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ABSTRACT

Aims. We develop a method that provides a comprehensive analysis of the oscillation spectra of solar-like pulsators.
We define new seismic indicators that should be as uncorrelated and as precise as possible and should hold detailed
information about stellar interiors. This is essential to improve the quality of the results obtained from asteroseismology
as it will provide better stellar models which in turn can be used to refine inferences made in exoplanetology and galactic
archaeology.
Methods. The presented method – WhoSGlAd – relies on Gram-Schmidt ’s orthogonalisation process. A Euclidean vector
subspace of functions is defined and the oscillation frequencies are projected over an orthonormal basis in a specific
order. This allows the obtention of independent coefficients that we combine to define independent seismic indicators.
Results. The developed method has been shown to be stable and to converge efficiently for solar-like pulsators. Thus,
detailed and precise inferences can be obtained on the mass, the age, the chemical composition and the undershooting
in the interior of the studied stars. However, attention has to be paid when studying the helium glitch as there seems to
be a degeneracy between the influence of the helium abundance and that of the heavy elements on the glitch amplitude.
As an example, we analyse the 16CygA (HD 186408) oscillation spectrum to provide an illustration of the capabilities
of the method.
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1. Introduction

Since the launch of CoRoT (Baglin et al. 2009) and Kepler
(Borucki et al. 2010) missions, the scientific community has
access to a tremendous amount of asteroseismic data of un-
precedented quality. Such data are essential to better con-
strain stellar structure and evolution and, in turn, improve
the characterisation of exoplanets and stellar populations.
However, it is essential to develop techniques that are able
to retrieve stellar parameters as accurately as possible in
order to benefit from the quality of the data. A very com-
plex problem in determining stellar parameters is the model
dependency of the results. The results are intrinsically de-
pendent on the input physics such as the equation of state
as well as the opacity tables used. It therefore becomes of
prime importance to develop techniques that are able to
test the influence of the input physics on stellar parameters
or even techniques that provide results as model indepen-
dent as possible.

With such precision in the data, and the precision of
the future missions TESS (Ricker et al. 2014) and PLATO
(Rauer et al. 2014), studying the signature of acoustic
glitches becomes a natural step towards better models.
This idea was originally proposed by Vorontsov (1988) and
Gough (1990). They both highlighted the effect of a sharp
feature in the stellar structure on the frequencies, either di-
rectly or on the second differences. Such considerations have
already been the subject of several studies. As an example

of the several techniques used, Mazumdar et al. (2014) illus-
trate four techniques either using the second frequency dif-
ferences or striving to isolate the glitch oscillation directly
from the frequencies. Also, most of the current methods
focus on the localisation of the helium second ionisation
zone or the base of the envelope convection zone (e.g. Mon-
teiro et al. 2000). This is a crucial first step on the way to
a better understanding of stellar physics. Indeed, a charac-
terisation of the convective envelope extension allows to get
constraints on convection itself as well as on overshooting
(both its efficiency and nature). Therefore, the glitch pro-
vides the necessary observational data needed to refine cur-
rent convection theories. Also, the study of the helium glitch
should provide information on the helium surface content in
low-mass stars. This is essential as, in such stars, it cannot
be derived from spectroscopic data. Therefore, a method-
ology taking advantage of most of the oscillation spectrum
aspects is required.

Finally, it is sometimes the case that studies use corre-
lated constraints or discard pieces of information in their
studies. For example, in method C from Verma et al. (2014),
the information that is not contained in the glitch (the
smooth component) is not used directly as the glitch infor-
mation is isolated to draw inferences. Therefore, the usual
indicators (e.g. large separation, small separation ratios,...)
are computed separately from the glitch and no method
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is proposed to determine properly the correlation between
those indicators and that of the glitch.

For those reasons, we propose a method: WhoSGlAd –
for Whole Spectrum and Glitches Adjustment – that takes
as much of the available spectral information as possible
into account. This method defines new seismic indicators
in such a way that they are as independent as possible and
significant from a statistical point of view. To do so, it relies
on linear algebra via Gram-Schmidt ’s algorithm.

The present paper is organised as follows. We first
present the method in a very general and mathematical
way in Sect. 2. Then Sect. 3 defines the seismic indicators
and their diagnosis power will be used to study solar-like
pulsators. In the following section, we demonstrate its abil-
ity to extract and analyse the glitches signal. We also show
its limitations. We present a first application to the case of
16 Cygni A (HD 186408) in Sect. 5. Let us insist on the
fact that we do not present here a thorough study of 16
Cygni A but we rather show an example of the ability of
the method to provide constraints on stellar structure. We
conclude the paper by discussing the results and detailing
future perspectives.

2. Method

In the present section, we describe the method we devel-
oped. It aims at using as much as possible of the information
available in the oscillation spectrum of a star. Therefore,
both the oscillatory and smooth part of the spectrum are
simultaneously analysed in a single adjustment. This avoids
multiple usage of the same information to draw different in-
ferences. The very strength of the proposed method is that
the different parameters obtained will be independent of
each other, i.e. their covariance matrix will be the identity
matrix. This will allow to build indicators which also are
independent of each other and draw statistically relevant
inferences. The independence of the parameters will be en-
sured by using Gram-Schmidt ’s (Gram 1883; Schmidt 1907)
algorithm. Then, the defined seismic indicators will be used
as constraints to provide improved models in the frame-
work of forward seismic modelling (see for example Miglio
& Montalbán (2005) for one of the first use of Levenberg-
Marquardt ’s algorithm to adjust a model to seismic and
non-seismic observables). Finally, such models may be used
as initial guesses for inverse seismic modelling. (see Rox-
burgh & Vorontsov (2002a,b) for the application of the in-
version technique on an artificial target, which shows the
feasibility of such techniques, and Buldgen et al. (2016a,b)
for examples of inversions in the case of 16 Cygni A.)

2.1. Mathematical description

Non-radial pulsation frequencies can be mathematically de-
fined by three integer numbers; the radial order n, the
spherical degree l, and the azimuthal order m (in this pa-
per, we do not consider the seismic probing of rotation and
consider only m = 0). The method we developed – WhoS-
GlAd – is based on linear algebra in a Euclidean space. The
vector space we consider is the set of N observed oscillation
frequencies νi. The standard deviation for each frequency is
written σi. Given two frequency vectors x and y we define

their scalar product as:

〈x|y〉 =

N∑

i=1

xiyi
σ2
i

. (1)

Often in asteroseismology, it is useful to compare two
sets of frequencies (e.g. theoretical and observed frequen-
cies) using a merit function defined as:

χ2 =

N∑

i=1

(νobs,i − νth,i)
2

σ2
i

, (2)

with νth and νobs, the theoretical and observed1 frequen-
cies. Taking advantage of the scalar product defined above
and the associated norm, this simply becomes:

χ2 = ‖νobs − νth‖
2. (3)

In the presence of a glitch, Houdek & Gough (2007) showed
that the oscillatory component in frequencies due to the
glitch can be isolated from the rest of the spectrum, called
the smooth component. Thus, to represent observed fre-
quencies, we define a vector subspace that is typically a
polynomial space – the smooth component – associated
with an oscillating component – the glitch –. The analytical
formulation of those two components will be given in the
following sections. This is very similar to what has been
done by Verma et al. (2014).

The method consists in the projection of the observed
and theoretical frequencies over the vector subspace. Then,
we define seismic indicators from the projections. Their def-
initions are given in Sect. 3. To do so, it is useful to define an
orthonormal basis over the vector subspace. This is done via
Gram-Schmidt ’s orthogonalisation process associated with
the definition of the scalar product (1). For more informa-
tion about this process as well as its equivalent form as a
QR decomposition, the interested reader may read App. D.

If we write j and j0 the indices associated with the basis
elements, pj the former basis elements, qj0 the orthonor-

mal basis elements, and R−1
j,j0

the transformation matrix,
we have:

qj0(n, l) =
∑

j≤j0

R−1
j,j0

pj(n, l), (4)

where the dependence in n and l translates that the basis
elements are evaluated at each observed value of the radial
order n and the spherical degree l.

It is essential to note that the projections will be done
in a specific order to obtain the lowest possible value of
the merit function. This will be the subject of the following
subsection. Finally, we write aj = 〈ν|qj〉 the projections
of the frequencies over the basis elements. The fitted fre-
quencies will then be given by:

νf (n, l) =
∑

j

ajqj(n, l). (5)

Let us add that, thanks to the orthonormalisation, the stan-
dard deviations of the coefficients aj are σ (aj) = 1 and
they are independent (their covariance matrix is the iden-
tity).

1 We denote by the subscript obs both the observed frequen-
cies and the frequencies derived from a reference model – which
constitutes an artificial target – and we denote by the subscript
th the frequencies that we adjust to those observations.
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2.2. Smooth component

Now that the mathematical context is given, we may de-
tail the vector subspace we selected to fit the smooth com-
ponent of the frequency spectrum. As the set of observed
radial orders and σi are usually different for each spherical
degree and the smooth component depends on l, the smooth
component basis elements depend on l. For each value of
l, the frequencies will be projected over the different pow-
ers considered. We also point out that, for each spherical
degree, the method requires at least the same number of
frequencies as of powers considered in the formulation. The
polynomials are then of the general form:

plk(n, l
′) = δll′pk(n), (6)

where δll′ is the Kronecker delta which compares two spher-
ical degrees l and l′ , pk(n) is a polynomial in the radial
order n and k represents its ordering. We note that the
previously defined j is now separated into two indices, the
spherical degree l and the ordered power k. For a better
understanding, the spherical degree and ordering will be
explicitly written for the smooth component transforma-
tion matrix as R−1

l,k,k0
. And the orthonormal basis elements

are:

qlk(n, l
′) = δll′qlk(n), (7)

which yield:

alk = 〈ν|qlk〉 =
∑

n

ν(n, l)qlk(n, l)

σ2(n, l)
, (8)

where thanks to the introduction of δll′ in Eqs. 6 and 7, the
sum over l′ collapses over a fixed degree l. For the smooth
component, we treat separately each spherical degree, the
parameters associated to a given degree only depend on the
frequencies of this degree.

According to the asymptotic theory of non-radial oscil-
lations (Gough 1986), we have the following formulation of
the expected frequencies as a function of n and l:

ν (n, l) ≃

(
n+

l

2
+ ǫ

)
∆, (9)

where ∆ =
(
2
∫ R∗

0
dr
c(r)

)−1

is the asymptotic large fre-

quency separation, c(r) is the adiabatic sound speed, and
R∗ is the radius at the photosphere of the star.

It follows that the first two polynomials in n (taken from
the right hand side of Eq. 6) used to depict the spectrum
smooth component will be :

p0(n) = 1, (10)

p1(n) = n. (11)

Then, to provide the best fit to the observed frequencies,
we methodically tested several combinations of powers to
find the set giving the best agreement with the observations
– the observations actually referring to theoretical models
taken as observed stars in a set of calibrations –, hence the
lowest χ2 value. We get:

p2(n) = n2. (12)

At this point, it is of prime importance to note that
the construction of the basis via Gram-Schmidt’s process

will have to be done following the ordering of the degrees
because it will allow us to associate the seismic indicators
to the projection of the frequencies on the successive basis
elements. For example, the projection of the frequencies on
the 0 order polynomial corresponds to a fit to a constant
value. This estimates the mean frequency value. Moreover,
we did not include other degrees as the fit of the smooth
component was already very good2. Also, adding higher
order polynomials to the smooth component might account
for some of the glitch oscillating features. It is essential
to avoid such a behaviour as the definitions of the seismic
indicators, and the inferences we draw from them, will be
impacted.

Furthermore, we could also include a regularisation pa-
rameter λ (as in Verma et al. (2014), method C) in order
to prevent those behaviours. This requires a new definition
of the vector subspaces. The vectors are now of dimension
2N . The first N components are defined as before while the
components from N+1 to 2N are 0 for both the frequencies
and the glitch polynomial, and the second derivative of the
polynomial for the smooth part. The vectors are now:

ν → ν
′ = (νi,i≤N , 0N<i≤2N )

smooth → q
′
j =

(
qj ,

∂2
qj

∂n2

)

glitch → q
′
j =

(
qj ,0

)
. (13)

Then, we have to define the scalar product of x and y as:

〈x|y〉 =

N∑

i=1

xiyi
σ2
i

+ λ2
2N∑

i=N+1

xiyi. (14)

Therefore, using the definition (3) with the new scalar prod-
uct gives another value of the merit function. The inclusion
of the regularisation parameter allows to minimise the os-
cillation of the smooth component as the minimisation of
the merit function will lead to a minimisation of the sec-
ond derivatives of the smooth component. Let us note that,
for the regularisation constant to have an influence on the
results, it must at least be on the order of the inverse of
the frequencies standard deviation. However, we performed
some tests with and without regularisation terms and it ap-
pears that the method is very stable without it. Moreover,
we observed in many cases that the results were degraded
when including it (See also Sect. A for an illustrative exam-
ple). Therefore, it is not necessary to include these regular-
isation terms to properly extract the glitch in our method.
As a consequence, the results presented in this paper do
not include such terms. The fact that we use fewer fitting
parameters than in Verma et al. (2014) (they consider poly-
nomials up to the fourth degree whereas we only reach the
second) might explain that the regularisation constant is
not necessary in our case. In addition, we note that using
λ = 0 leads to the classical χ2 fitting.

Finally, as we have three polynomials for each value of
l, we built, for the smooth component, a vector subspace
of dimension 3× l which equals 12 if we have four values
for l (e.g. 0, 1, 2, 3). As hinted earlier, more than 3 observed
frequencies of each degree are necessary to apply the devel-
oped method.

2 App. E shows that adding new elements to the set of basis
functions is indeed not relevant.
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2.3. Glitch

The formulations used by Verma et al. (2014) and Houdek
& Gough (2007) allow us to fit properly the helium and
convection zone glitches but they are highly non linear with
respect to the free parameters. Below is the expression from
Verma et al. (2014), which we adapted:

δνg,Verma = AHeνe
−c2ν

2

sin (4πτHeν + φHe)

+
ACZ

ν2
sin (4πτCZν + φCZ) , (15)

where the first term takes the helium glitch into account
and the second, the convection zone glitch. The quanti-
ties τHe, φHe, and AHe represent respectively the acoustic
depth of the second ionisation zone of helium, the phase
of the helium glitch, and its amplitude. The same goes for
the quantities τCZ, φCZ, and ACZ in the case of the base
of the envelope convective zone. Finally, c2 is the rate of
decrease in amplitude of the helium glitch with the squared
frequency.

Moreover, Eq. (15) is implicit since the frequency ap-
pears on the right-hand side. To adjust at best the frequen-
cies, it is therefore necessary to use non-linear least square
fitting algorithms (e.g. Levenberg-Marquardt ’s method, ge-
netic algorithms,...) which can be unstable and are very
sensitive to the initial guesses on the optimal parameters.

For this reason, we decided to adopt the following lin-
earised functions, expressed as a function of ñ =

(
n+ l

2

)

for the helium glitch:

pHeCk(ñ) = cos (4πTHeñ) ñ
−k, (16)

pHeSk(ñ) = sin (4πTHeñ) ñ
−k, (17)

with k = (4, 5); and, for the convection zone glitch:

pCC(ñ) = cos (4πTCZñ) ñ
−2, (18)

pCS(ñ) = sin (4πTCZñ) ñ
−2. (19)

To obtain the above expressions we replaced the value
of the frequency ν by its first order approximation from
the asymptotic formulation (9): ñ∆. We also defined
THe = τHe∆ and TCZ = τCZ∆.

Moreover, we approximated the exponential decrease in
frequency by the combination of two polynomials in ñ∆.
The degrees −4 and −5 have been chosen to reproduce at
best the decrease of the glitch amplitude towards high fre-
quencies (which was described using a gaussian by Houdek
& Gough 2007). To do so, we compared the polynomial
formulation with the exponential one (Eq. 15). Let us add
that we adjusted the helium glitch using several sets of de-
grees and the method proved to be very stable and the
results remained good. Both the fitted coefficients and de-
fined indicators values were quasi unaffected by the choice
of degrees. The glitch then writes:

δνHe(ñ) =

4∑

k=5

[cHe,kpHeCk(ñ) + sHe,kpHeSk(ñ)] , (20)

δνCZ(ñ) = [cCZpCC(ñ) + sCZpCS(ñ)] . (21)

Furthermore, such a formulation allows us to move on
with Gram-Schmidt ’s process and generate orthonormal
vectors to append the smooth component basis. As the

glitch is generated in the superficial layers, it should not
depend on l. Therefore, we defined the coefficients c and s
to be independent of l. By doing so, the vector subspace
associated with the glitch is only of dimension 6 and this
subspace is used to complete the orthonormal basis over
which frequencies are projected. We are thus able to write
the glitch contribution to the frequencies as:

δνg(ñ) =

4∑

k=5

[CHe,kqHeCk (ñ, THe) + SHe,kqHeSk (ñ, THe)]

+ CCZqCC (ñ, TCZ) + SCZqCS (ñ, TCZ) . (22)

We draw the reader’s attention to the fact that the ba-
sis functions depend on the acoustic depths of the second
ionisation zone of helium and the base of the envelope con-
vective zone, respectively – through THe and TCZ –. We
observe that the functions depend non-linearly on the val-
ues of THe and TCZ. To preserve the linearity of the method,
it is necessary to provide values for τHe and τCZ and leave
them unchanged to generate the basis and project the ob-
served frequencies over it. In the case of a theoretical model,
this estimation is done using the definition of the acoustic
depth, i.e.:

τHe/CZ =

∫ rHe/CZ

R∗

dr

c(r)
, (23)

where R∗ is the radius at the photosphere, rHe/CZ repre-
sents the radius of the helium second ionisation zone or of
the base of the envelope convection zone (in practice we
take the corresponding local maximum between the two lo-
cal minima of Γ1 due to the partial ionisation of He and
H for rHe and the last point below the surface for which
∇ < ∇rad for rCZ).

For observed data, we first generate the optimal model
that does not take the glitches into account. We then fit
this model for the glitches and retrieve the model values
of the acoustic depths as estimators of the optimal values.
Therefore, we do not provide any new means to estimate
the involved acoustic depths.

Eventually, we may optimise over the values of τHe and
τCZ to get the best results. This is done through the use of
Brent (1973)’s minimisation algorithm. However, it makes
the problem non linear again. Furthermore, the optimised
estimations of τHe and τCZ always remain very close to the
theoretical value and do not decrease significantly the χ2

value. Also, we observed that by using an initial value of
τHe different from that at the Γ1 maximum (e.g. at the min-
imum of the helium second ionisation zone) and adjusting
it, we found back the value at the maximum. Moreover,
we tried to find the value of Yf giving the best agreement
with the helium amplitude (defined in Sect. 3.3.1) observed
in the case of 16 Cyg A at fixed values of τHe correspond-
ing either to the second local minimum or the local maxi-
mum of the Γ1 profile. We noted that the difference between
both values of Yf is smaller than the standard deviation.
In addition, freeing τHe does not impact the surface helium
abundance retrieved in a significant way. This stems from
the fact that the acoustic depth value changes at most of
10 % and has little influence on the measured helium glitch
amplitude. Therefore, the influence on the calculated Yf is
negligible as well. Thus we finally decided to give up that
last non-linear minimisation for theoretical models.
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By keeping a fully linear implementation of the spec-
trum fitting we guarantee the stability of the algorithm, the
independence3 of the parameters obtained via the projec-
tion on the orthonormal basis as well as small computation
times. This is essential for it has to be included into a non-
linear routine that searches for a stellar model accounting
at best for the seismic and non-seismic observables.

3. Seismic indicators

The main advantage of the developed method is that it
provides – via Gram-Schmidt’s process – fitted coefficients
which are independent of each other. It therefore allows
us to derive seismic indicators as uncorrelated as possible.
We will define the ones that we explored in the current
section. To characterise those indicators, we computed their
evolution along the grid of models presented in the next
subsection and using the set of modes observed for 16 Cyg
A.

3.1. Models

The grid of models we used was computed using CLES (Scu-
flaire et al. 2008b) combined with LOSC (Scuflaire et al.
2008a) stellar evolution and oscillation codes. The models
used the FreeEOS software (Cassisi et al. 2003) to gen-
erate the equation of state table, the reaction rates pre-
scribed by Adelberger et al. (2011), the metal mixture of
AGSS09 (Asplund et al. 2009), and the OPAL opacity table
(Iglesias & Rogers 1996) combined with that of Ferguson
et al. (2005) at low temperatures. Moreover, the mixing
inside convective regions was computed according the mix-
ing length theory (Cox & Giuli 1968) and using the value
αMLT = l/Hp = 1.82 (where l is the mixing length and
Hp the pressure scale height) that we obtained via a solar
calibration. Microscopic diffusion was taken into account in
the computation by using Thoul et al. (1994)’s routine. For
each model, the temperature at the photosphere and the
conditions above the photosphere are determined by using
an Eddington T (τ) relationship. The models have masses
ranging from 0.90M⊙ to 1.30M⊙ by steps of 0.01M⊙ and
are in the main sequence phase. Moreover, each model has
an initial composition of Y0 = 0.25 and Z0 = 0.016 to
remain close to the solar case. Finally, unless specified oth-
erwise, the observed frequencies have been corrected for the
surface effects using Kjeldsen et al. (2008)’s prescription of
which the coefficients a and b have been calibrated by Sonoi
et al. (2015).

3.2. Smooth component indicators

3.2.1. Large separation

A commonly used indicator is the large separation which
holds a local (i.e. based on the individual frequencies) and
an asymptotic definition. To construct an estimator of the
large separation, we will take inspiration in the asymptotic
definition. In the asymptotic regime (n >> l), equation
(9) is satisfied. We notice that, in this formulation, ∆ rep-
resents the slope in n of the straight line fitting at best the

3 Provided that the measurements of the frequencies are inde-
pendent, which is not always the case.

frequencies. Moreover, to fit the spectrum smooth compo-
nent, we project the frequencies over the basis in a spe-
cific order given by the sequence of degrees (0, 1, 2). This
means that keeping only the expression of order 0 will give
an adjustment of the frequencies by a constant term, thus
estimating the mean value. Furthermore, if we now keep
the expression of first order, we adjust the frequencies to
a straight line of which the slope, if we rely on Eq. 9, is
∆. This is the most common way to define the mean large
separation in seismic analyses. However, we must note that
we have different basis vectors depending on the spherical
degree considered. This means that, for each value of l, we
will have a different regression to a straight line, therefore a
different estimate of the large separation ∆l. Using expres-
sions (4), (5), (7), and (8), we isolate this slope to write:

∆l = al,1R
−1
l,1,1. (24)

We may finally average these indicators over l to estimate
at best the large separation. Knowing that the standard
deviation of al,1 is 1, (R−1

l,1,1)
2 is the variance of ∆l. The

weighted mean of the large separations thus yields:

∆ =

∑
l

al,1/R
−1
l,1,1

∑
l

1/(R−1
l,1,1)

2
. (25)

Finally, we expect from Ulrich (1986) that ∆ should be an
estimator of the mean stellar density.

3.2.2. Normalised small separation

Two commonly used indicators are the small separations
d01(n) and d02(n) of which the definitions are:

d01(n) = (ν(n− 1, 1)− 2ν(n, 0) + ν(n, 1)) /2, (26)

d02(n) = (ν(n, 0)− ν(n− 1, 2)) . (27)

They allow a measurement of the spacing between the ob-
servations and the asymptotic relation (9). However, they
happen to be sensitive to the surface effects. Therefore,
Roxburgh & Vorontsov (2003) suggested to divide these ex-
pressions by the large separation in order to minimise such
effects. Indeed, they showed that those ratios are almost
independent of the structure of the outer layers of the star.

We thus introduce estimators of these ratios. Such ratios
represent the spacing between ridges of spherical degrees 0
and 1 for Eq. 26 and degrees 0 and 2 for Eq. 27 in the
échelle diagram (Grec et al. 1983). In a more general way,
we approximate the mean difference between the ridges of
spherical degrees 0 and l by comparing the mean values
of the frequencies for those degrees. That is (ν0 − νl) /∆0.
Assuming expression (9) to be exact, this difference is n0+
ǫ0 − (nl + ǫl + l/2). Then, we added −n0 + nl + l/2 to the
expression to make its value come close to ǫ0 − ǫl. We then
obtained the following expression:

r̂0l =
ν0 − νl
∆0

+ nl − n0 +
l

2
, (28)

where νl and nl are respectively the weighted mean values of
ν(n, l) and of n for the spherical degree l in accordance with
the definition of the scalar product. In addition, the mean
value νl equals al,0R

−1
l,0,0 as it is the fitting of the frequencies

Article number, page 5 of 20



A&A proofs: manuscript no. Article-Methode

of degree l to a constant value. Finally, it has to be stressed
that the above expression is slightly different from Eqs. (26)
and (27) as they represent the local spacing between ridges
in the échelle diagram and Eq. 28 corresponds to the mean
spacing. Fig. 1 shows the evolution of those indicators along
the grid presented in Sect. 3.14 for the set of modes observed
in 16 Cygni A. The x-axis is the large separation of spherical
degree 0 as we defined above and the y-axis the considered
indicator. We also display the observed values for 16 Cygni
A (HD 186408) using the frequencies determined by Davies
et al. (2015). In blue is the observed value and, in red, the
value corrected for the surface effects according to Kjeldsen
et al. (2008)’s prescription. We note that these indicators
are almost insensitive to surface effects excepted for the
case of r̂02, which value is changed by about 1σ. We only
show the standard deviation for the estimators of the small
separation as the one for the large separation is too small
to be visible on the plot. Indeed, we computed a standard
deviation for ∆0 of σ (∆0) = 5 10−3µHz.

To provide a comparison, we computed the evolution of
the ‘usual’ indicators along the same tracks as in Fig. 1 and
display it in Fig. B.1 of Appendix B. We observe that the
new indicators exhibit the same behaviour as the usual ones
and provide smaller standard deviations, therefore, tighter
constraints.

We note on Fig. 1 that r̂02 is a very good indicator of
the core conditions and should hold information about the
evolutionary stage on the main sequence as its evolution is
almost monotonic. It is therefore very similar to the small
separation that has been shown to carry information on
the evolution (Christensen-Dalsgaard 1988) as it is sensi-
tive to the sound speed gradient which in turn is sensitive
to the chemical composition changes. On the other hand,
r̂01 is not a good indicator of the evolution but carries addi-
tional information. For example, de Meulenaer et al. (2010)
showed that, for stars with masses and metallicities close
to that of α Centauri A (HD128620), it should provide an
upper limit on the amount of convective-core overshooting.
We also draw attention to the fact that r̂01 shows a turn
off for evolved stars. This means that we have to be cau-
tious when fitting models to the observations as, for specific
sets of input physics, there exists inaccessible regions. This
should allow to constrain the input physics.

Finally, r̂03 does not provide new information. In ad-
dition, we may observe from the comparison between the
observations and the theoretical tracks that the expected
masses retrieved from the different indicators are in agree-
ment. Indeed, from r̂01, we should expect masses between
1.06M⊙ and 1.11M⊙. Then, from r̂02, the expected values
are in between 1.06M⊙ and 1.07M⊙. Again, r̂03 does not
add some information as the values range from 1.05M⊙ to
1.06M⊙. As a consequence, we would expect the mass of 16
Cygni A to be around 1.06M⊙. This value has been high-
lighted on the figure by using a thick line. However, we
must observe that this does not provide a precise estimate
of 16 Cyg A mass as we only tested a specific chemical
composition – Y0 = 0.25, Z0 = 0.016 – as well as given
choice of αMLT = 1.82. A proper adjustment is needed to
draw conclusions. Those values are only given to illustrate
the compatibility between the different indicators. We also
show the influence of the composition and αMLT on the

4 However, in the case of the indicator r̂01 we used a 0.02M⊙

step for a better visibility.

coloured tracks. The blue line is for a higher initial helium
abundance. Then, the orange line depicts the influence of
a lower value of αMLT. Finally, the pink line shows how a
higher metallicity modifies the results. We observe in all
cases that the inferred mass should be lower.
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Fig. 1. Seismic HR diagram defined with the new indicators
r̂0l and computed along the grid presented in Sect. 3.1. The
masses increase from right to left. The blue marker shows the
observed value for 16 Cyg A while the red one shows the value
corrected for the surface effects following Kjeldsen et al. (2008)’s
prescription. The thick line represents the track for 1.06M⊙. The
blue line has been computed for Y0 = 0.27, the orange one for
αMLT = 1.5, and the pink one for (Z/X)0 = 0.018. All the
coloured lines have been computed for 1.06M⊙.

3.2.3. ∆0l indicators

As it has been shown in several studies, the combination of
the small separation ratios r01 and r10 first introduced by
Roxburgh & Vorontsov (2003) into r010 allows to provide
inferences about the stellar central mixed region extension
(Popielski & Dziembowski 2005; Deheuvels et al. 2010; Silva
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Aguirre et al. 2011). Indeed, the mean value and slope of
this indicator occupy very specific regions in the parameter
space according to the extent of the central mixed region.
This should therefore provide constraint on the amount of
overshooting necessary to reproduce observations. As an
example, an extensive study of several Kepler targets has
been realised by Deheuvels et al. (2016) who have been able
to provide constraints on the overshooting parameter αov

for eight of those targets. In the framework of this paper,
the indicator r̂01 represents an estimator of the mean value
of r010. We may therefore build an indicator for its slope as
follows:

∆0l =
∆l

∆0
− 1, (29)

with ∆l the large separation for modes of spherical degree
l defined by Eq. (24). It is straightforward to show that, in
the asymptotic regime, ∆01 indeed represents the slope of
the frequency ratio r01.

As for the small separation indicators, we computed the
evolution of such indicators along the grid of models pre-
sented in Sect. 3.1 to demonstrate their regularity and va-
lidity. This is shown in Fig. 2. We also display the observed
value for the case of 16 Cygni A. This value is corrected
for the surface effect using Kjeldsen et al. (2008)’s prescrip-
tion. As in Fig. 1, the error on ∆0 is too small to be visible.
Moreover, we show the influence of a change in the compo-
sition and of αMLT with the coloured tracks. The colours
are the same as in Fig. 1.

Again, it is possible to get an estimate of the mass value
for the given composition and physics. From ∆01, we expect
masses ranging from 1.06M⊙ to 1.07M⊙.Then, from ∆02,
we expect that they lie between 1.05M⊙ and 1.07M⊙. Fi-
nally, from ∆03, the mass should be between 1.00M⊙ and
1.05M⊙. This time, we observe a slight incompatibility be-
tween the first two indicators and the last one. Let us add
that we highlighted the value of 1.06M⊙ as in Fig. 1. More-
over, we note that, as opposed to the small separation ratio
indicators, the relative behaviours of the coloured tracks
are different for the three indicators. This could allow to
discriminate various choices in the physics of the models
considered as they represent different values of αMLT, Y0,
and Z/X0 and also to solve the slight mass discrepancy
observed.

Finally, as detailed above, the simultaneous use of both
r̂01 and ∆01 allows to provide estimations of the extent of
stellar mixed cores. To illustrate this, we plotted main se-
quence evolutionary tracks for a 1.2M⊙, Y0 = 0.25 and
X0 = 0.734 with several overshooting parameter values
ranging from 0.005 to 0.3. The overshooting parameter gives
the extent of the mixed core above the Schwarzschild limit
through d = αovmin (Hp, h) where Hp is the pressure scale
height and h the thickness of the convection zone. This is
shown in Fig. 3. The ZAMS is at the converging point of the
tracks and the TAMS is at their end. We observe that the
various tracks occupy very specific regions in the (∆01,r̂01)
diagram. Moreover, we note the striking resemblance of Fig.
3 and Fig. 3 of Deheuvels et al. (2016). This should allow
us to constrain the amount of overshooting. However, De-
heuvels et al. (2016) noted that for this diagnostic tool to be
efficient, the mean large separation of the target should not
exceed ∼ 110µHz and mixed modes should not be present
in the oscillation spectrum.
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Fig. 2. Seismic HR diagram defined with the new indicators
∆0l and computed along the grid presented in Sect. 3.1. The
masses increase from right to left. The red marker shows the ob-
served value corrected for the surface effects following Kjeldsen
et al. (2008)’s prescription. The thick line represents the track for
1.06M⊙. The blue line has been computed for Y0 = 0.27, the or-
ange one for αMLT = 1.5, and the pink one for (Z/X)0 = 0.018.
All the coloured lines have been computed for 1.06M⊙.

3.2.4. ǫ̂

To provide an estimate of ǫ, we define the following vector
subspace, where frequencies are described as:

ν(n, l) =

(
n+

l

2
+ ǫ

)
∆̂ =

(
n+

l

2

)
∆̂ +K, (30)

where ∆̂ and K are free parameters.
Then, we define an orthonormal basis over this sub-

space: q̃0 and q̃1. Finally, by projection of the frequencies
over this basis and identification of the several coefficients
with the asymptotic formulation, we can retrieve an expres-
sion for ǫ̂, the estimator of ǫ. We note that this projection
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Fig. 3. MS evolutionary tracks in the (∆01,r̂01) plane for models
of 1.2M⊙ with Y0 = 0.25 and X0 = 0.734 for several values of
the overshooting parameter αov shown in the legend.

also provides an expression to estimate the large separation
that is different from Eq. (25).

Figure 4 shows the evolution of the indicator ǫ̂ along
the grid presented in Sect. 3.1 but with a step of 0.02M⊙.
We may observe that this indicator is almost insensitive to
the mass for the early stages of the main sequence. The
influence of the mass only becomes visible when the stars
become older. Moreover, the red marker in Fig. 4 shows the
observed value for 16 Cygni A. We note a disagreement be-
tween theoretical and observed data. This disagreement can
however be tackled by correcting the observed frequencies
for the surface effects. This is what the blue and green mark-
ers represent. For the blue one, we have computed a correc-
tion to the surface effects following Kjeldsen et al. (2008)’s
prescription. Then, for the green one, we have computed
the correction prescribed by Sonoi et al. (2015). Therefore,
it seems reasonable that the indicator we defined could be
of some use to constrain the surface effects. It could pro-
vide a complementary method to that of Roxburgh (2016).
Indeed the method presented uses differences between ob-
served and model ǫ values – under the hypothesis that both
the model and observed star have the same inner structure
– to isolate only the surface contribution to the measured
frequencies. This allows to account for surface effects with-
out the need of empirical corrections. On the other hand,
the present indicator should allow to discriminate several
surface effects corrections without the need of any physical
assumption.

3.3. Glitch indicators

3.3.1. Helium amplitude

With the aim of retrieving the photospheric helium abun-
dance, we built an indicator of the helium glitch amplitude.
Verma et al. (2014) obtain their indicator via an integration
of the glitch amplitude over the spectrum. We prefer taking
advantage of the scalar product and define the indicator as
the norm of the helium glitch component, thus generating
the following expression:

AHe =
√
C2

He,5 + S2
He,5 + C2

He,4 + S2
He,4. (31)

Thanks to the orthonormalisation, it is independent of
the other indicators and its standard deviation equals 1.
We calculated the evolution of this indicator with respect
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Kjeldsen et al. 2008

Sonoi et al. 2015

Fig. 4. Evolution of ǫ̂ along the grid presented in Sect. 3.1.
The masses increase from top to bottom. The step is here of
0.02M⊙. The red, green and, blue markers respectively represent
the observation for 16 Cygni A, the observation for 16 Cygni A
corrected for the surface effects using Kjeldsen et al. (2008)’s
prescription and the one corrected using Sonoi et al. (2015)’s
prescription.

to the surface helium mass fraction Yf and the surface mass
fraction of metals Zf . This is shown in Figs. 5 and 6. Fig. 5
has been computed for stars with a fixed (Z/X)0 ratio of
0.022 for several surface helium mass fractions, displayed
on the abscissa, and for the three values of the mass shown
in the legend. To have a reference, we imposed the mod-
els to have a fixed value of the large separation – the one
observed for 16 Cyg A. In a similar way, Fig. 6 has been
computed for a fixed value of Y0 = 0.24 and for several
masses shown in the legend. The helium glitch amplitude
has then been computed for the values of Zf displayed on
the abscissa. We insist on the fact that these tracks do not
represent the evolution of the helium amplitude with the
surface composition along the evolution of a given model.
Instead, each point corresponds to a given stellar model
that fits the observed 16 Cygni A large separation for a
given surface composition. This means that those models
were not selected from the grid presented in Sect. 3.1.

We observe in Fig. 5 an increasing trend in the helium
glitch amplitude with the helium mass fraction as well as
with the mass. This has to be expected as a larger quan-
tity of helium inside the star would lead to a more im-
portant depression of the first adiabatic index Γ1 at the
second ionisation zone of helium, and, therefore, a glitch of
greater amplitude. Moreover, we also show the influence of
the surface effects by computing the amplitude evolution
for a 1.052M⊙ star for which the surface effects have been
taken into account via Kjeldsen et al. (2008)’s prescription
(dot-dashed line). It is apparent that they have little influ-
ence on the amplitude as the values remain in the 1σ error
bars of the uncorrected models. This was expected as the
glitch is of greater amplitude in the low frequencies regime
while the surface effects corrections are greater in the high
frequencies regime.

Furthermore, as shown in Fig. 6, the glitch amplitude
and the metallicity are anti-correlated. This corroborates
Basu et al. (2004)’s observations. Therefore, we are facing a
degeneracy and the glitch amplitude alone will not be suffi-
cient to estimate properly the surface helium mass fraction.
Thus, the smooth component indicators defined above will
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Fig. 5. Evolution of the helium glitch amplitude AHe with
the surface helium abundance Yf . Each track corresponds to
a given mass, written in the legend. The dot-dashed line repre-
sents the amplitude for a 1.052M⊙ model of which the frequen-
cies have been corrected for surface effects as in Kjeldsen et al.
(2008). Every model has an initial heavy elements abundance of
(Z/X)0 = 0.022. Each point has been computed with the same
large separation to remain at the same evolutionary stage.
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Fig. 6. Evolution of the helium glitch amplitude AHe with the
surface heavy elements abundance Zf . Each track corresponds
to a given mass labeled in the legend.

be of great help. This clearly shows that the AHe-Yf relation
is model dependent which should never be forgotten.

Fig. 7 illustrates this degeneracy. It represents the pro-
file of Γ1 as a function of the reduced radius in the super-
ficial layers of stars of a fixed large separation but with
several chemical compositions. We immediately notice that
both an increase of the surface helium abundance and a
decrease of the surface heavy elements abundance lead to
a minimum that increases in magnitude. Therefore, the he-
lium glitch amplitude becomes greater as well. We provide
an interpretation of this phenomenon in Sect. 4.2.

3.3.2. Convection zone amplitude

The definition of the envelope convective zone glitch ampli-
tude we provide is very similar to that of the helium glitch
and is the following:

ACZ =
√
C2

CZ + S2
CZ. (32)
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Fig. 7. Evolution of Γ1 as a function of the reduced radius in the
superficial layers of stars of fixed large separation. Every star has
a mass of 1.052M⊙. Two families of curves are displayed. The
black ones have a fixed value of the ratio between the initial
hydrogen and heavy elements abundances of (Z/X)0 = 0.022
and variable initial helium abundance. The red ones have a fixed
initial helium abundance of Y0 = 0.24 and a variable initial
heavy elements abundance. The different values are displayed
on the figure.

We expect this indicator to be a proxy of the sharp-
ness of the transition between the envelope convective zone
and the radiative zone. Again, thanks to the orthonormal-
isation, it is independent of the other indicators and its
standard deviation is equal to 1. We present in Fig. 8
its evolution with the importance of the undershooting,
characterised by the coefficient αunder. This coefficient de-
termines the size d of the undershooting region at the
bottom of the convective envelope. This size is given by
d = αundermin (Hp, h) where Hp is the pressure scale
height and h the thickness of the convection zone. In the
undershoot region, the temperature gradient is set to the
adiabatic one and the mixing is assumed to be instanta-
neous.

We expect an increase of ACZ with αunder as the in-
troduction of undershooting in a stellar model will create a
discontinuity of the temperature gradient. The temperature
gradient jump increases with the value of αunder. Thus, the
glitch amplitude increases as well. This is what we show in
Fig. 8 where the computed models have a mass of 1.052M⊙,
an initial hydrogen mass fraction of X0 = 0.744, and an
initial metal mass fraction of Z0 = 0.016. As for the case
of the helium amplitude evolution, we kept a fixed large
separation – which is that of 16 Cyg A – for each model.
Moreover, we noted that each computed model was at the
same evolutionary stage (constant central hydrogen mass
fraction). Therefore, the observed effect is not evolutionary
but rather the effect of the temperature gradient disconti-
nuity as expected. Finally, we may add that, when setting
the temperature gradient to the radiative one in the un-
dershoot region, we do not observe any significant trend in
the amplitude with αunder. We may thus conclude that we
observe the effect of the temperature gradient and not of
the chemical composition.
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Fig. 8. Evolution of the convection zone glitch amplitude
ACZ with αunder for a star of mass 1.052M⊙, X0 = 0.744,
Z0 = 0.016 and at a constant value of the large separation.
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Fig. 9. Fitted glitch to 16CygA (HD 186408) data (Davies et al.
2015). Only the l = 0 fitted curves are displayed.

4. Method characterisation

4.1. Capabilities

For the observed data, we have chosen the frequencies com-
puted by Davies et al. (2015) for the component A of the
binary system 16 Cygni (HD 186408). We come back to the
particular case of 16 Cyg A in Sect. 5. Figure 9 shows the
difference between the observed frequencies and the smooth
component of the fitted frequencies, the fitted helium glitch
alone and the fitted helium and convection zone glitches.
Only the l = 0 fitted curves are displayed. We observe that
the fit is good and that the helium glitch has been properly
isolated. However, the convection zone glitch is of very low
amplitude, compared to the helium glitch, and has a negli-
gible contribution. This is visible in the negligible improve-
ment of the χ2 value from the results without including the
convective zone glitch (about 10% variation). These results
are similar to those of Verma et al. (2014).

4.2. Limitations

The presented method has been developed for the study of
solar-like pulsators and to provide a comprehensive analysis
of their oscillation spectra. However, it is not yet adapted
to study evolved stars which exhibit mixed modes.

In addition, from masses around 1.25M⊙ and above as
well as for the highest values of the helium abundances con-
sidered (from Yf ∼ 0.195 and above), the evolution of the
helium glitch amplitude with the surface helium mass frac-
tion is less monotonic and inferences become unreliable.
Fig. 10 shows this limitation. Indeed, for 1.25M⊙ we ob-
serve a very sharp increase of the helium amplitude as we
defined in Sect. 3.3.1 for a quasi constant surface helium
mass fraction. This corresponds to a decrease of the sur-
face Z/X ratio which is shown in Sect. 3.3.1 to lead to
a higher amplitude. Also, we observe for 1.3M⊙ that the
last point (Yf ∼ 0.197 and AHe ∼ 96) moves backwards.
This is due to microscopic diffusion. We observe that the
size of the convective envelope decreases with the initial
helium abundance. This leads to a more efficient gravita-
tional settling as the diffusion velocities are greater close
to the surface. Therefore, the surface abundance becomes
smaller than for the previous point that had a lower ini-
tial helium abundance. We observe the same decrease in
the surface metallicity which explains the increase of the
amplitude even though the surface helium mass fraction
remained constant.

We also noted in Sect. 3.3.1 that the surface abundance
of metals has a relevant influence on the helium glitch am-
plitude and separating its contribution from that of the he-
lium is not an easy task. To investigate such a behaviour,
we developed a toy model for the first adiabatic index Γ1

which is thought to be the main contributor to the helium
glitch amplitude (Gough 1990; Houdek & Gough 2007). In
this model, we trace back the influence of the helium and
metals abundances on the dip of Γ1 in the helium second
ionisation zone. More information about the construction
of this model is given in Appendix C. Using it, we were
able to test the influence of the chemical composition de-
coupled from its evolutionary effect on the temperature and
density profiles. To do so, we artificially modified the chem-
ical composition profile of a reference model (black curve
in Fig. 11), without changing its temperature and density
profiles, to match the surface abundance, in either metals
or helium, of a second reference model. This way, we were
able to isolate the contribution of the chemical composition
alone. Fig. 11 shows the comparison between the helium
second ionisation zone toy models with modified chemical
composition profiles only (blue curves) and toy models with
the same composition but for which its effect on tempera-
ture and density have been taken into account (red curves).
We observe in the top panel that the effect of the helium
abundance dominates over the effect of temperature. In the
bottom panel, we observe that the metal abundance alone
does not modify by a significant amount the dip in the he-
lium second ionisation zone. However, when taking its influ-
ence on the temperature and density profiles into account,
the effect becomes significant. This allows to better under-
stand the degeneracy in composition on the helium ampli-
tude. One effect, that of the helium abundance is direct on
the shape of the Γ1 profile in the helium second ionisition
zone while the second, that of the metal abundances, is in-
direct as it influences the temperature and density profiles
which in turn modify the Γ1 profile.

Finally, we observe that, in a lnP − lnT diagram, the
curves for the different models in the temperature region of
the Γ1 dip are parallel to each other but at various height.
A higher lnP − lnT curve corresponds to a shallower
Γ1 dip. We also observe this behaviour with a fixed com-
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Fig. 10. Evolution of the helium glitch amplitude AHe with the
surface helium abundance Yf for high masses.

position and a variable mass. Higher masses models have
lower curves and deeper depressions in Γ1. Therefore, the
toy model allows to understand the influence of the mass
on the helium glitch amplitude as well.

5. Illustration with 16 Cygni A (HD 186408)
observations

16 Cyg A (HD 186408) is one of the brightest stars in the
Kepler field of view. It belongs to a binary system of solar
analogs, both exhibiting solar-like pulsations. The quality
and length of the collected time series makes it the ideal
subject to test the method. It should be noted that we do
not provide a detailed study of 16 Cygni A. Indeed, we
only present here the capability of the method to provide
structural constraints. A detailed study will be the object
of a future paper.

5.1. Methodology

To obtain constraints on 16 Cyg A, we compute the value
of the seismic indicators using the frequencies determined
by Davies et al. (2015). We have corrected the surface ef-
fects for the observed frequencies by using the power law
prescribed by Kjeldsen et al. (2008) and the a and b co-
efficients fitted by Sonoi et al. (2015) as a function of Teff

and g. The authors have done this coefficient adjustment
by comparing the adiabatic frequencies of patched models
based on 3D simulations and that of unpatched standard 1D
models. We then fit the observed values of ∆, r̂01, r̂02, and
AHe with the age, mass, initial mass fraction of hydrogen,
and the initial heavy elements over hydrogen abundance ra-
tio as free parameters. To do so, we select an initial guess
value of X0 and derive the best fit values of ∆, r̂01, and
r̂02. This results in a set of values for the mass, the age,
and (Z/X)0. Then, the adjustment is done by applying the
secant method to find the value of X0 in best agreement
with the target AHe. At each step of the secant algorithm –
at each value of X0 –, Levenberg-Marqardt ’s algorithm (L-
M) computes the optimal set of stellar parameters giving
the best fit of ∆, r̂01, and r̂02. Finally, when we have a good
estimate for AHe, we use L-M’s algorithm one last time to
derive the complete set of values for the mass, the age, X0,
and (Z/X)0 fitting the observed parameters. We used the
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Fig. 11. Comparison with a reference model (black curve) of
the toy model Γ1 profiles in cases for which the temperature
and density profiles have been decoupled from the composition
profiles (blue curves) and coupled cases (red curves). The dashed
lines have a common decreased abundance of the considered
element and the dotted lines have an increased abundance. The
top panel shows the effect of the helium abundance and the
bottom panel of the metals abundance.

secant method in order to diminish the computational time
needed to converge towards the solution.

5.2. Results

The values of the relevant seismic indicators as well as the
associated standard deviations computed from the observed
frequencies are given in Table 1. The column labeled Kjeld-
sen refers to the observed indicators corrected for the sur-
face effects using Sonoi et al. (2015)’s coefficient fitted to
Kjeldsen et al. (2008)’s prescription as explained in Sect.
3.1. The Sonoi column corresponds to the correction of
surface effects using a Lorentzian profile as in Sonoi et al.
(2015). We also derived the seismic indicators while adding
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smooth basis elements with n−1. As the frequencies are
projected in a specific order to build the seismic indica-
tors, only the glitches amplitudes are affected and we have:
AHe = 27.6 and ACZ = 3.3. Using the methodology de-
scribed above, we managed to derive the stellar parameters
given in Table 2 for the different sets of observed seismic
indicators. We note that changing the treatment of surface
effects or adding the n−1 basis elements have an impact on
the fitted parameters comparable to that of the frequen-
cies uncertainties. Thus, we will only discuss here the pa-
rameters adjusted to the data corrected for the surface ef-
fects using Kjeldsen et al. (2008)’s prescription and without
adding n−1 basis elements. The parameters we derived do
not constitute a detailed characterisation of the target 16
Cyg A. Rather, they illustrate the ability of the method
to provide constraints on a solar analog. Indeed, only one
single set of input physics was tested. Therefore, the stan-
dard deviations tend to be underestimated as they are the
ones intrinsic to the method. The abundances used for the
computations were the solar ones determined by Asplund
et al. (2009). Let us add that we obtain a surface helium
abundance of Yf = 0.242 ± 0.028 which lies in the inter-
val obtained by Verma et al. (2014), Yf,V ∈ [0.231, 0.251].
This is comforting us in the idea that the developed method
is efficient in isolating the glitches and drawing inferences
from their signatures. In Fig. 12, we show the evolution of
the helium glitch amplitude resulting from the 3 param-
eters adjustment of ∆, r̂01, and r̂02 as a function of X0.
We also show the evolution of the value of (Z/X)0. The
very linear trend justifies that we used the secant method
to provide successive estimates of AHe in order to lessen
the computational charge. In addition, we illustrate both
the observed value for AHe and the corrected value under
Kjeldsen et al. (2008)’s prescription. We note that the cor-
rected value is of about 0.79σ lower than the uncorrected
one. Using Sonoi et al. (2015)’s prescription only leads to
a 0.55σ variation of the measured amplitude. This demon-
strates that the surface effects have a small influence on the
amplitude we derive using the method. Also, we retrieved
a value of 970.97 s for τHe and 3042.32 s for τCZ. As they
were fixed to model values and, as a consequence, were nei-
ther parameters nor constraints of the adjustment, we do
not provide uncertainties. However, we may compare their
values to the ones adjusted by Verma et al. (2014). They
obtained τHe ∈ [868, 944] s and τCZ ∈ [2992, 3234] s. We
observe that τCZ lies in the interval calculated by Verma
et al. (2014) while the value of τHe is slightly above the
upper limit. However, as we show in Sect. 2.3 this does not
impact the inferences drawn from the helium glitch ampli-
tude in a significant way. To illustrate this statement, we
freed the value of τHe (but not that of τCZ as the convection
zone glitch is of negligible amplitude compared to that of
the helium glitch). The relative change between the opti-
mised τHe and its estimator is of only 6 %. Moreover, the
observed value of the helium glitch amplitude remains un-
changed compared to its standard deviation (we observe
a change of 0.06 σ). As expected, the best fit Yf also re-
mains untouched. At this point, one should be reminded
that we focus on the glitch amplitude to draw our infer-
ences. And, as we showed in Sect. 2.3, the exact location of
the glitch does not have a significant impact on its ampli-
tude as well as on the derived surface helium abundance.

Indicator Value σ
Kjeldsen Sonoi

∆(µHz) 104.088 103.611 0.005
AHe 30.4 30.1 1.0
ACZ 2.2 1.5 1.0
ǫ 1.3288 1.4086 0.0009
r̂01 0.0362 0.0362 0.0002
r̂02 0.0575 0.0561 0.0003
r̂03 0.1187 0.1184 0.0008
∆01 4.6 10−3 3.8 10−3 0.1 10−3

∆02 5.9 10−3 4.8 10−3 0.1 10−3

∆03 14.9 10−3 10.6 10−3 0.6 10−3

Table 1. Observed seismic indicators.

Quantity Value σ
Kjeldsen Sonoi

n0, n, n2 n−1

M(M⊙) 1.06 1.06 1.06 0.02
R(R⊙) 1.218 1.219 1.223 0.001

age (Gyr) 6.8 6.9 7.1 0.1
X0 0.684 0.697 0.685 0.010

(Z/X)0 0.035 0.031 0.036 0.002
Yf 0.242 0.232 0.240 0.028

[Fe/H ] 0.188 0.131 0.199 0.03

Table 2. Adjusted stellar parameters.

Finally, Fig. 13 shows the fitted helium glitches5 for the ob-
served data and the 4 parameters best fit model. It is visible
that the observed and fitted glitches are close in amplitude
and period. This demonstrates the ability of the method
to both isolate the glitch and the related parameters and
to provide a model reproducing at best those parameters.
We also show in Fig. 14 the comparison in an échelle dia-
gram of the observed frequencies and those of the best fit
model. We observe in this last figure that the smooth com-
ponent of the spectrum (not visible in the previous figure)
is properly adjusted. Thus, by fitting the set of indicators
∆0, r̂01, r̂02, and AHe we obtain a good representation of
the observed frequencies. We also show in App. F the ad-
justment to frequencies corrected for surface effects using
a Lorentzian profile as in Sonoi et al. (2015). We observe
in Fig. F.1 that the agreement between the model and ob-
served glitches is better than in Fig. 13. However, we also
note in the corresponding échelle diagram (Fig. F.2) that
there is an offset between observed and model ridges. This
corresponds to different values of ǫ̂. Fig. 4 also illustrates
this behaviour as it is clearly visible that only Kjeldsen
et al. (2008)’s prescription allow to reproduce the observed
value for ǫ̂.

6. Discussion and conclusions

6.1. Principle

In the present paper, we provide a new method that uses
as much of the available seismic information as possible.
Indeed, we take advantage of the information contained

5 We do not display the envelope convective zone glitch as its
amplitude is negligible compared to that of the helium glitch, as
mentioned in Sect. 4.
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Fig. 12. Helium amplitude (solid line) and (Z/X)0 ratio (dotted
line) versus the initial hydrogen abundance. The horizontal solid
line represents the target value for the amplitude – corrected for
the surface effects following Kjeldsen et al. (2008) – while the
dashed lines represent the 1σ interval. The horizontal dotted line
is the value of the amplitude without surface effects correction.
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diagram.

in both the glitches and the smooth component (usually
discarded in glitches analyses but then used separately for
forward seismic modelling, see Verma et al. (2014) for ex-
ample) of the spectrum to define indicators that are as inde-
pendent as possible of each other. To do so, we take advan-
tage of Gram-Schmidt’s algorithm to create an orthonormal
basis over which we project the frequencies. The obtained
coefficients are therefore independent of each other and con-
sist in a linear combination of the frequencies. Thus, using
the appropriate combination of those allows us to define
uncorrelated indicators. Such indicators are constructed in
order to reproduce the behaviour of ‘usual’ indicators such
as the large frequency separation. Up to this day and to
our knowledge, no method, has been proposed to provide
proper correlations between the smooth and glitch indica-
tors as they are built separately. Therefore, our method
provides the asteroseismologists with new diagnosis means.

6.2. Advantages

As the method only relies on linear algebra, it is very stable
and the computation times are negligible – of the order of a
fraction of a second –. Thus, it could easily be implemented
in stellar model fitting algorithms, which are non-linear,
without impacting the total computational time. This can
be done with any algorithm as the method only focuses on
the definition of new seismic indicators and does not rely on
the physics of the model itself. Let us add that the defined
indicators should be used in combination with non-seismic
constraints through a single merit function while searching
for a stellar model in order to obtain proper covariances be-
tween the inferred quantities – which is not often the case in
seismic analyses. The illustration for 16 Cyg A truly demon-
strates the possibility to use the new indicators to provide
further constraints on stellar structure in the framework of
forward seismic modelling.

In addition, the usual indicators often hold a local def-
inition and may use correlated information while the new
ones are built in a way that the information used is av-
eraged over the whole frequency range and that it is not
redundant (each observed frequency is used only once for
each indicator). This results in smaller standard deviations
and smoother behaviours. The Appendix B shows the evo-
lution of the classical indicators r01(n) and r02(n) as de-
fined by Roxburgh & Vorontsov (2003). We indeed observe
that the new definitions of the indicators give smaller error
bars while preserving the expected trends, providing tighter
constraints. Finally, the method has the advantage that it
can be implemented even in cases where some modes are
missing. It is not the case of the ‘usual’ methods as they
need successive modes to define some of their indicators. For
example, the classical local definitions of the large separa-
tion and second differences require at least two consecutive
frequencies. Therefore, whenever some modes are missing,
pieces of information might be discarded.

6.3. Information carried by the indicators

We have defined indicators that provide estimates for the
classical indicators that are the large separation, ∆ and
∆l, and the small separation ratios, r̂0l. As expected, ∆
provides an estimation of the stellar mean density (Ulrich
1986). Also, we defined the indicators ∆0l which combine
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the large separations associated with one specific spherical
degree l and which are known to give an estimate of the res-
onant cavity of the l degree modes (Monteiro 2002). Those
indicators provide an estimator of the slope of r010 which,
combined with r̂01 can be used to constrain the overshoot-
ing parameter as shown in Fig. 3.

Moreover, we observe in Fig. 1 that the indicator r̂02,
defined to estimate the small separation ratio between the
spherical degrees 0 and 2, is a proper indicator of the evo-
lution of the star, as expected from Christensen-Dalsgaard
(1988). Also, we observe that the indicator r̂01 presents a
degeneracy, as a turn-off occurs in the ∆0-r̂01 plane, and
there is an inaccessible region. This is a very interesting
observation as it should provide tight constraints on the
stellar structure. Indeed, we show that a change in compo-
sition or in the value of αMLT allows to modify that region.
It will therefore be necessary to use such parameters to
reproduce observed values.

Furthermore, Fig. 4 shows that we might get constraints
on the surface effects from the indicator ǫ̂ we defined. It
should allow to discriminate from several empirical formu-
lations meant to account for the surface effects. We have
tested both formulations from Kjeldsen et al. (2008) and
Sonoi et al. (2015) as an illustration of the diagnosis power
of the indicator ǫ̂. However, we are aware of the existence
of the formulation from Ball & Gizon (2014) and it should
also be inspected in further studies. Besides, we showed
that the helium amplitude indicator is almost unaffected
by the surface effects as it has to be expected (see for ex-
ample Fig. 12). Indeed, empirical surface effects corrections
are important for the high frequencies compared to νmax

while the glitch is of great amplitude only for the low fre-
quencies. Also, the helium glitch amplitude should allow to
draw inferences on the surface helium abundance as shown
by Fig. 5. However, attention has to be paid as it is also
anti-correlated with the metallicity (see Fig. 6). We have
demonstrated via a toy model for the first adiabatic index
that both effects on the amplitude stem from the position of
the adiabat which in turn determines the amplitude of the
second local Γ1 minimum due to helium partial ionisation.

In addition, we observe that the convective zone glitch
amplitude has a significantly lower amplitude than that of
the helium glitch and is correlated with the amount of un-
dershooting at the base of the envelope convection zone (in
agreement with Verma et al. 2014).

Finally, let us add that it is possible to define other
indicators than those presented in this paper. This should
therefore be carefully studied to take advantage of as much
of the available information as possible.

6.4. Limitations

However, we show that the method is only fit to draw in-
ferences about solar-like stars, that is low-mass stars on the
main-sequence. Indeed, Fig. 10 illustrates that from masses
around 1.3M⊙ and above, diffusion plays an important role
and the relation between helium surface abundance and the
helium glitch amplitude is not monotonic anymore. There-
fore, the method will have to be adapted for massive and
evolved stars.

Moreover, one could argue that using model values as
estimators of the acoustic depths of the glitches is a major
drawback of the method. However, the proposed method
does not focus on those quantities. Rather, we focus on the

information that the amplitude of the glitch (not the period
of the signal) carries. This means that we only need proper,
but not exact, estimators for the acoustic depths in order to
draw inferences. Indeed, we showed in Sect. 2.3, in the case
of the helium glitch, that a small excursion from the esti-
mated value (either by manually setting another value, that
of the second minimum in the first adiabatic index for the
helium glitch, or by optimising over its value) does not lead
to a significant change in the measured amplitude. There-
fore, the inferences drawn remained unchanged. However,
one could still regard this as a flaw of the method as we do
not provide a new way of retrieving the acoustic depths of
glitches. This could be explored in future studies by, for ex-
ample, finding the global opitmum for the acoustic depths
of the glitches and then using the measured of the value as
a constraint for the best fit model. Nevertheless, this would
make the calculations more time consuming and annihilate
the benefit of the orthonormalisation that is the indepen-
dence of the fitted parameters.

Also, the indicators should be used to complement non-
seismic data as we have shown that, for example, there ex-
ists a degeneracy between the helium glitch amplitude, the
helium surface abundance and the metallicity6 (see Figs. 5
and 6). Therefore, the helium amplitude alone is not suffi-
cient and additional information are needed to lift such a
degeneracy – these information may be contained in other
indicators (seismic and non-seismic).

6.5. Future perspective

The next step will be the detailed study with the new
method of several stars from the Kepler legacy sample
(Lund et al. 2017). This sample consists of 66 main sequence
stars for which at least one year of continuous observations
has been made. Having such long time series provides the
necessary precision to study glitches. Let us add that this
future study is intended to be independent of what has been
done in Verma et al. (2017).

Also, another important step will be the improvement of
the method by enabling the study of glitches present in red
subgiants spectra. The peculiarity of such pulsators is that
they exhibit mixed modes. This will consist in a new chal-
lenge as their analytical formulation is not a simple task.
However, this is a necessary step to improve our knowledge
of the evolution of a star such as the Sun. Moreover, this
will allow a better description of such stars and will provide
a deeper understanding of their properties via, for example,
the characterisation of the mixing processes.
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Fig. A.1. Comparison between the glitch adjustment for several
values of the regularisation constant λ for 16 Cyg A best model
determined in Sect. 5.2. The values are given in the legend. The
lines correspond to the fitted glitch and the markers to the ob-
served glitch. Only the fitted curves for l = 0 are displayed.

Appendix A: Effect of the regularisation constant

Fig. A.1 shows the influence of the regularisation constant
λ on the quality of the fitted glitch. We fitted the glitch
of the best model obtained in Sect. 5.2 using the values
of λ shown in the legend. We observe that, when using
a value of 102 which is already significant as discussed in
Sect. 2.2, the fit (red dashed curve) remains close to the
one obtained without including regularisation terms (solid
black curve). There is only a slightly higher dispersion in
the model frequencies subtracted from the smooth part of
the spectrum. To show the degradation caused by a regu-
larisation constant that dominates the adjustment, we used
λ = 103. We observe both a discrepancy between results
without and with (dotted black curve) regularisation terms
and a higher dispersion. This translates in a higher value
of the merit function (from χ2 ∼ 1 without regularisation
to χ2 ∼ 500 with λ = 103).

Appendix B: Comparison with usual indicators

We present in Fig. B.1 the evolution of the ‘usual’ indica-
tors r01(n) and r02(n) (Roxburgh & Vorontsov 2003) used
in asteroseismology in order to compare them with the new
indicators. They are evaluated at the value of n = 21 which
corresponds to the measured value of nmax for 16 Cyg A
(nmax being the value of n at l = 0 of closest frequency to
the νmax value). First let us draw the attention to the fact
that the usual indicators hold a local value, as Eqs. (26)
and (27) show, while the new indicators are averaged over
the complete set of available modes. It results from this av-
eraging a lower standard deviation. Then, we notice that
the behaviour of both the usual indicators and the new
ones follow similar trends. This means that the definition is
consistent with what has been done up to now and that it
should hold the same information. Therefore, it should be
able to provide similar diagnostics, but with higher preci-
sions.
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Fig. B.1. Evolution of the normalised small separation as de-
fined by Roxburgh & Vorontsov (2003) and evaluated at n = 21
along the grid presented in Sect. 3.1. The red marker shows the
observed value corrected for the surface effects following Kjeld-
sen et al. (2008)’s prescription. The thick line represents the
track for 1.06M⊙. The top panel is the three points normalised
small separation between spherical degrees 0 and 1, the mid-
dle one is the five points normalised small separation between
spherical degrees 0 and 1 and the bottom panel is the normalised
small separation between spherical degrees 0 and 2.

Appendix C: Γ1 toy model

To build a toy model for Γ1 that replicates at best its be-
haviour in the helium second ionisation zone we use the
following hypotheses:

– In the helium second ionisation zone, hydrogen is fully
ionised;

– Metals are in their atomic form;
– We consider a perfect gas.

We then define:

– The once ionised helium number of particles per unit
volume He+ and twice ionised helium number of parti-
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cles per unit volume He++ such that:

He+ +He++ =
Y ρ

4mu
, (C.1)

where mu is the atomic mass unit;
– The helium ionisation fraction:

xHe =
He++

He+ +He++
, (C.2)

which equals 0 if the helium is ionised only once and 1
if it is fully ionised;

– The electron number of particles per unit volume:

e =

(
X + (1 + xHe)

Y

4

)
ρ

mu
; (C.3)

– The total number of particles:

n =

(
2X + (2 + xHe)

Y

4
+
∑

i

Zi

Ai

)
ρ

mu
, (C.4)

where Zi is the mass fraction of the metal labeled i and
Ai its mass number.

Using Saha’s equation (Saha 1920):

Sa =
He++e

He+
=

g

h3
(2πmekBT )

3

2 e
− χ

kBT , (C.5)

where g is the statistical weight of helium at its fundamental
state, h is Planck’s constant, kB is Boltzmann’s constant,
me the electron mass, and χ the helium second ionisation
energy, we may obtain a second order equation for xHe:

Y ρ

4mu
x2

He +

[(
X +

Y

4

)
ρ

mu
+ Sa

]
xHe − Sa = 0, (C.6)

which we solve to obtain the evolution of xHe with temper-
ature and density. We may also derive this expression with
respect to temperature at constant density. This yields:

∂xHe

∂T

∣∣∣∣
ρ

=
(1− xHe)

(
3
2 + χ

kBT

)
muSa
ρT

X +
(
1
2 + xHe

)
Y
2 + mu

ρ Sa
. (C.7)

Then we have the following expressions:

PT =
∂lnP

∂lnT

∣∣∣∣
s

= 1 +
eD

n

(
3

2
+

χ

kBT

)
, (C.8)

Pρ =
∂lnP

∂lnρ

∣∣∣∣
s

=

[
(2−D)X

+ (2 + xHe − (1 + xHe)D)
Y

4
+
∑

i

Zi

Ai

]
ρ

mun
,

(C.9)

cv =
3

2

kBPT

µmu
+

Y χ

4mu

∂xHe

∂T

∣∣∣∣
ρ

, (C.10)

where µ is the mean molecular weight and:

D =

(
e

xHe(1 − xHe)

4mu

Y ρ
+ 1

)−1

. (C.11)

Finally, we may insert their values in the relation linking
Γ1, PT , Pρ, and cv:

Γ1 = Pρ + P 2
T

P

cvρT
. (C.12)

Appendix D: Gram-Schmidt’s process and QR
decomposition

As a reminder, Gram-Schmidt’s algorithm consists in the
construction of orthonormal basis elements from a set of
non-orthonormal basis elements. Let us consider the ele-
ment of index j0 : pj0 . Let us also assume that we have
already built the set of orthonormal basis functions up to
index j0 − 1, that is the set

(
q1, · · · , qj0−1

)
. To build el-

ement qj0 , we first subtract to pj0 its projection over the
successive previous basis elements. We thus have:

uj0 = pj0 −

j0−1∑

j=1

〈
pj0 |qj

〉
qj , (D.1)

where uj0 is the basis element orthogonal to the set(
q1, · · · , qj0−1

)
. Finally, it is normalised to obtain:

qj0 =
uj0

‖uj0‖
. (D.2)

It is also possible to express this process as a QR de-
composition. To do so we call Pl the matrix of initial poly-
nomials and Ql the matrix of orthonormal polynomials for
a given spherical degree:

Pl =



p0(nmin) · · · p2(nmin)

...
...

p0(nmax) · · · p2(nmax)


 = (p0 · · · p2)l ,

(D.3)

Ql =



q0(nmin) · · · q2(nmin)

...
...

q0(nmax) · · · q2(nmax)


 = (q0 · · · q2)l ,

(D.4)

where nmin is the lowest observed radial order and nmax

the highest one for the spherical degree considered.
We may then express Gram-Schmidt ’s procedure in a

matrix form as a QR decomposition as follows:

Ql = PlR
−1
l , (D.5)

where, using our definition of the scalar product:

Rl =



〈q0|p0〉l · · · 〈q0|p2〉l

. . .
...

0 〈q2|p2〉l


 , (D.6)

is an upper triangular matrix.
We may now generalise by considering several spherical

degrees. For the smooth part, the matrices become block
matrices which are the combination of the matrices for the
several spherical degrees considered. This block disposition
illustrates the fact that we have different basis functions for
the different spherical degrees – this is not the case for the
glitch part –. This is represented by a Kronecker delta in
Eq. 6. In these matrices, each row corresponds to a given
mode and each column corresponds to a given element of
the basis. Finally, we append the glitch part to those block
matrices. They take the following form (we remind that the
independent variable for the glitch basis is ñ = n+ l/2):
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P =









P0 0 pHe,C,5(n) · · · pC,S(n)

. . .
.
.
.

.

.

.
0 P3 pHe,C,5(n + 3/2) · · · pC,S(n + 3/2)









,

(D.7)

Q =









Q0 0 qHe,C,5(n, l) · · · qC,S(n, l)

. . .
.
.
.

.

.

.
0 Q3 qHe,C,5(n, l) · · · qC,S(n, l)









, (D.8)

And the R matrix becomes:

R =



























R0 0
−−−−−−−−−→〈

qk|pHe,C,5

〉

l=0 · · ·
−−−−−−−→〈

qk|pC,S

〉

l=0

. . .
.
.
.

.

.

.

0 R3

−−−−−−−−−→〈

qk|pHe,C,5

〉

l=3 · · ·
−−−−−−−→〈

qk|pC,S

〉

l=3

0

〈

qHe,C,5|pHe,C,5

〉

· · ·
〈

qHe,C,5|pC,S

〉

. . .
.
.
.

0
〈

qC,S|pC,S

〉



























,

(D.9)

where
−−−−−→〈
qk|pg

〉
l=0 is a column vector whose rows are the

successive scalar products of the basis elements with the
glitch function – denoted by the g index – such that
−−−−−→〈
qk|pg

〉
l=0 =

(〈
q0|pg

〉
l=0

· · ·
〈
q2|pg

〉
l=0

)T
. We may

again write the QR decomposition as:

Q = PR−1 (D.10)

Appendix E: A numerical example

We generated a set of frequencies for spherical degrees from
0 to 2 (listed in Table E.1) and applied our method. We
show in Figs. E.1 and E.2 the successive adjustments of the
basis functions. This shows the validity of using the set of
functions described in Sect. 2 and allows oneself to com-
pare their results with ours. As a reminder, we project the
frequencies over the basis in the specific order explained in
Sect. 2. Therefore, taken in the correct order, these plots
provide intermediary results for the glitch adjustment. We
also show in Table E.2 the values of the fitted coefficients.
In this example, we also fitted n−1 polynomials – inspired
by the second order form of the asymptotic expansion – to
show that it is not necessary, nor relevant, to add supple-
mentary basis elements to our method. Indeed, the fitted
coefficient values become comparable to the standard de-
viation that is equal to 1, through the orthonormalisation.
Such values and plots were obtained as follows:

1. Considering the set of standard deviations from Ta-
ble E.1, we use Gram-Schmidt procedure (Eq. 4) asso-
ciated with the definition of the scalar product (Eq. 1)
to produce the ordered orthonormal basis functions for
each value of the spherical degree l. Thus, we succes-
sively project the former basis elements pj(n, l) (i.e. the
ordered set of polynomials n0,n1,n2 and the glitch func-
tions for each spherical degree) on the already defined
orthonormal basis elements qj0(n, l). Then, we normalise
those projections. This provides us with the orthonor-
mal basis elements qj0(n, l). as well as the transforma-

tion matrix R−1
j,j0

.

l n ν(µHz) σ(µHz)

0 13 1498.89 0.07
0 14 1603.60 0.07
0 15 1708.55 0.08
0 16 1812.40 0.07
0 17 1916.65 0.06
0 18 2022.56 0.05
0 19 2128.56 0.04
0 20 2234.84 0.05
0 21 2341.67 0.05
0 22 2448.06 0.08
0 23 2554.95 0.16
1 13 1546.42 0.07
1 14 1651.36 0.09
1 15 1755.56 0.08
1 16 1860.40 0.05
1 17 1965.44 0.05
1 18 2071.47 0.05
1 19 2178.50 0.04
1 20 2284.98 0.05
1 21 2391.77 0.06
1 22 2499.11 0.08
1 23 2606.15 0.13
2 13 1596.42 0.19
2 14 1701.68 0.17
2 15 1805.69 0.11
2 16 1910.30 0.10
2 17 2016.47 0.08
2 18 2122.70 0.06
2 19 2229.41 0.06
2 20 2336.56 0.09
2 21 2443.24 0.13
2 22 2550.54 0.21

Table E.1. Example set of frequencies.

l = 0 l = 1 l = 2

al0 112948.0 117296.1 72112.2
al1 14952.0 14674.1 6882.0
al2 74.0 79.4 35.4
al−1 −3.5 9.0 6.3

AHe 27.5
ACZ 9.4

Table E.2. Fitted parameters to the frequencies of Table E.1.

2. For the smooth part and one spherical degree at a time,
the frequencies from Table E.1 are projected on the
orthonormal basis elements following the proper order
to produce the fitted frequencies, νf (n, l), according to
Eq. 5. Where the fitted coefficients are given by Eq. 8.
Then, for the glitch part, the frequencies are projected
simultaneously for every spherical degree on the glitch
basis elements following the same procedure. This is due
to the fact that the glitch coefficients should not depend
on l. This produces the coefficients from Table E.2.

Appendix F: Supplementary adjustments

We show in the present section the best fit model frequen-
cies adjusted to the observed 16 Cygni A frequencies for
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Fig. E.1. Comparison between the successive adjustments and
the observed radial modes frequencies listed in Table E.1. The
upper panel represents the observed frequencies compared to the
first order adjustment while the lower panel is the residual of the
first order adjustment compared to the second order fit to those
residuals.
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Fig. E.2. Separated glitches adjustments to the frequencies in
Table E.1 of both glithes shown for the spherical degree l = 0.
The upper panel shows the helium glitch while the lower one
shows the convection zone glitch.
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Fig. F.1. Comparison between the observed helium glitch δνo
(solid line) and the one resulting from the best fit model δνm
(dot-dashed line) for l = 0. We also display the observed glitch
as a function of the frequencies (errorbars) as well as the best
model glitch associated with the theoretical frequencies (dia-
mond). The observed frequencies have been corrected for surface
effects using Sonoi et al. (2015)’s prescription.

several cases. First we show the adjustment to the frequen-
cies corrected for surface effects using a Lorentzian profile
as in Sonoi et al. (2015). Fig. F.1 shows that both glitches
are in good agreement. However, the frequencies are sys-
tematically shifted, as Fig. F.2 illustrates, as a consequence
of the difference between the observed and theoretical ǫ̂ val-
ues. Fig. 4 illustrates such a discrepancy. This shows that,
even though Sonoi et al. (2015) showed that for high fre-
quency regimes Kjeldsen et al. (2008)’s prescription is not
able to reproduce frequency differences between patched
and unpatched model, it is the only tested empirical cor-
rection that allowed us to reproduce the observed value for
ǫ̂. In a further study, it would be appropriate to try out a
scaled formulation of Ball & Gizon (2014)’s correction such
as presented in Manchon et al. (2018).

We also provide in Fig. F.3 the best fit model including
terms in n−1 in the basis functions for the smooth part of
the spectrum. By eye, the glitch adjustment seems better
than in Fig. 13. However, as shown in table E.2, the im-
provement is not significant as the fitted parameters values
are comparable to their standard deviation. Moreover, Ta-
ble 2 demonstrates that the effect of including such terms
in the adjustment is comparable to a variation of 1σ in the
frequencies.
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Fig. F.2. Comparison between the observed frequencies (dia-
monds) and the best model frequencies (circles) in an échelle

diagram. The observed frequencies have been corrected for sur-
face effects using Sonoi et al. (2015)’s prescription.
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Fig. F.3. Comparison between the observed helium glitch δνo
(solid line) and the one resulting from the best fit model δνm
(dot-dashed line) for l = 0. We also display the observed glitch as
a function of the frequencies (errorbars) as well as the best model
glitch associated with the theoretical frequencies (diamond). We
include polynomials in n−1 to the basis functions.
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