HD 166734 <u>a modern study of a</u> O+O supergiant binary

Laurent Mahy Post doc

KU Leuven University / Liège University

Leuven VFTS meeting

<u>Overview</u>

- History
- New analysis:
 - Spectroscopy
 - Photometry
 - Disentangling + Atmosphere modelling
 - Evolutionary status
- Conclusion

<u>History</u>

- Discovery: Wolff (1963)
- First orbital solution: Conti et al. (1980)

Spectral Type	Primary (O7 If)	Secondary (O9 I)
Radius (R ₀)	23	24
<i>V</i>	9 ^m 0	9.4 mag
<i>M</i> _{<i>n</i>}	$-7^{m}_{}0$ (assumed)	-6.6 mag
Distance (kpc)	2.3	2.3
$v \sin i (\mathrm{km s^{-1}})$	80	80
$f(m)(M_{\odot})$	8.1	6.9
$m \sin^3 i (M_{\odot}) \dots$	29	31
a sin $i(M_{\odot})$	90	85

PHYSICAL PARAMETERS OF HD 166734

• Observation of the light curve: Otero & Wils (2005)

<u>History</u>

- Discovery: Wolff (1963)
- First orbital solution: Conti et al. (1980)

Period = 34.54 days

Spectral Type	Primary (O7 If)	Secondary (O9 I)
Radius (R_{\odot})	23	24
<i>V</i>	9 ^m 0	9.4 mag
M.,	$-7^{m}_{.0}$ (assumed)	-6.6 mag
Distance (kpc)	2.3	2.3
$v \sin i (\mathrm{km s^{-1}})$	80	80
$f(m)(M_{\odot})$	8.1	6.9
$m \sin^3 i (M_{\odot}) \dots$	29	31
a sin $i(M_{\odot})$	90	85

Primary component less massive

• Observation of the light curve: Otero & Wils (2005)

PHYSICAL PARAMETERS OF HD 166734

- Dataset:
 - ✓ FEROS spectra @ MPG/ESO 2.2m (La Silla, Chile)
 - ✓ ESPRESSO spectra @ 2.12m (San Pedro Màrtir, Mexico)

Total = 68 high-resolution + 61 mid-resolution spectra

• Orbital solution:

• Orbital solution:

Primary = 07.5 If Secondary = O9 I(f)

Primary component now more massive

-			
-		SB2 solution	
		Primary	Secondary
-	P [day]	34.537723	± 0.001330
	e	0.618 ±	£ 0.005
	ω [°]	236.183	± 0.786
	T_0 [HJD – 2450000]	2195.064	± 0.036
	$q\left(M_1/M_2\right)$	1.179 ±	£ 0.016
/	γ [km s ⁻¹]	-5.88 ± 0.89	7.12 ± 0.96
•	$K [\mathrm{km s^{-1}}]$	142.01 ± 1.53	167.39 ± 1.79
	$a \sin i [R_{\odot}]$	76.23 ± 0.89	<u>89.85 ± 1.05</u>
	$M \sin^3 i [M_{\odot}]$	27.92 ± 0.81	23.69 ± 0.68
	rms [km s ⁻¹]	11.	14

		All	data
Parameter	Units	WR	0
Р	(d)	31.680 :	± 0.013
е		0.694 🗄	= 0.005
9	M_{1}/M_{2}	1.782 ±	= 0.030
Т	-2450000	6345.43	± 0.32
ω	(°)	287.8	± 1.2
Κ	$({\rm km \ s^{-1}})$	157.0 ± 2.3	279.8 ± 6.2
γ	$({\rm km}~{\rm s}^{-1})$	-32.8 ± 1.7	32.8 ± 2.9
$M \sin^3 i$	(M _O)	65.3 ± 5.6	36.6 ± 1.9
rms	$({\rm km \ s^{-1}})$	8.4	14
			6

WR21a (Tramper et al. 2016)

• Lightcurve in VRI filters

Taken with TAROT (La Silla, Chile, PI: Klotz)

• Lightcurve fitted with PHOEBE (Prsa & Zwitter, 2005)

	Primary	Secondary
<i>i</i> [°]	63.0 ± 2.7	
$R_{\rm mean} [R_{\odot}]$	27.5 ± 2.3	26.8 ± 2.4
$R_{\text{pole}} [R_{\odot}]$	26.5 ± 2.0	25.9 ± 2.2
$\hat{R_{\text{point}}} [R_{\odot}]$	31.6 ± 5.4	31.9 ± 7.3
$\hat{R_{\text{side}}} [R_{\odot}]$	27.1 ± 2.1	26.0 ± 2.2
$R_{\rm back} [R_{\odot}]$	28.8 ± 2.8	28.1 ± 2.8
M _{bol} [mag]	-9.85 ± 0.17	-9.58 ± 0.20
l_1/l_2	1.28 ± 0.14	

 $\begin{array}{l} M_1 \ \ \sim 39.5 \ M_{\odot} \\ M_2 \ \ \sim 33.5 \ M_{\odot} \end{array}$

Normalized flux

• Stellar winds

✓ Hα emission follows the primary component

✓ At periastron, the emission disappears

• Stellar winds

✓ Ha emission follows the primary component

 At periastron, the emission disappears

Not enough space between the stars for a stellar wind collision

• Evolutionary status

Chemical abundances:

	Primary	Secondary
He/H	0.12 ± 0.03	0.12 ± 0.03
C/H	$1.2 \pm 0.4 \times 10^{-4}$	$2.0 \pm 0.3 \times 10^{-4}$
N/H	$6.1 \pm 1.2 \times 10^{-4}$	$1.8 \pm 0.5 \times 10^{-4}$
O/H	$2.7 \pm 0.5 \times 10^{-4}$	$4.6 \pm 0.3 \times 10^{-4}$

• Evolutionary status

From Geneva tracks

- Overshooting parameter = 0.1
- Initial rotational velocity ~ 300 km/s
- Z = 0.014

From Bonn tracks

- Overshooting parameter = 0.335
- Initial rotational velocity = 150 km/s
 - Z = 0.0088

• Evolutionary status

From Geneva tracks

From Bonn tracks

Initial rotational velocity = 150 km/s

Z = 0.0088

For a comparison between evolutionary tracks, see Martins & Palacios (2013)

• Evolutionary status

From Geneva tracks

Primary:

- ➡Initial mass = 44.0 M_☉
- ➡Age = 5.2 Myrs
- →Actual mass = 34.5 M_☉
- Actual equatorial velocity = 15 km/s

Secondary:

- ➡Initial mass = 37.0 M_☉
- ➡Age = 6.0 Myrs
- ⇒Actual mass = 31.0 M₀
- ➡Actual equatorial velocity = 18 km/s

From Bonn tracks

BONNSAI (Schneider et al. 2014)

Primary:

- ➡ Initial mass = 56.1 M_☉
- ⇒Age = 3.0 Myrs
- →Actual mass = 47.8 M_☉
- Actual equatorial velocity = 110 km/s

Secondary:

- ➡ Initial mass = 47.4 M_☉
- ➡Age = 3.5 Myrs
- ⇒Actual mass = 41.2 M₀
- Actual equatorial velocity = 110 km/s

<u>Conclusion</u>

- Complete analysis of HD166734.
- Not only one correct evolutionary code.
- More of similar systems (high eccentricity, long period, supergiant objects) because they are excellent tests for evolutionary models.