How does endophytic fungi transform the Posidonia oceanica (L.) Delile (1813) meadow into the aegagropiles?

Lefebvre Laurence 1,*, Compère Philippe 2, Angélique Léonard 3, Erwan Plougonven 3, Nicolas Vandewalle 4 and Gobert Sylvie1,5

1. Introduction

The aegagropiles are:

- Found along the Mediterranean beaches
- Sized in mm to cm
- Shaped spherical to ellipsoid
- Agglomerate of seagrass "fibres" (P.oceanica)

2. µCT scan observation The organisation of *P.oceanica* aegagropiles: Morphotype with a rhizomic's nucleus (A), heterogeneous cluster of fibres (hypothesis: partially degraded rhizome

3.3 Internal architecture SE-SEM views of freeze-fractured aegagropiles

semi-thin sections (resin-embedded) Intermediate fibre (F.I.) Wide fibre (F.W.)

Thin fibre (F.T.)

3. Microscopic observation 3.1 Isolated fibre characterization

3 fibres types as seen in SE-SEM and on stained

Rhizomic Nucleus

BSE-LV-SEM of polished bloc faces of resin-embedded

Homogenous Nucleus

-3.2 Biotic degradation TEM views of ultra-thin sections

Perforations in the cell walls & degradation of the PCW middle lamella (A, B), Hyphes of black septate fungi (C)(Ascomycete, Aigialaceae).

4. Conclusion

The present study illustrates the origin and the internal constitution of aegagropiles:

- Coming from the Posidonia oceanica meadows;
- Composed of fibres of plant and sand particles;
- The result of the biological (fungal) degradation;
- Formed by hydrodynamism (several hypothetical steps).

 \rightarrow density increases from the periphery to the center Fibre orientation & characterization on polished bloc faces

(uranyle acetate contrast in BSE-LV-SEM, 0.4-0,6 Torr)

Fibre cross-section shapes depending on orientation, PCW details and microbial degradation revealed (\rightarrow)

5. Acknowledgement

The study is part of the STARE-CAPMED project funded by the STARESO Institute, the Territorial Collective of Corsica (CTC) and the Rhône Mediterranean Corsica Water Agency.

