

The Tarantula Massive Binaries Monitoring: the double-lined massive systems

Laurent Mahy

H. Sana - L. A. Almeida - M. Abdul-Masih -A. de Koter - N. Langer - TMBM team

KU LEUVEN

<u>VLT/FLAMES Tarantula</u> <u>Survey (VFTS)</u>

- 800 massive stars
- FLAMES @ ESO
- multi-epoch
 - V < 18

The VLT-FLAMES Tarantula Survey

I. Introduction and observational overview*

C. J. Evans¹, W. D. Taylor², V. Hénault-Brunet², H. Sana³, A. de Koter^{3,4}, S. Simón-Díaz^{5,6}, G. Carraro⁷, T. Bagnoli³, N. Bastian^{8,9}, J. M. Bestenlehner¹⁰, A. Z. Bonanos¹¹, E. Bressert^{9,12,13}, I. Brott^{4,14},
M. A. Campbell², M. Cantiello¹⁵, J. S. Clark¹⁶, E. Costa¹⁷, P. A. Crowther¹⁸, S. E. de Mink^{19,**}, E. Doran¹⁸, P. L. Dufton²⁰, P. R. Dunstall²⁰, K. Friedrich¹⁵, M. Garcia^{5,6}, M. Gieles²¹, G. Gräfener¹⁰, A. Herrero^{5,6}, I. D. Howarth²², R. G. Izzard¹⁵, N. Langer¹⁵, D. J. Lennon²³, J. Maíz Apellániz^{24,***}, N. Markova²⁵, F. Najarro²⁶, J. Puls²⁷, O. H. Ramirez³, C. Sabín-Sanjulián^{5,6}, S. J. Smartt²⁰, V. E. Stroud^{16,28}, J. Th. van Loon²⁹, J. S. Vink¹⁰, and N. R. Walborn¹⁹

A&A 618, A73 (2018) https://doi.org/10.1051/0004-6361/201833433 © ESO 2018

The VLT-FLAMES Tarantula Survey

XXIX. Massive star formation in the local 30 Doradu

F. R. N. Schneider¹, O. H. Ramírez-Agudelo², F. Tramper³, J. M. Bestenlehner^{4,5}, N. Ca C. Sabín-Sanjulián⁸, S. Simón-Díaz^{9,10}, N. Langer¹¹, L. Fossati¹², G. Gräfener¹¹, P. A. A. de Koter^{13,7}, M. Gieles¹⁴, A. Herrero^{9,10}, R. G. Izzard^{14,15}, V. Kalari¹⁶, R. S. Klessen J. Maíz Apellániz¹⁸, N. Markova¹⁹, J. Th. van Loon²⁰, J. S. Vink²¹, and N. J.

A&A 550, A107 (2013) DOI: 10.1051/0004-6361/201219621 © ESO 2013

The VLT-FLAMES Tarantula Survey*,**,***

VIII. Multiplicity properties of the O-type star population

H. Sana¹, A. de Koter^{1,2}, S. E. de Mink^{3,4,****}, P. R. Dunstall⁵, C. J. Evans⁶, V. Hénault-Brunet⁷, J. Maíz Apellániz⁸,
 O. H. Ramírez-Agudelo¹, W. D. Taylor⁷, N. R. Walborn³, J. S. Clark⁹, P. A. Crowther¹⁰, A. Herrero^{11,12}, M. Gieles¹³,
 N. Langer¹⁴, D. J. Lennon^{15,3}, and J. S. Vink¹⁶

A&A 550, A107 (2013) DOI: 10.1051/0004-6361/201219621 © ESO 2013

The VLT-FLAMES Tarantula Survey*,**,***

VIII. Multiplicity properties of the O-type star population

H. Sana¹, A. de Koter^{1,2}, S. E. de Mink^{3,4,****}, P. R. Dunstall⁵, C. J. Evans⁶, V. Hénault-Brunet⁷, J. Maíz Apellániz⁸,
 O. H. Ramírez-Agudelo¹, W. D. Taylor⁷, N. R. Walborn³, J. S. Clark⁹, P. A. Crowther¹⁰, A. Herrero^{11,12}, M. Gieles¹³,
 N. Langer¹⁴, D. J. Lennon^{15,3}, and J. S. Vink¹⁶

Binary fraction = $51 \pm 4\%$

Tarantula Massive Binary Monitoring (TMBM)

- 102 massive stars
- FLAMES @ ESO
- 32 multi-epoch
- [3950 4560] A
- 93 O-type binaries
- 7 B-type binaries
- 2 WNh (Shenar et al. 2017)

Tarantula Massive Binary Monitoring (TMBM)

- 102 massive stars
- FLAMES @ ESO
- 32 multi-epoch
- [3950 4560] A
- 93 O-type binaries
- 7 B-type binaries
- 2 WNh (Shenar et al. 2017)

Almeida et al. (2017) provided orbital solutions for: 51 SB1s and 31 SB2s

Goals

- Characterize the physical and chemical properties
- better understand the impact of binary interaction on the evolution of massive stars

Goals

- Characterize the physical and chemical properties
- better understand the impact of binary interaction on the evolution of massive stars

Methodology

- **Spectroscopy** for 31 SB2s + **Photometry** for 13 SB2s
- Fourier spectral disentangling (Simon & Sturm 1994, Ilijic et al. 2004)
- CMFGEN atmosphere fitting (Hillier & Miller 1998)

From de Mink et al. (2014), assuming 100% binaries:

- 71% of pre mass transfer
- 24% of after mass transfer
- 5% of semi-detached systems

From de Mink et al. (2014), assuming 100% binaries:

- 71% of pre mass transfer
- 24% of after mass transfer
- 5% of semi-detached systems

From our sample:

- 23 pre mass transfer (~ 74%)
- 6 semi-detached/mass transfer (~ 19%)
- 2 (over-)contact systems (~ 7%)

Rotational mixing

Single giants/supergiants

Detached binaries

Grin et al. (2017)

Mahy et al. (in prep.)

Rotational mixing

Single giants/supergiants

Interacting binaries

Mahy et al. (in prep.)

Tidal mixing & Mass transfer

Tidal mixing & Mass transfer

Mass discrepancy

Spectroscopical mass - surface gravity and radius Evolutionary mass - coming from the BONN models Brott et al. 2011, Kohler et al. 2015 BONNSAI (Schneider et al. 2014)

Mass discrepancy

Spectroscopical mass - surface gravity and radius Evolutionary mass - coming from the models

Dynamical mass for 26 objects

Conclusions

- 31 massive systems at LMC metallicity
- 4 systems showing hints of mass transfer
- The effect of tides on chemical mixing is limited, whereas the mass transfer leads to the appearance of chemically processed material at the surface (also see Martins et al. 2017)
- No mass discrepancy is observed except for interacting systems

Papers are in preparation - Mahy et al. - Stay tuned !!!

Thanks

Back up slides

Mass - Luminosity relation

For 6 Msun < M < 50 Msun

 $\log(L/L_{\odot}) = [2.45 \pm 0.04] \log(M/M_{\odot}) + [1.51 \pm 0.20]$

For 4 Msun < M < 20 Msun

 $\log(L/L_{\odot}) = 3.09 \log(M/M_{\odot}) + 0.89.$

Gonzalez et al. (2005)

