Figure 5.3-3, and the fluctuation of the soil moisture 
depletion in Figure 5.3-4, reflect the interaction between irrigation frequency and 
amount of water applied.  

In both varied RAW and field capacity threshold irrigation scenarios, the irrigation 
frequency decreased together with decreasing the amount of water applied per 
irrigation event.  

In varied RAW threshold irrigation scenarios, the simulation of irrigation resulted 
in irrigation depths which ranged from 57 to 104 mm in site T2 (sand soil) and 46–82 
mm in site T4 (loam soil) (Figure 5.3-3 a,c). In varied field capacity threshold 
irrigation scenarios, irrigation depths ranged from 81–201 mm in site T2 and 83–209 
mm in site T4 (Figure 5.3-3 b,d).  

5.3.3.2 Crop Evapotranspiration and Biomass Growth Response 

Figures 5.3-5 and 5.3-6 illustrate the cumulative crop evapotranspiration (ETc) and 
cumulative biomass of lettuce, respectively, under various irrigation scenarios 
simulated with AquaCrop calibrated for lettuce.  

In varied RAW threshold irrigation scenarios, total simulated ETc ranged from 60 
to 100 mm in site T2, and from 53 to 85 mm in site T4 (Figure 5.3-5 a,c). The main 
reason for the higher ETc yield in site T2 is the higher adjusted transpiration 
characteristic of lettuce in sand soil as compared to loam soil. The simulated values 
of ETc fall within the range reported by Abdullah et al. (2004) for lettuce, which 
varied from 43 mm to 285 mm in response to their different irrigation applications 
between 0 and 267 mm for open surface soil.  

In varied field capacity threshold irrigation scenarios, simulated total crop 
evapotranspiration ranged from 77 to 205 mm in site T2, and from 83 to 211 mm in 
site T4 (Figure 5.3-5 b,d). In both irrigation scenario classes, it was noted that while 
reducing irrigation events, crop evapotranspiration decreased simultaneously.  

Figure 5.3-6 shows the response of biomass to the different irrigation scenarios. The 
varied RAW threshold irrigation scenarios (Figure 5.3-6  a,c) resulted in biomass yield 
range from 0.88–1.77 ton ha−1 at site T2, and 0.44–0.91 ton ha−1 at site T4. By 
definition, biomass growth is closely related to crop evapotranspiration. Thus, the 
difference between biomass yields in the two experimental sites is due to the 
difference in the KcTr,x (coefficient for maximum crop transpiration) and CCx 
(maximum canopy cover) parameters between both sites.  

As expected, in varied RAW threshold irrigation scenarios, the simulations 
maintained biomass yield at 1.77 ton ha−1 at site T2 and 0.90 ton ha−1 at site T4 in the 
full irrigation scenarios with allowable depletion from 0–100% of RAW (e.g., 
S0RAW to S100RAW for site T2 and L0RAW to L100RAW for site T4), that is due 
to no-water stress condition. As the water stress started below the RAW line (Payero 
et al. 2006), with available depletion from 120–200% of RAW thresholds, the biomass 
yields decreased up to 50% in the S200RAW (200% of RAW threshold) scenario at 
site T2 and 52% in L200RAW scenario at site T4.  
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In varied field capacity threshold irrigation scenarios (Figure 5.3-6 b,d), biomass 
yields ranged from 0.85 to 1.77 ton ha−1 at site T2, and 0.89 to 0.90 ton ha−1 at site T4. 
At site T2, reducing deficit irrigation at 50% of field capacity (S50FC scenario), the 
biomass yield started to decrease with 22% and deficit irrigation at 40% of field 
capacity (S40FC scenario), biomass yields decreased up to 51% compared to full 
irrigation scenario (S100FC). For site T4, deficit irrigation up to 40% of field capacity 
(L40FC) did not affect biomass yield.  

5.3.3.3 Relationship between Water Productivity and Irrigation Scenarios 

The responses of biomass yield and irrigation water productivity to irrigation depths 
in various scenarios are presented in Figure 5.3-7. Simulated water productivity of 
varied RAW threshold irrigation scenarios ranged from 1.5 to 2.1 kg m−3 for site T2 
and 0.9 to 1.4 kg m−3 for site T4. In varied field capacity irrigation scenarios, simulated 
irrigation water productivity (IWP) ranged from 0.8 to 1.36 kg m−3 for site T2 and 
0.43–1.08 kg m−3 for site T4. The simulated irrigation water productivity results are 
comparable with other studies found in the literature. For instance, Gallardo et al. 
(1996) found a measured IWP for lettuce dry matter of 1.86 kg m−3. 

Figure 5.3-8 shows the relationship curves of biomass yield and irrigation water 
productivity response to irrigation scenarios. As expected, irrigation water 
productivity curve response to irrigation depths had parabolic relationships for both 
soil types in varied RAW threshold irrigation scenarios. Increasing water use 
efficiency can be enhanced by decreasing the irrigation to an optimum point. The 
optimum point, which resulted in 22% water saving for site T2, was found at the 
scenario with depletion of 150% of RAW (S150RAW), resulting in the irrigation 
water productivity = 2.07 kg m−3, irrigation depth = 81 mm, and biomass yield = 1.68 
ton ha−1. For site T4, the optimum irrigation water productivity was at 130% of RAW 
scenario (L130RAW), resulting in irrigation water productivity = 1.42 kg m−3, 
irrigation depth = 60 mm, and biomass yield = 0.85 ton ha−1.  

In varied field capacity threshold irrigation scenarios, for site T2, the optimum 
irrigation water productivity with 39% water saving was found at deficit irrigation at 
60% of field capacity (S60FC) with irrigation water productivity = 1.36 kg m−3, 
irrigation depth = 130 mm, and biomass yield = 1.77 ton ha−1. For site T4, the optimum 
water productivity resulted in 60% water saving, which was found at deficit irrigation 
at 40% of field capacity (L40FC scenario) with irrigation water productivity = 1.08 
kg m−3, irrigation depth = 83 mm, and biomass yield = 0.89 ton ha−1. 

The varied RAW threshold irrigation scenarios resulted in higher simulated higher 
irrigation water productivity than the varied field capacity threshold scenarios in this 
study. Overall, deficit irrigation simulation scenarios in both irrigation scenario 
classes can provide a remarkable improvement in irrigation water productivity for 
water saving strategies.  
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Figure 5.3-8 Relationship between biomass and irrigation water productivity responses to 
different scenarios: (a) at site T2 (sand soil) and (b) at site T4 (loam soil). I is irrigation, B is 

biomass, IWP is irrigation water productivity, RAW-IS is varied readily available water 
content threshold irrigation scenarios, FC-IS is varied field capacity threshold irrigation 

scenarios.  

5.3.3.4 Limitation  

Crop models, like AquaCrop, are potentially valuable tools for answering questions 
primarily relating to research understanding, assessing crop management, and policy 
decision-making (Steduto et al. 2009a; Boote et al. 1996). However, it is essential to 
test the models in diverse field environments, such as those with varied temperatures, 
elevation transects, or amidst latitudinal variations (Boote et al. 1996). Particularly, 
AquaCrop has some limitations in terms of predicting crop yields only at the single 
growth cycle, single field scale, and only factoring in vertical water balance. The 
results of this study, obtained using climate data and field observation data relating to 
lettuce from a single growth cycle experiment at farm scale, allowed important 
information to be obtained in terms of calibrating lettuce crop parameters for sand and 
loam soil, and assessing limited water irrigation scenarios in the Cambodian context. 
However, it remains limited and the uncertainty on parameters has to be kept in mind. 
This study should be repeated in a contrasting range of diverse environments. Climate 
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conditions and different cultural practices are the variables that differentiate the 
scenarios between different sites (Boote et al. 1996; Silvestro et al. 2017). It has been 
emphasised that uncertainty model simulation results are themselves uncertain, due to 
known inadequacies of the model (residual errors in measurement) and due to 
unknown inadequacies of the model (by inputting new cultivars or different types of 
management, the model may be wrong in unsuspected ways) (Wallach et al. 2008). 
Despite such limitations, AquaCrop has already proven its usefulness in practical 
applications, and should still be tested widely in broader crop management 
applications, in diverse field environments (Boote et al. 1996, Silvestro et al. 2017). 

5.4 Conclusions 

An AquaCrop model was parameterised to simulate the canopy cover and 
aboveground biomass growth of lettuce under drip irrigation and plastic mulching for 
both sand and loam soil in the tropical monsoon climate of Cambodia. The model 
simulated canopy cover (RMSE < 0.8%) and aboveground biomass (RMSE < 0.01 
ton ha−1) in a satisfactory way after adjusting several key parameters, as mentioned in 
Farahani et al. (2009).  

Additionally, the results suggested that the incorporation of a heat stress factor 
affecting canopy cover and biomass growth is necessary to meet the conditions 
encountered in a tropical climate context.  

Shortage of water in Cambodian agriculture has increased due to climate change, 
and this is a significant challenge facing farmers in their crop production. In this study, 
the AquaCrop model has helped to develop the simulation process for limited 
irrigation management strategies to maximise irrigation water productivity. To test 
the impact of different irrigation scheduling and water saving strategies, two scenario 
classes were explored: (i) varied readily available water (RAW) threshold irrigation 
and (ii) varied field capacity threshold irrigation scenarios. The irrigation scenario 
analysis proposed optimal irrigation strategies for lettuce.  

For varied RAW threshold irrigation scenarios, the analysis proposed optimal 
simulated irrigation water productivity at scenarios of 150% of RAW (irrigation water 
productivity = 2.1 kg m−3) for sand and 130% of RAW (irrigation water productivity 
= 1.4 kg m−3) for loam soil. This can save 22% of water, and resulted in a biomass 
yield reduction of 5 and 2%, respectively, for sand and loam soil. For varied field 
capacity threshold irrigation scenarios, the optimal deficit irrigation depth was found 
at 60% of field capacity (irrigation water productivity of 1.4 kg m−3) for sand soil, and 
at 40% of field capacity (irrigation water productivity of 1.0 kg m−3) for loam soil. It 
can save water up to 39% and 60%, for sand and loam soil, respectively, maintaining 
biomass yields compared to full irrigation. These results suggest that deficit irrigation 
is worth considering as a water saving strategy for lettuce in the monsoon climate of 
Cambodia.  

Overall, AquaCrop is a valuable tool to predict lettuce growth and to investigate 
different scenarios for providing irrigation scheduling strategies for water saving in 
Cambodia. However, further research is necessary to standardise the model 
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parameters for lettuce in various irrigation management, environmental, and climatic 
conditions. 



 

 

 

 

 

 

 

 

 

 

 

6 
General Discussion  

  

This chapter generally discusses the findings from the study approaches and 
proposes recommendations for further research. This section also presents some 

concerns regarding the sustainable use of groundwater for irrigation.  
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Cambodia doesn’t produce enough vegetables to meet the needs of its population. 
A major obstacle for Cambodian farmers is a lack of knowledge of irrigation 
management, especially for non-rice crops, while facing extreme weather events such 
as drought that are increasing in Cambodia. To overcome this issue, in this research 
we aim to contribute the development of vegetable production during the dry season 
in Cambodia.  

We conducted two complementary approaches to improve water use efficiency for 
on-farm irrigation by optimising irrigation scheduling. These approaches were used 
to improve our understanding of the complex relationships between soil, water and 
plant responses. The first approach (Chapter 4) was conducted to address the research 
question “how can soil hydraulic properties be characterised for use in crop 
modelling?” For the second (Chapter 5), we tried to identify which are the best 
scenarios to maximise water use efficiency for vegetable irrigation during the dry 
season in Cambodia. 

In the first approach, a commonly-used model for soil water flow simulation, 
HYDRUS-1D was used to derive the soil water retention curve (SWRC). The five 
experimental fields selected have different soil textures (e.g. loamy sand, sand and 
loam soils) and are located in the Chrey Bak catchment, Kampong Chhnang province. 
The experimental data recorded during the growing season of the selected vegetable, 
lettuce in 2016, were used to calibrate the soil van Genuchten parameters by the 
inverse solution method. 

In the second approach, we developed a methodology to analyse irrigation 
scheduling that involved two steps. The first step was to calibrate crop parameters of 
the crop water-driven model, AquaCrop, which has been widely applied for irrigation 
management. The parameterisation process was solved using the field experiment for 
lettuce growth in 2017 on two farm fields that have sand and loam soils, and the soil 
parameter calibration was obtained from inverse modelling. For analysis of the crop 
growth simulation, we combined inputs from weather and management practices (drip 
irrigation, 90% plastic mulch cover). Then, we explored various full and deficit 
irrigation schedules. The irrigation scheduling was based on soil moisture depletion 
within two threshold categories. The first category involves varying the irrigation 
starting point, the so-called the lower limit threshold or readily available water content 
(RAW), between 0 to 200% of RAW. The second involves setting the stop irrigation 
point, the so-called the upper limit threshold or field capacity (FC), between 0 to 60% 
of FC deficit. 

6.1 Evaluation of inverse modelling for estimating soil 
hydraulic properties  

Our analysis of soil parameterisation confirmed that inverse modelling of a one-
dimensional vadose zone model was able to successfully derive the soil parameter sets 
(θs, θr, n, α, l, Ks) for the SWRC. In testing water flow simulation, the model resulted 
in good simulation performance in predicting the soil water dynamic in all the studied 
soil types. This approach is not new, inverse modelling using Richard’s soil water 
dynamic equation has been applied to estimate soil parameters in various studies in 
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the literature (Ritter et al. 2003a; Le Bourgeois et al. 2016; van Genuchten et al. 1997; 
Lazarovitch et al. 2007; Eching and Hopmans 1993; Dam 2000; Wayllace and Lu 
2011). However, most of these authors only used the SWRC laboratory data for 
inversion input data. Field plots are more complex than applications for laboratory 
set-ups (Dam 2000). Furthermore, many researchers have shown the limitations of in-
situ measurements of soil moisture and soil water potentials under natural boundary 
conditions in estimating the soil hydraulic properties (Scharnagl et al. 2011).  

The soil moisture sensor, 10HS, and soil potential sensor, MPS-2, contributed to 
measurement of in-situ soil water retention curve variables for the inverse modelling 
process. This led us to better understanding of the effect of the field environment on 
the soil hydraulic properties. Initially, the soil parameters were derived from Rosetta 
and used the inverse input data for inverse modelling. Our analysis resulted in 
improved estimation of soil hydraulic properties (i.e., soil water retention) and water 
flow through the inversion method when compared to the initial condition.  

The results highlight that the tension infiltrometer might be useful in determining 
saturated hydraulic conductivity (Ks) for inverse estimation for fine (loam) soil 
texture. However, there are drawbacks to inverse modelling. The imperfectness of 
water flow simulation has been noted. Mostly, there are uncertainties in the output of 
the simulation that involve the accuracy of available model inputs (e.g., soil moisture, 
soil water potential, irrigation, soil hydraulic conductivity in real time), model 
simplification, and the ill-posedness of the inverse problem (Ritter et al. 2003; Brown 
and Heuvelink 2005; Loos et al. 2007).  

In the following we highlight the limitations and further improvements to the study. 

The first input variables considered are the soil moisture and soil potential from 
10HS and MPS-2, respectively. These sensors have significant limitations in 
capturing the accurate moisture level and soil potential in wet and very dry conditions. 
In the future, scientists will need to develop devices for improving measurements in 
these conditions. Ebel et al. (2018) recommended an improvement for near saturation 
conditions that involves sprinkling experiments over instrumented soil pits as used in 
Torres et al. (1998). For drier conditions, one suggestion is to put precipitation 
exclusion structures over the instrumented soil pits as in the study cases of Nepstad et 
al. (2007) and Cleveland et al. (2010), or to use equipment with higher capabilities for 
monitoring soil moisture and soil potential such as the heat dissipation sensors used 
in Bittelli et al. (2012). The options for soil moisture sensors with high spatial and/or 
temporal resolution are presented by Vereecken et al. (2014). The higher capability 
equipment is likely to be more costly but could be necessary to fill research gaps, 
whereas smallholder farmers generally prefer the low cost devices. Therefore, it is 
suggested that precise measurement with high price devices should be used to better 
understand real-world conditions, while experimental approaches using both accurate 
and lower accuracy instruments is suggested to understand the situation and give 
better recommendations to farmers. 

The next example of data uncertainty in this study arises from the tension 
infiltrometer measurements. The tension infiltrometer used here is among the better 
methods for determining in-situ hydraulic conductivity K(h) (Alagna et al. 2016). 
However, it poorly described the soil hydraulic conductivity for coarse soil textures, 
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resulting in convergence issues during inverse modelling. Additionally, measurement 
of K(h) was conducted once in each field. Indeed, dynamic observation of in-situ 
hydraulic conductivity is the most challenging task soil physicists will have to face in 
the future. Further research should improve the ability of the device to obtain dynamic 
measurements and higher accuracy of K(h) measurement which would improve the 
simulation.  

A further input source of data error is that transpiration was estimated based on a 
model (Gallardo et al. 1996b) that results in error prediction due to various factors 
such as the climate and location conditions. A better estimation or measurement of 
transpiration should be considered. Interestingly, Bello and Rensburg (2017) have 
made progress in this area, testing low-cost small lysimeters for measuring 
evaporation and transpiration. Their results show that the small lysimeters were able 
to measure evaporation and transpiration separately at high accuracy, sensitivity and 
precision (Loos et al. 2007). 

Another issue was inaccurate irrigation data input. The data on the dynamics of 
irrigation amounts were estimated based on the fluctuation of soil moisture, and the 
flow rate as determined by the manufacturer. An accurate water balance approach 
using lysimeters could address this issue.  

Despise the advantage of the efficiency of soil hydraulic estimation, it is confirmed 
in this study that inverse modelling faces problems in the non-uniqueness of the 
generated soil parameters and sensitivity to the initial soil input data in disconvergence 
of the simulation. Improvement of accuracy in the model inputs could lead to solving 
the inverse problems and also better outflow performance. 

Aside from the data input inaccuracies, a simple assumption of the model itself has 
limitations in reflecting the real dynamic change of the model. The main 
simplification is that the model assumed the single soil hydraulic properties over the 
entire simulation period (Simunek 2005). Thus, the dynamic changes in soil hydraulic 
properties in time and space should be further developed within the model algorithm 
for HYDRUS-1D. 

Furthermore, it is necessary to standardise the generated soil parameter sets. This 
can be achieved by calibration and validation from further experiments over many 
growing seasons.  

6.2 Evaluation of lettuce growth simulation and 
optimal irrigation water use  

In the second study approach, our analysis indicated that AquaCrop could 
satisfactorily predict the lettuce growth (e.g., canopy cover and above ground biomass 
growth) under plastic mulching in both studied sites. Crop parameters were mainly 
calibrated, this included time to recovery of transplant, time to reach maximum 
canopy cover, initial canopy cover (CCo), maximum canopy cover growth coefficient 
(CCx), coefficient for maximum crop transpiration (KcTr,x), and normalised biomass 
water productivity (WP*).  
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Considering the importance of modelling approaches in aiding decision-making and 
policy changes, it is noted that to date the crop growth and irrigation simulations for 
leafy vegetables including lettuce are very limited and are not yet in the AquaCrop 
list of case studies. Therefore this study can be useful for further validation of the 
model’s performance. The limitations of the study and parameter uncertainty during 
the process of calibration have been observed as follows.  

Firstly, the effect of heat stress was observed in the growth of lettuce during the 
experiment. In AquaCrop there is only an adjustment for cold stress factors. 
Consequently, the calibration of the model absorbed this stress into another factor, the 
crop coefficient (Kc) resulting in its low value compared to FAO. This suggests that 
further development of the model is required to accommodate heat stress factors to 
adapt the model to tropical climate conditions.  

The second limitation is rooting depth. AquaCrop has limited the minimum root 
depth data input to 10 cm, while the observed root growth is less than 10 cm. Further 
model development for root depth should be considered. Additionally, the obtained 
soil parameters from the inverse modelling have been used for the second approach. 
There was no observed soil water dynamic during the second approach due to water 
pooling. Therefore, it is recommended that further detailed studies are made on the 
soil parameters and water flow response of the model.  

Both the limitations of the model and the uncertainties in our input data led to 
inaccuracy in the output of the simulation. It is noted that the transpiration and soil 
evaporation were estimated by the model. The model simulation would be improved 
by the addition of transpiration observations and field data for soil evaporation. The 
precise in-situ soil water balance data should be further investigated. Moreover, our 
lettuce growth observation was conducted only during the development stage. 
Therefore, observation of whole growth cycle of lettuce needs to be performed. The 
uncertainty of the calibrated parameters would also be reduced with a higher number 
of crop growth season experiments. 

Despite the limitations of the model, the calibrated AquaCrop model was used to 
optimise irrigation scheduling for irrigation management strategies considering deficit 
water conditions. The analysis of irrigation scenarios suggested the highest irrigation 
water productivity (WP) by applying the two categories of irrigation thresholds, 
varied RAW and FC. For varied RAW threshold irrigation scenarios, the analysis 
proposed optimal simulated irrigation water productivity at scenarios of 150% of 
RAW (irrigation water productivity = 2.1 kg m−3) for sandy soil and 130% of RAW 
(irrigation water productivity = 1.4 kg m−3) for loamy soil. Compared to full irrigation 
scenarios, this can save 22% of the water used, and resulted in a biomass yield 
reduction of 5 and 2%, respectively, for sand and loam soils. For varied field capacity 
threshold irrigation scenarios, the optimal deficit irrigation depth was found to be 60% 
of field capacity (irrigation water productivity of 1.4 kg m−3) for sandy soil, and 40% 
of field capacity (irrigation water productivity of 1.0 kg m−3) for loam soil. Likewise, 
this can save up to 39% and 60% of irrigation water for sand and loam soil, 
respectively, maintaining biomass yields compared to full irrigation.  

Consequently, with a limited amount of water deficit irrigation can increase the 
amount of land irrigated. For example, by comparing full irrigation at 0% and 150% 
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of RAW, resulting in irrigation depths of 104 and 81 mm respectively for sand, deficit 
irrigation can increase the land irrigated by 22%, e.g., 1 ha for 0% of RAW and 1.2 
ha for 150% of RAW.  

Regarding the limitations of the deficit irrigation scenarios, water stress was 
considered to apply to whole stages of lettuce growth. One should note that due to 
drought stress in particular growth stages, the length of the cropping cycle might 
change from that of the full irrigation condition (Geerts and Raes 2009). Thus, the use 
of deficit irrigation requires some specific conditions: i) crop response to drought 
stress should be studied carefully, and ii) irrigators should have unrestricted access to 
irrigation water during sensitive growth stages (Geerts and Raes 2009). In addition, 
many studies have shown that there are different critical crop growth stages for some 
crops (for example the flowering stage, fruit setting, or assimilate transfer) that are 
sensitive to water deficits, leading to severe yield reduction and considerable variation 
in WUE (Katerji et al. 2008). Further research work should repeat the deficit irrigation 
experiment while considering the different sensitive stages to verify the proposed 
irrigation scheme, calibrate and validate the deficit irrigation approaches.  

Overall, this study approach has beneficially developed the methodology to 
optimise irrigation for on-farm irrigation management in the Cambodian context.  

6.3 Improvement of field water use efficiency  

In this dissertation, we focused specifically the soil hydraulic parameters and 
simulated irrigation scheduling in deficit irrigation conditions. The significant 
outcomes are the calibrated parameters of the water flow model and crop model and 
the optimal irrigation scheduling. We have learnt the advantages and limitations of 
the modelling approaches. However, our goal of improving on-farm irrigation water 
use efficiency was not completely reached. More work is needed, as proposed in the 
following points:  

i) How to minimise run-off and leaching from surface drip irrigation (SDI)? We 
have applied the same drip irrigation rate to different experimental fields with 
different soil textures. It was noted that there is some run-off for fine soils like loam, 
and leaching in sandy soil. Further experimentation is needed to optimise efficient 
drip irrigation rates for the different soil textures, as presented in some papers 
(Provenzano 2007; Wang et al. 2006; Friedman et al. 2016; Li et al. 2018; Gamage et 
al. 2018; Ajdary et al. 2007). Practical/detailed guidelines are important for farmers 
to determine irrigation scheduling time-frames for different soil types and crops for 
the effective practice of WUE (Egea et al. 2016). 

ii) How to minimise soil evaporation? Studies on the effects of different mulching 
variables are also contributing to improving WUE by minimising this factor (Wang et 
al. 2018; Gupta et al. 2015; Kader et al. 2017; Cosi 2017; Zhou et al. 2018; Adil et al. 
2019). 

iii) WUE should be evaluated for different techniques and methods, such as using 
sprinkler systems or surface drip irrigation for different crops in the Cambodian 
context (Albaji et al. 2015).  
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iv) The fertility of soils should be assessed globally, not just the physical properties. 
Soil chemistry and biology deserve as much attention as soil physics in order to 
guarantee the highest crop yield. Therefore, further research should focus on these 
factors to improve efficient water management practices in Cambodia. 

6.4 How can other stakeholders apply the findings of 
this research?  

Principally, farmers are one of the most important stakeholders as they are dominant 
in the system. However, there is a knowledge gap between farmers and institutions. 
Therefore there are some challenges in adapting the water saving findings for real-
world use. This is a call for active farmer-participatory research in applying the water 
saving irrigation practices.  

6.5 Are these study approaches suitable for other 
cultivated land in Cambodia?  

We conducted the experiments on 5 experimental sites in the Chrey Bak catchment, 
with 3 distinguished soil textures, e.g., loamy sand, sand and loam soils. This study is 
limited compared to the scale of the catchment. Therefore, a process of scaling up this 
experimental research is needed to clearly characterise the different conditions and 
characteristics in terms of pedology, weather and different constraints that are relevant 
to irrigation management.   

6.6 Groundwater use sustainability and 
transposability of the study approach 

The water used during the first experiment was from groundwater. Considering the 
larger scale, if irrigation is to be increased during the dry season, a question will arise: 
is there enough groundwater to sustain this new water use? Meanwhile, the present 
groundwater use for irrigation in the study area is not yet significant. If increased use 
occurs, this could cause negative effects for the environment such as water depletion 
(Zhang et al. 2018). In this regard, hydrogeologists can play an active role in 
predicting groundwater availability and the effect of its use for irrigation in order to 
establish the effectiveness of policies and irrigation sustainability (Gleeson et al. 
2012). There is not yet enough research to assess the long term impacts of 
groundwater irrigation in Cambodia (Vuthy and Ra 2011). Generally, the application 
of agricultural water-saving remains the best solution for sustainable groundwater use 
(Sun et al. 2011; Hu et al. 2010).  

However, current knowledge of the water balance in the Chrey Bak catchment calls 
for cautiousness. The recharge of groundwater in Cambodia was estimated to be in 
the range of 3-15 mm/year to 100–1000 mm/year (Johnston et al. 2013). For Chrey 
Bak catchment (700 km²), if we select an optimal irrigation scheduling of 150% of 
RAW (810 m³/ha) for planting lettuce, 3 mm per year of groundwater recharge, 50% 
of the catchment used for irrigation, we can only irrigate 12 km² or 3.7% of the total 
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cultivated area. Therefore, in this case the groundwater is not enough to irrigate all 
the required cultivated land.  

  

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

7 
General Conclusion  

 

This chapter synthesises the general conclusions from the study approaches and 
presents the perspectives for further research.  
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7.1 General conclusions  

 In this thesis, we tried to address the research questions of i) how to characterise 
soil hydraulic properties for use in crop model and ii) which are the best scenarios for 
irrigation water saving in Cambodia context in order to optimise irrigation water 
saving. To achieve the objective,we developed a method for the optimisation of 
agricultural irrigation water-use based on numerical model simulation. The method 
involves using water flow and crop-growth models as decision-making tools, and was 
successfully tested using field measurement data from a lowland area of the Chrey 
Bak catchment in Kampong Chhnang, Cambodia. The water flow model using 
HYDRUS-1D software was calibrated for a lettuce growing season in 2016. 
Additionally, AquaCrop was calibrated for the lettuce growing season in 2017 using 
field data from two farms that have different soil textures of sand and loam soils.  

The studies yield significant twofold findings. Firstly, inverse modelling using a 
water flow model can effectively characterise the key soil hydraulic properties for 
irrigation scheduling, e.g., the soil water retention curve and soil hydraulic 
conductivity that are core parameters of irrigation scheduling. The results highlight 
the usefulness of soil water measurement using a combination of sensor 10HS and 
MPS-2 to collect the in-situ soil water retention curve to be used as input data for the 
inverse modelling, which leads to soil parameterisation. Secondly, the best irrigation 
scheduling scenarios were proposed for lettuce production. Our irrigation scheduling 
method developed from the crop growth model suggested the optimal irrigation 
thresholds under deficit irrigation conditions based on two irrigation threshold criteria, 
i.e., deficit irrigation below readily available water (RAW) and deficit irrigation below 
field capacity (FC). For RAW threshold irrigation scenarios, the analysis proposed 
optimal simulated irrigation water productivity in conditions of 150% of RAW for 
sand and 130 % of RAW for loam soil with a biomass yield reduction of 5 and 2%, 
respectively. For FC threshold irrigation scenarios, the optimal deficit irrigation depth 
was found to be 60% of FC for sandy soil, and 40% of FC for loam soil with no 
biomass yield reduction compared to full irrigation. 

However, some limitations need to be kept in mind. The resulting uncertainty for 
both modelling approaches remains due to some limitations of instruments in 
collecting data, data sampling and model assumptions. Further improvement to input 
data collection is suggested to improve model performance. In addition, model 
validation through different environmental and growing seasons is needed. 
Nevertheless, the results indicate the reasonable and good performances of the 
approaches.  

This approach allows us to set up irrigation strategies to find optimal irrigation 
scheduling and can lead to increased crop water productivity in the study area. To our 
knowledge, in the Cambodian context irrigation scheduling optimisation is a nascent 
topic. This modelling approach and methodology thus has emerged and can be 
considered to be a prior effective useful decision support tool and could contribute to 
irrigation water management. This is particularly useful in optimising irrigation 
scheduling to adapt to drought water events in Cambodia and may help to improve 
current irrigation practices. 
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7.2 Further work  

Our study, being an early test of a water saving irrigation approach in the 
Cambodian context, raises a number of opportunities for future research, both in terms 
of methodology development and concept validation. More research will be necessary 
to refine our findings. 

Sustainable groundwater assessment. When the purpose of this study is achieved 
in the study area, i.e., to raise crop on-farm production, irrigation water use using 
groundwater might increase accordingly. Irrigation would reach a risk point if the 
groundwater is put under pressure for all the desired irrigated lands. Strategic 
approaches that examine the sustainability of irrigation using groundwater in various 
scenarios are needed to provide a long-term management policy. Alternatively, as 
Cambodia is abundant in rainfall within annual precipitation around 2000 mm, the 
development of techniques for irrigation using harvest rainfall that have been 
successfully applied in arid areas should be conducted for increasing on-farm 
irrigation.  

Economic-deficit irrigation scenario analyses. To complete a framework of 
deficit irrigation, the economic return factors should be taken into account to choose 
the optimal irrigation dose (Capra and Consoli 2008). Another challenge is that full 
or deficit irrigation scheduling techniques require specific tools. The cost might be 
high and they also need a high level of understanding. One question raised is how to 
teach this technique to farmers.  

A participatory approach. Key lessons learnt from this approach include the need 
for a participative research and development approach which involves the different 
stakeholders, including policy makers (government, institution), agronomists, 
hydrogeologists, farmers and other relevant parties. Irrigation water saving 
approaches alone cannot be successful, and must be optimised to benefit the farmers. 
During the research experiment, some points have been noted regarding farmers’ 
performance. The crop harvesting and equipment, including the pump and drip 
system, were freely provided. Therefore, farmers did not take notes or pay attention 
to the practice of the irrigation water saving technique. After the experiment, they did 
not continue to use this technique for irrigation. Some farmers that habitually cultivate 
rice only during the rainy season did not become familiar with vegetable production 
during the dry season. The farmers that do produce vegetables during the dry season 
using their traditional methods still like to work in their own way. They think that 
irrigation using the drip method takes more time than using their own irrigation 
technique with a small tube which is faster for their small garden farm. But, positively, 
they realised that drip irrigation can allow the water to inflitrate deeper.  

Another challenge is the amount of lettuces harvested, these need to be sold quickly 
and it is difficult for the farmers to find a market, unlike rice that can be kept for a 
long time. However, they seemed to be receptive to the new challenge. Therefore, an 
approach to connect farmers with the new techniques is needed. The benefit of a good 
economic return is a key point to convince them. Moreover, our experiment was 
conducted on one farm per village among the five experimental fields. The farmers 
tend to follow the practices of the majority, so if there are many pilot projects to show 
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them, this could motivate them to adopt it as well. “What are the key arguments to 
convince the farmers?” is a challenging question for researchers.  

Another point of view is the fact that this research has focused mainly on the specific 
objective of optimising irrigation scheduling. Of course, water is a key factor for crop 
production but there are other factors in obtaining good crop production and there are 
other scientific questions around the topic of crop production management. 
Obviously, we did not focus the other effects on crop growth such as fertiliser, 
different mulch, or different irrigation techniques. More detailed studies on crop 
growth conditions, soil fertility, etc., can lead to better understanding of the soil-plant-
water relationship. Participative and multidisciplinary research would lead to rich 
exchanges and generate new ideas to address the in-situ challenges for the Cambodian 
farmers. It would also allow the farmers to demonstrate social interest in the 
diversification of production, and might lead to the development of encouraging 
policies to help farmers.  

Another point of view, it is the fact that this research has focused mainly on a 
specific objective of optimising irrigation scheduling. Of course, water is a key factor 
for crop production but also there are other factors to obtain a good crop production. 
There are other scientific questions around the topic of crop production management. 
Obviously, we did not focuss the other effects on crop growth like fertiliser, different 
mulching, different irrigation techniques. More detailled studies on crop growth 
conditions, soil fertility, … can lead to better understand the soil-plant-water 
relationship. Participative and multidisciplinary research would led to rich exchanges 
and generate new ideas to address the in-situ challenges of the cambodian farmers. It 
would also allow the farmers to demonstrate the social interest of the diversification 
of the production and might lead to the development of encouraging policy to help the 
farmers.   
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APPENDIX  

Results of estimating soil water retention curves using 
different methods 

 

Estimated parameters  

The results of the estimated van Genuchten (vG) parameters from methods 
M1(Rosetta method), M2 (fitted field SWRC method), M3 (fitted laboratory SWRC 
method), and M4 (inversion method) are presented in Table A-1. It may be noted that 
at site T4, the simulation of M4 with the initial input of saturated hydraulic 
conductivity (Ks) from the tension infiltrometer of 37 cm/day for both depths gave a 
simulation performance with the Nash of 0.61, RMSE of 0.004 cm3 cm-3. Trial values 
of Ks up to 100 cm/day at 10 cm and 45 cm/day at 20 cm depth gave better simulation 
performance with Nash and RMSE of 0.79 and 0.003 cm3 cm-3respectively (Table A-
2). Therefore, these values of Ks were selected.  

For loamy sand soil (sites T1 and T5), the estimated saturated water content (θs) 
ranged from 0.14 to 0.49 cm3 cm-3. M3 estimated the highest value (0.49 cm3/cm3) of 
θs at T1. M2 estimated the lowest value 0.14 cm3 cm-3for T5.  

For sandy soil (sites T2 and T3), at T2, M3 estimated a slightly higher value of θs= 
0.49 cm3/cm3 but the lowest value 0.18 cm3 cm-3at T3. This could be due to 
measurement errors. However, similar estimations with low range values of 0.16 
cm3/cm3 to 0.28 cm3 cm-3 were found by M2 for both sites. M4 in T3 resulted in a 
higher value θs of 0.44 cm3/cm3 at surface depth and a lower value of 0.38 cm3/cm3 
at greater depth. Similar θs values (from 0.24 cm3 cm-3 to 0.27 cm3 cm-3) were found 
in both depths in T2.  

For loamy soil, T4, the results of θs were slightly different between M1, M3, and 
M4 with a range of 0.29 cm3 cm-3 to 0.34 cm3 cm-3. However, the lowest value of 0.17 
cm3 cm-3was proposed by M2. 
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Table A-2 Statistical parameters to evaluate vG parameters in water flow 

simulations 

  
RMSE 

cm3 cm-3 
Nash R2 

RMSE 

cm3 cm-3 
Nash R2 

  At 10 cm depth  At 20 cm depth 

T1 M1    0.030 0.50 0.69 

 M2    0.015 -0.57 0.71 

 M3    0.016 -1.29 0.67 

 M4    0.010 0.76 0.83 

T2 M1 0.013 -3.19 0.95 0.011 -2.55 0.97 

 M2 0.003 0.73 0.98 0.009 -1.80 0.98 

 M3 0.037 
-

44.03 
0.97 0.035 -49.00 0.81 

 M4 0.004 0.89 0.95 0.002 0.91 0.96 

T3 M1 0.022 0.42 0.67 0.025 0.14 0.60 

 M2 0.027 -4.88 0.63 0.021 -7.41 0.62 

 M3 0.011 -0.05 0.72 0.015 -2.97 0.61 

 M4 0.008 0.45 0.72 0.006 0.39 0.68 

T4 M1 0.025 -0.66 0.79 0.022 0.69 0.96 

 M2 0.004 0.65 0.81 0.014 -3.40 0.90 

 M3 0.008 -0.31 0.76 0.009 -0.74 0.95 

 M4 0.003 0.79 0.95 0.002 0.92 0.97 

T5 M1 0.027 0.21 0.80 0.030 0.63 0.81 

 M2 0.021 -2.82 0.57 0.018 -3.82 0.66 

 M3 0.009 0.30 0.85 0.017 -3.26 0.81 

 M4 0.008 0.42 0.80 0.006 0.53 0.85 

 

Water retention curves  

Using the parameter sets from Table A.1 in the methods M1, M2, M3, and M4, the 
simulated soil moisture was plotted against the log pressure head to obtain SWRCs 
(Figures A.1 and A.2). Overall, it was noted that the SWRCs from all methods for 
coarse soil closely match for both the field and laboratory SWRC data. However, there 
were large differences between the estimated θs of SWRCs for all methods.  

The Rosetta method, M1, often produced high θs for coarse soil (0.38 to 0.39 
cm3/cm3) at T1, T2, T3, and T5 and a slightly lower value for loam soil (0.34 cm3/cm3) 
at T4. It was also noted that the simulated SWRCs by M1 often closely matched the 
field and laboratory SWRC data for for all sites, apart from laboratory data for fine 
soil, T4, and field data at T3 at 20 cm depth.  
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The fitted field SWRC method, M2, fitted the measured SWRC data excellently 
because it tried to fit individual field data. It was noted that there were errors of field 
SWRC data at near saturated points that resulted in low estimation of θs (from 0.14 
to 0.24 cm3/cm3 ) at T2, T3, T4, and T5.  

The fitted laboratory SWRC method, M3, suggested low θs (from 0.18 to 0.23 
cm3/cm3 ) at T3 s T5, and higher values (from 0.29 to 0.49 cm3/cm3 ) at T1, T2, and 
T4. This can be explained by the lack of SWRC data points and their errors at lower 
pressures because the pressure plates were mainly applied for the higher tensions from 
100 to 1500 kPa, this could cause errors for SWRCs under 100 kPa (Schindler et al. 
2012). The small bulk soil core sample volume was not well representative of the real 
soil condition. 

The inversion method, M4, had similar behaviour to M1 for simulating the SWRC. 
This could be influenced by the initial parameters obtained from M1. However, M4 
produced slightly lower or higher values of θs, except for T2, M4 produced larger 
lower θs values (0.26 cm3/cm3) than M1.  
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Figure A.1 Soil water retention observed and simulated using different methods : Rosetta 
method (M1), fitted field SWRC method (M2), fitted laboratory SWRC method (M3), and 

inversion method (M4) at 10 cm depth.  
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Figure A.2 Soil water retention observed and simulated using different methods : Rosetta 
method (M1), fitted field SWRC method (M2), fitted laboratory SWRC method (M3), and 

inversion method (M4) at 20 cm depth.  

 

Water flow simulation and model performance 

Figures A.3 and A.4 show a comparison of different methods to simulate the water 
flow in a Hydrus 1D model using the optimised parameters presented in Table A.1, 
and their model performance evaluation is shown in Table A.2.  

For T1, all methods showed a similar correlation with R2 values from 0.67 to 0.83 
in soil volumetric water content (VWC) simulation. M2 and M3 had the lowest 
performance described by negative Nash of -0.57 to -1.29. M1 and M4 performed 
similarly with RMSE of 0.01 to 0.03 cm3/cm3 and high Nash from 0.5 to 0.76.  
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In T2, all methods showed very good correlation with high R2 ranging from 0.81 to 
0.98. However, M1, M2, and M3 showed a large difference between the observed and 
the predicted VWC and confirmed by negative Nash values ranging from -1.88 to -
49. This could be explained by large errors in estimating θs in these methods.  

For T3, the significant underestimation found in the results from M1, M2, and M3 
indicated by the high RMSE (0.01 to 0.02 cm3/cm3) and negative Nash (-0.05 to -7.41) 
for both soil depths. This showed that using the fitted method to predict the vG 
parameters can match well to the individual SWRC data points, but possibly result in 
poor simulation of water flow. M4 performed well in soil prediction with small 
RMSEs from 0.006 to 0.008 cm3/cm3. Interestingly, there was the fluctuation of VWC 
during the experimental period due to the lag irrigation time. It is noted that the same 
simulation pattern was used to predict the soil moisture. This shows simulation errors 
due to model assumptions that are not flexible to real phenomena e.g. the dynamic 
change of soil hydraulic properties during the growing season, the macropore flow, 
lateral flux of soil moisture. The overestimation during the dry-end events of the 
experiment could be due to crusts under extreme drought conditions altering the 
infiltration and evaporation process (Wang et al. 2016).  

At T4 high correlations were found in all methods with the R2 range from 0.78 to 
0.97. M2 gave a poor model simulation for the deeper soil with the negative Nash of 
-0.34 but better at the surface depth with high Nash value of 0.65. In contrast, M1 
performed poorly at the surface depth with Nash of -0.66 but better in the deeper soil 
with a Nash value of 0.69. M3 performed poorly at both soil depths with Nash of -
0.31 and -0.74. M4 performed very well at both soil depths with high Nash (0.79 and 
0.92) and low RMSE (0.002 and 0.003 cm3/cm3). 

At T5, M1 and M4 performed similarly to predict soil moisture content with R2 
ranging from 0.80 to 0.85, and high Nash values from 0.2 to 0.5. M2 again gave a 
poor simulation performance, with high RMSE from 0.018 and 0.02 cm3/cm3 for both 
soil depths. M3 gave a better performance at the surface depth with RMSE of 0.009 
cm3/cm3, but poorer RMSE of 0.017 cm3/cm3 at the greater depth, similar to M2. M4 
again provided good model satisfaction with low RMSEs of 0.006 and 0.008 cm3/cm3. 
However, M4 cannot predict well for the observed dry event.  

It was noted at the end dry event that for the loam soil, T4, the draining duration to 
reach the dry water content of 0.06 cm3/cm3 was 18 days longer than coarse soils, at 
T1, T2, T3, and T5 having the duration 6, 5, 5, and 7 days respectively. This confirms 
the similar draining magnitude behaviour of these coarse soils.  



Appendix 

135 

 

 

 

Figure A.3 Soil water flow observed and simulated using different methods : Rosetta 
method (M1), fitted field SWRC method (M2), fitted laboratory SWRC method (M3), and 

inversion method (M4) at 10 cm depth of each site, except T1 at 20 cm  
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Figure A.4 Soil water flow observed and simulated using different methods : Rosetta 
method (M1), fitted field SWRC method (M2), fitted laboratory SWRC method (M3), and 

inversion method (M4) at 20 cm depth of each site.  
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