O and early B stars in the GES analysed by CMFGEN

Laurent Mahy FRS-FNRS Postdoc

University of Liège

Overview

- Multiplicity among GES massive stars
- Method to determine the parameters
- Results
- Conclusion

Overview

- Multiplicity among GES massive stars
- Method to determine the parameters
- Results
- Conclusion

Multiplicity among GES massive

stars

- O and early B stars = 20 objects from B1.5V $\longrightarrow \mathrm{O} .5111\left(\mathrm{f}^{*}\right)$
- For present analysis : we focus on BOV $\longrightarrow 03.5111\left(f^{*}\right)$
= 16 objects

Multiplicity among GES massive

 stars- Among these stars, there are obviously some binaries : - CPD -58 2649 :

Clear SB2 signature in Carbon and Helium lines

Multiplicity among GES massive

stars

, CPD -59 2591 :

Clear SB2 signature in at least Nitrogen and Helium lines

Multiplicity among GES massive

stars

> HD93161B :
Already mentioned as showing variations by Nazé et al. (2005)

We retrieved 2 FEROS spectra at two different epochs:

Clear SB2
signature in the Helium lines

Multiplicity among GES massive

stars

CPD -59 2600 :
Reported as SB1 (and maybe SB2) by Sota et al. (2014)
We retrieved several FEROS data:

Multiplicity among GES massive

stars

- From 16 objects, 4 are clearly binary systems (~25\%) we removed them from the analysis
- The others are considered as presumably single stars but we must be careful because for almost all these objects, only one spectrum has been taken

Overview

- Multiplicity among GES massive stars
- Method to determine the parameters
- Results
- Conclusion

Method to determine the

parameters

- Fit by eyes :
- Teff = ratio between the Hel 4471 and Hell 4542 lines
- Logg = wings of Balmer lines (only H_{δ} available in

GIRAFFE spectra)

- N abundance $=$ triplet NIII 4510-15-23
- C abundance $=$ CIII 4070 line
- O abundance $=$ Oll when available
- Fit to minimize the X^{2} (more automatic procedure)

Method to determine the

parameters

- Fit to minimize the χ^{2} (more automatic procedure)
- A regular grid has been computed and is still in development:

$28000 \mathrm{~K} \leq$ Teff $\leq 40000 \mathrm{~K}$ $3.4 \leq \log \mathrm{g} \leq 4.3$

Overview

- Multiplicity among GES massive stars
- Method to determine the parameters
- Results
- Conclusion

Results

- ALS 15-206 :

By eye : Teff = 34000 K
Logg = 4.1

Results

CPD -58 2627:

By eye : Teff = 33500 K
Logg = 4.1

Results

CPD -59 2627:

By eye : Teff = 35000 K
Logg = 4.1

Results

- Both methods are consistent

 - HR Diagram :Stars seem to be around 2 ± 2 Myrs

Only the hottest star is a giant, the others are dwarfs

For late O stars, CNO abundances appear to be solar. For the other stars, it is under investigation

Results

- Both methods are consistent

 - HR Diagram :With Fastwind, it appears lower log g but same range of Teff

But still preliminary results!

Overview

- Multiplicity among GES massive stars
- Method to determine the parameters
- Results

Conclusion

Conclusion

- Discover where the differences between both codes come from
- Continue to determine the Teff-logg parameters to allow a better estimation of the CNO abundances

