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Electromyographic decoding of response
to command in disorders of consciousness

ABSTRACT

Objective: To propose a new methodology based on single-trial analysis for detecting residual
response to command with EMG in patients with disorders of consciousness (DOC), overcoming
the issue of trial dependency and decreasing the influence of a patient’s fluctuation of vigilance or
arousal over time on diagnostic accuracy.

Methods: Forty-five patients with DOC (18 with vegetative/unresponsive wakefulness syndrome
[VS/UWS], 22 in aminimally conscious state [MCS], 3 who emerged fromMCS [EMCS], and 2with
locked-in syndrome [LIS]) and 20 healthy controls were included in the study. Patients were ran-
domly instructed to either move their left or right hand or listen to a control command (“It is a sunny
day”) while EMG activity was recorded on both arms.

Results: Differential EMG activity was detected in all MCS cases displaying reproducible
response to command at bedside on multiple assessments, even though only 6 of the 14 individ-
uals presented a behavioral response to command on the day of the EMG assessment. An EMG
response was also detected in all EMCS and LIS patients, and 2MCS patients showing nonreflex-
ive movements without command following at the bedside. None of the VS/UWS presented
a response to command with this method.

Conclusions: This method allowed us to reliably distinguish between different levels of conscious-
ness and could potentially help decrease diagnostic errors in patients with motor impairment but
presenting residual motor activity. Neurology® 2016;87:2099–2107

GLOSSARY
CRS-R5 Coma Recovery Scale–Revised; DOC5 disorders of consciousness; EMCS5 emergence from minimally conscious
state; LIS 5 locked-in syndrome; MCS 5 minimally conscious state; RMS 5 root mean square; VS/UWS 5 vegetative state/
unresponsive wakefulness syndrome.

Keystones in the diagnosis of patients recovering from coma are the acquisition of voluntary
responses such as command following, distinguishing patients in a vegetative state/unresponsive
wakefulness syndrome (VS/UWS; characterized by the recovery of eye opening without aware-
ness of self and environment1–3) from patients in a minimally conscious state (MCS; character-
ized by inconsistent, fluctuating but reproducible signs of consciousness4). However, patients
with disorders of consciousness (DOC) have limited neuromuscular abilities,5,6 challenging the
detection of behavioral response to command based on visual and tactile feedback, as used in
clinical gold standard behavioral scales. An additional limitation of behavioral assessment is its
dependence on an examiner’s experience and subjectivity.7 Recent neuroimaging studies have
suggested that 11%–33% of patients behaviorally diagnosed as unresponsive using behavioral
scales may actually present brain-related signs of consciousness,8 highlighting the need to
develop more objective and observer-independent diagnostic tools for this population. In par-
ticular, EMG has been proposed for the detection of micromovements that often go unnoticed
by an observer at a patient’s bedside, but results have been mixed.9,10 In the current study, we
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aimed to improve the detection of residual mus-
cular activity related to command following
using a novel EMG method with single-trial
level analysis. Given high non-stationarities in
the EMG signal (e.g., artifact) and fluctuations
in the level of consciousness or arousal over
time, we hypothesized that removing depen-
dence on intertrial consistency in this popula-
tion could improve detection of volitional
response to command.

METHODS Participants. Among all patients admitted to the

University Hospital of Liège between 2013 and 2014, 45 patients

were included in this study (mean age 40 6 15 years; 30 male).

Patients were subcategorized according to the following diagno-

ses: MCS2 encompasses patients without signs of language pres-

ervation (i.e., showing only visual pursuit or fixation, object

localization or manipulation, localization of noxious stimulation,

automatic motor response, or smiling/crying in response to exter-

nal stimuli) whereas MCS1 includes patients showing behavioral

responses suggesting language preservation such as command fol-

lowing or intelligible words.11–13 Emergence from MCS (EMCS)

is characterized by the recovery of functional communication or

functional object use.4 The locked-in syndrome (LIS), on the

other hand, is a state in which the patient is paralyzed but

awake and fully conscious.14

In our study, 17 patients were diagnosed as being in VS/

UWS, 7 in MCS2, 14 in MCS1, 5 in EMCS, and 2 in LIS.

Patient LIS1 was able to perform horizontal head movements

and slight movements of the arms. Patient LIS2 had a left hemi-

plegia but could move his right arm within a normal range of

motion. Both showed very little spasticity. Inclusion criteria were

(1) at least 28 days postinjury, (2) preserved auditory evoked

potentials or presence of auditory startle, and (3) no neuromus-

cular function blockers and no sedation within the prior 24

hours. Exclusion criteria were (1) a documented history of prior

brain injury, (2) a premorbid history of developmental, psychi-

atric, or neurologic illness resulting in documented functional

disability up to the time of the injury, (3) a premorbid history of

uncorrected hearing impairments, (4) flaccidity in response to

noxious stimulation, and (5) acute illness. Four of these patients

were evaluated twice (see table 1). Twenty-three patients had

traumatic and 22 patients had nontraumatic etiologies (i.e.,

stroke, hemorrhage, cardiac arrest, infection, or metabolic dis-

orders). Average duration since insult was 38 6 48 months

(range 1 month–18 years; median 14 months). Table 1 sum-

marizes patients’ demographic and clinical data. We also

included 20 healthy controls (mean age 34 6 13 years; 11 male;

see table 2). For this group, exclusion criteria were (1) uncor-

rected hearing impairments, (2) muscle disease or muscle dys-

function due to an injury, and (3) developmental, psychiatric, or

neurologic illness. Spasticity of the upper limbs was evaluated

using the Modified Ashworth Scale by a trained physiologist and

is reported in table e-1 at Neurology.org along with antispastic

medications.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the Ethics Committee of

the University Hospital of Liège. Each healthy control and each

patient’s legal representative provided written informed consent.

Behavioral assessment and final diagnosis. Patients’ level of
consciousness was assessed by a trained examiner using the Coma

Recovery Scale–Revised (CRS-R) on the day of the EMG

recording and several times during the week to increase diagnostic

accuracy.15 The best score obtained during the week was used as

the final diagnosis.

Paradigm. Three different instructions (recorded using a neutral
male voice) were presented to the participants: 2 target instruc-

tions (i.e., “Move your left hand” and “Move your right hand”)

and 1 control instruction (i.e., “It is a sunny day”). Each instruc-

tion was presented 3 times in a row within a trial. Each trial lasted

21 seconds, including the instructions (3 seconds). A block of

stimulation consisted of 3 minutes of rest followed by 5 trials

of each instruction randomly presented with an intertrial interval

of 10 seconds (about 10 minutes in total) (figure 1). Each par-

ticipant completed a total of 3 blocks with breaks of varied dura-

tion, depending on level of fatigue.

Signal acquisition. Left and right upper limb electrical activity

of the abductor policis brevis muscle (channel “Hand”) and the

flexor digitorum superficialis muscle (channel “Arm”) was re-

corded at the bedside with 8 Ag/AgCl self-adhesive surface

electrodes, placed in a bipolar derivation with an interelectrode

distance of 20 mm, sampled at 500 Hz.16,17 Electrodes were

connected to a portable BrainVision vAmp amplifier. Data were

acquired and auditory instructions presented using a laptop

running the general-purpose software platform BCI2000.18

Data analysis. The EMG signals were filtered with a zero-phase

fourth-order bandpass Butterworth filter (IIR, fc 5 20–120 Hz)

and a second-order notch filter (IIR, fc 5 50 Hz, Q 5 35). We

then computed the root mean square (RMS) of 1-second

overlapping (90% overlap) windows, occurring between the

beginning of the 2-second and end of the 3-second following the

presentation of each instruction within a trial (see gray area in

figure 1), resulting in 33 windows for each trial and each location.

For each location, we then extracted the difference (Δactive)

between averaged RMS value during the trial and the preceding

intertrial interval. The difference (Δrest) between averaged RMS

value was also evaluated on consecutive overlapping windows

during baseline (1-second window, 90% overlap; interwindow

distance and length were chosen to match those used for Δactive).

Mean (mΔrest) and SD (sΔrest) of the RMS difference during

baseline were then used to set the threshold equal to mΔrest
12.6 sΔrest, which corresponded to detecting an unexpected

event with a p value of 0.01 if the data were normally distributed.

We considered a positive activation during a trial if at least 1 of

the 2 ipsilateral locations exceeded the respective threshold, i.e.,

Δactive_arm_ipsilateral . Tarm_ipsilateral or Δactive_hand_ipsilateral . Than-

d_ipsilateral. We considered a control trial (placebo) as positive if

Δactive at one of the 4 locations exceeded threshold.

We hypothesized that an increase in EMG activity during

commands “Move your right hand” and “Move your left hand”

could be observed in conscious patients while absent in uncon-

scious VS/UWS patients. Because of the patients’ clinical condi-

tion, we did not expect an EMG response to all commands, but

hypothesized a difference in the ratio between response to com-

mands “Move your right/left hand” and control command “It is

a sunny day”; this ratio could be used to distinguish volitional

response to command from reflexive, spastic, or involuntary

movements. We computed an EMG score defined by (L1R)/

(C11), with L and R being the number of positive activations

detected during left and right command, respectively, and C

being the number of wrongly positive activations during the

control condition. By including the control condition, the score

takes into account the number of false-positives observed. We

then defined a threshold for response (vs no response) to
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Table 1 Demographic, clinical, and task-related data of the patient sample

Final diagnosis Sex Age, y Etiology TSI, mo

Behavioral assessment EMG assessment

Diagnosis CRS-R L R P Score Above threshold score

VS/UWS1 M 27 Trauma 1 VS 1-1-1-0-1-1 5 4 8 1.0

VS/UWS2 F 26 Trauma 7 VS 1-1-2-1-0-0 0 3 5 0.5

VS/UWS3 M 41 Trauma 10 VS 1-0-2-1-0-2 6 6 8 1.3

VS/UWS4 M 41 Trauma 14 VS 0-1-1-1-0-2 2 4 4 1.2

VS/UWS5 M 55 Trauma 19 VS 1-0-1-1-0-1 1 3 2 1.3

VS/UWS6 M 32 Trauma 48 VS 0-0-1-1-0-1 2 6 6 1.1

VS/UWS7 M 28 SAH 3 VS 1-1-1-1-0-2 4 6 10 0.9

VS/UWS8 F 60 Infection 4 VS 2-0-2-1-0-2 6 3 5 1.5

VS/UWS9a M 43 Anoxia 6 VS 1-1-2-2-0-2 2 6 5 1.3

VS/UWS10 F 66 SAH 7 VS 0-0-1-1-0-1 7 5 7 1.5

VS/UWS11b M 57 SAH 9 VS 1-0-2-1-0-2 5 6 7 1.4

VS/UWS12 M 42 Cardiac arrest 10 VS 1-0-2-0-0-2 1 1 1 1.0

VS/UWS13 F 66 Hypoglycemia 11 VS 1-1-1-1-0-1 4 5 5 1.5

VS/UWS14 M 47 AVC 48 VS 1-0-1-1-0-1 1 2 1 1.5

VS/UWS15 M 7 Anoxia 64 VS 1-1-1-1-0-1 2 3 3 1.3

MCS21 M 29 Trauma 6 VS 0-1-1-1-0-1 3 3 5 1.0

MCS22 F 51 Trauma 7 VS 0-0-1-1-0-1 8 3 7 1.4

MCS23 F 25 Trauma 11 MCS2 2-3-2-1-0-2 4 6 6 1.4

MCS24 F 40 Trauma 42 MCS2 2-1-2-2-0-1 5 3 6 1.1

MCS25 F 20 Trauma 43 VS 1-0-1-1-0-1 7 7 2 4.7 X

MCS26 F 33 Trauma 46 MCS2 0-0-1-2-0-1 3 8 6 1.6 X

MCS27 M 26 Trauma 145 MCS2 2-3-1-1-0-2 4 3 4 1.4

MCS28a M 44 Anoxic 20 VS 1-1-1-2-0-2 7 2 5 1.5

MCS11 M 55 Trauma 1 VS 1-0-2-1-0-1 7 10 7 2.1 X

MCS12 M 25 Trauma 18 MCS1 3-3-2-1-0-1 6 6 6 1.7 X

MCS13 M 32 Trauma 35 VS 1-0-1-1-0-1 6 2 2 2.7 X

MCS14 M 28 Trauma 61 MCS1 3-4-5-2-0-2 2 6 3 2.0 X

MCS15 F 32 Trauma 154 MCS1 2-4-5-1-0-2 6 5 6 1.6 X

MCS16 M 39 SAH 8 MCS1 4-1-2-2-1-1 2 11 5 2.2 X

3 7 3 2.5 X

MCS17 F 70 SAH 10 MCS1 3-4-5-2-0-2 10 7 7 2.1 X

MCS18 M 29 Anoxia 13 MCS- 1-4-5-2-0-2 4 8 3 3.0 X

MCS19b M 59 SAH 25 VS 1-0-1-1-0-2 3 4 2 2.3 X

MCS110 M 55 Cardiac arrest 68 MCS1 3-3-5-1-0-1 6 9 3 3.8 X

MCS111 M 38 Infection 88 MCS2 3-1-1-1-0-1 5 5 4 2.0 X

MCS112 F 70 Stroke 101 VS 1-1-1-1-0-1 4 3 1 3.5 X

MCS113 M 43 Cardiac arrest 107 VS 1-1-1-1-0-2 4 3 3 1.8 X

MCS114 M 36 Infection 144 MCS2 1-3-1-1-0-2 0 3 0 3.0 X

EMCS1 M 25 Trauma 5 EMCS 4-5-5-3-2-3 10 10 7 2.5 X

EMCS2 M 38 Trauma 213 EMCS 4-5-5-1-2-2 12 12 5 4.0 X

EMCS3 M 58 SAH 31 EMCS 4-5-6-1-2-3 11 12 3 5.8 X

Continued
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command using a leave-one-out cross-validation analysis. Since

we first wanted to validate this technique on patients with a more

stable diagnosis/level of consciousness, VS/UWS and MCS2 in

an acute/subacute stage (,1 year post insult) were excluded for

this analysis. The defined threshold was nevertheless used after-

wards to detect response to command in this excluded group.

Highest bin count of threshold histogram was selected as the best

threshold. In the following, a score higher than 1.5 was consid-

ered to be representative of a response to command.

RESULTS From an initial cohort of 45 patients with
DOC, 5 were excluded due to high levels of agitation
throughout the evaluation, fluctuation in signal due
to poor electrode contact, or highly noisy signal in more
than a third of the signal. The final cohort consisted of
40 patients (mean age 416 15 years; 27 male): 15 VS/
UWS, 7 MCS2, 13 MCS1, 3 EMCS, and 2 LIS.

Behavioral evaluation of response to command. A repro-
ducible response to command was detected in 6/14
MCS1, 3/3 EMCS, and 2/2 LIS with the CRS-R
performed on the day of the EMG evaluation. No
response to command was detected on the day of the
EMG assessment with the CRS-R in the VS/UWS
and the MCS2 groups.

EMG-based evaluation of response to command. EMG
allowed us to detect a response to command in all
healthy controls at a single-subject level (see table
2). Mean detected command was 14.8 (left), 14.6
(right), and 2.0 (control) out of 15, corresponding
to a mean EMG score of 14.

At a single-subject level, the method could detect
a response to command in 14/14 MCS1, 3/3
EMCS, and 2/2 LIS. The RMS signal of patient
EMCS3 is shown in figure 2A. Two out of the 8
MCS2 patients also illustrated a response to com-
mand with the EMG at a single-subject level (see
table 1). No reproducible response to command
was detectable behaviorally, based on the weekly
CRS-R evaluation performed in these patients. The
RMS signal of patient MCS25 is shown in figure 2B.

At a group level, an activation was detected on
average: for the VS/UWS patients, 3.2 (left), 4.2
(right), and 5.1 (control), corresponding to a mean
EMG score of 1.2 6 0.3; for the MCS2 patients,

Table 1 Continued

Final diagnosis Sex Age, y Etiology TSI, mo

Behavioral assessment EMG assessment

Diagnosis CRS-R L R P Score Above threshold score

LIS1 F 36 Stroke 37 LIS NA 9 12 5 3.5 X

10 15 3 6.3 X

LIS2 M 52 BAO 5 LIS NA 5 12 3 4.3 X

Abbreviations: BAO 5 basilar artery thrombosis; CRS-R 5 Coma Recovery Scale–Revised; EMCS 5 emergence from minimally conscious state; LIS 5

locked-in syndrome; MCS5minimally conscious state; SAH5 subarachnoid hemorrhage; TSI5 time since insult; VS/UWS5 vegetative state/unresponsive
wakefulness syndrome.
Behavioral assessment columns indicate the CRS-R subscores at the day of the EMG assessment for auditory, visual, motor, verbal, communication, and
arousal functions, respectively, and related diagnosis. EMG assessment columns illustrate the number of positive activations during “Move your left hand”
(column L), “Move your right hand” (column R), and “It is a sunny day” (column P) commands. Column score indicates the EMG score. The last column indicates
EMG scores above threshold, illustrating a detected response to command with EMG.
a,b Four of these patients were evaluated twice.

Table 2 Demographic and task-related data of the healthy control sample

Sex Age, y

EMG assessment

L R P Score
Above threshold
score

HV1 M 27 15 15 1 15.0 X

HV2 F 36 15 15 0 30.0 X

HV3 F 31 15 15 2 10.0 X

HV4 M 29 15 13 2 9.3 X

HV5 M 26 15 13 1 14.0 X

HV6 M 36 15 15 5 5.0 X

HV7 F 14 15 15 1 15.0 X

HV8 M 56 15 14 4 5.8 X

HV9 M 33 15 14 1 14.5 X

HV10 F 23 15 15 4 6.0 X

HV11 M 39 15 15 2 10.0 X

HV12 M 72 15 15 6 4.3 X

HV13 F 29 15 15 0 30.0 X

HV14 F 24 15 15 4 6.0 X

HV15 F 26 15 15 0 30.0 X

HV16 F 31 11 13 6 3.4 X

HV17 M 29 15 15 2 10.0 X

HV18 M 45 15 14 1 14.5 X

HV19 F 37 15 15 1 15.0 X

HV20 M 29 15 15 0 30.0 X

EMG assessment columns illustrate the number of positive activations during “Move your
left hand” (column L), “Move your right hand” (column R), and “It is a sunny day” (column P)
commands. Column score indicates the EMG score. The last column indicates EMG scores
above threshold, illustrating a detected response to command with EMG.
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5.1 (left), 4.4 (right), and 5.1 (control), correspond-
ing to a mean EMG score of 1.8 6 1.1; for the
MCS1 patients, 4.5 (left), 5.9 (right), and 3.7 (con-
trol), corresponding to a mean EMG score of 2.4 6

0.6; for the EMCS patients, 11.0 (left), 11.3 (right),
and 5.0 (control), corresponding to a mean EMG
score of 4.1 6 1.3; for the LIS patients, 8.0 (left),
13.0 (right), and 3.7 (control), corresponding to
a mean EMG score of 4.7 6 1.2. Figure 3 illustrates
the boxplot of the different groups.

Robustness and diagnosis evolution. Four of the 40 pa-
tients were assessed twice. LIS1 was evaluated twice
the same day (morning/afternoon) and showed
a response to command in both sessions. VS/
UWS11, VS/UWS9, and MCS16 were evaluated,
respectively, 14, 16, and 11 months after the first eval-
uation. MCS16 was MCS1 during the 2 evaluations,
and this was correctly detected by EMG at each eval-
uation. VS/UWS11 evolved into an MCS1 (see
MCS19 in table 1). His EMG score increased from
1.4 to 2.3 with this change in level of consciousness,
and a response to command was detected by EMG on
his second evaluation, while the CRS-R evaluation was
not able to detect a response to command the day of the
assessment. VS/UWS9 evolved into an MCS2 (see
MCS28 in table 1). The EMG score was below
threshold during both evaluations.

DISCUSSION The present study confirms the inter-
est in EMG for the detection of responses to command
in severely brain-injured patients. The proposed
methodology allowed detection of a response to
command in all MCS1 (n 5 14) patients included
in this study, while the behavioral evaluation
performed on the day of the EMG assessment only
allowed detection in 6 out of the 14 MCS1
patients. All EMCS (n 5 3) and LIS (n 5 2)

patients also presented a response to command as
assessed by EMG. It is important to note that LIS
patients in our study were in an incomplete LIS,
meaning they showed residual motor abilities.
Patients in a classical or complete LIS, with complete
cerebromedullospinal disconnection, would not
present a response to command with our method.

Previous EMG studies were tested on a limited
number of MCS patients9 (n5 2) or illustrated a high
false-negative rate10 (3 detections of response to
command out of 20 MCS1 patients; 85%). False-
negatives have also been observed in several neuroi-
maging (range 50%–67%)19,20 and electrophysiology
studies (range 22%–100%),21–25 using imagery or top-
down modulation of attention (for a review, see Ref.
8,26). On the contrary, our paradigm is less cognitively
demanding and easier to perform. Indeed, the partic-
ipant is instructed to perform a movement, not to
imagine a movement19,20,22,27 or pay attention to
a sound.21,23–25 In addition, in comparison to previous
EMG studies,9,10 the increased number of trials and the
evaluation of the response to the command on each
side (left and right) gives more power to detect repro-
ducible willful motor response and to exclude any ran-
dom motor activity in this population with severe
motor impairments and vigilance fluctuations.28,29

No patients with VS/UWS (n5 15) but 2 patients
in MCS2 (n 5 8) presented a response to command
with the EMG. While volitional brain activity has pre-
viously been found in patients considered in VS/UWS
or MCS2,19,20,23,26,30,31 we do not pretend that the
detection of response to command with our EMG
paradigm in behaviorally nonresponsive patients re-
flects a higher level of consciousness. They may be
false-positives. Patient MCS25 only showed inconsis-
tent behavioral signs of consciousness (i.e., visual pur-
suit during 1 out of 5 behavioral evaluations, the
remaining assessments concluding to a VS/UWS).

Figure 1 The experimental paradigm

The session was composed of 3 blocks, and each block consisted of 3 minutes recording at rest (baseline) followed by 15
trials. Each trial began with auditory presentation of the task instructions. Then, the EMG response to the command/control
was collected. The instruction was repeated 3 times within a trial. Rest EMG activity was recorded during the 10-second
intertrial interval (ITI).
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ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



MRI and fluorodeoxyglucose–PET confirmed the
diagnosis of MCS. The patient returned to her home
country and did not show much improvement ac-
cording to her treating physician. Patient MCS26
died of a cardiopulmonary arrest 8 days following the
EMG evaluation. In our study, the EMG score thresh-
old determination was based on leave-one-out
cross-validation on the patients with a more stable
diagnosis/level of consciousness (.1 year postinjury).
A receiver operating characteristic curve analysis led to
the determination of the same threshold (area
under the curve 1). Using the whole dataset led to
a slightly higher threshold of 1.6 (area under the curve
0.96), removing patients MCS26 and MCS15 from
responders’ cohort. Multiple patient testing on an

extended cohort would better assert the reliability of
the used threshold and results.

Evaluating the presence of a response to command
on a single trial basis allows to test the performance
and signal fluctuation across time, particularly rele-
vant in this population presenting nonstationarities
in brain response (e.g., fluctuation of arousal and con-
sciousness) and signal (e.g., artifact, noise). Differen-
tial EMG response on spatially close recording
locations and on temporally close period of time (trial
vs pretrial), as well as use of baseline activity as a refer-
ence, also allow to reduce the effect of nonstationar-
ities. However, the proposed approach detected
responses to the control instruction (“It is a sunny
day”) at a single-trial level in majority of the patients.

Figure 2 Evolution of root mean square (RMS) EMG signal (lower) and Δactive (upper), i.e., the difference
between averaged RMS value during the trial and the preceding intertrial interval, within a block at
right arm for patient EMCS3 and at right hand for patient MCS25

(A) Patient EMCS3. (B) Patient MCS25. Light gray represents control trials; medium and dark gray represent right and left
target commands, respectively. An asterisk above a trial illustrates a positive activation at the corresponding location, i.e.,
the difference between the EMG activity during the trial and the previous intertrial interval is significantly higher (threshold
set at p5 0.01) than baseline fluctuations. Note the positive activation of all 5 right target trials and none of the control trial
for patient EMCS3 and 6 target trials (3 “right” and 3 “left”) and none of the control trial for patient MCS25.
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These may be due to patients’ spasticity, which is
common in this population and could make EMG
assessment and interpretation challenging. It is
important to note that the 3 MCS1 patients with
an EMG score lower than 2 illustrated the higher
spasticity scores (table e-1), which could explain the
difficulty of our methodology to detect an answer. A
better model of EMG at rest could improve the single
trial detection and enable the translation to EMG-
based real-time communication.

Although the results illustrate the interest of our
method and suggest that these tools may provide bed-
side detection of command following, several limita-
tions could hamper its successful applicability in this
clinical setting. First, the preservation of some residual
voluntary muscle is a condicio sine qua non, prevent-
ing its use with patients with complete paralysis.
Motor-independent active paradigms relying on func-
tional neuroimaging (e.g., brain-computer interfaces)
could represent an interesting alternative in these spe-
cific cases. As an illustration, 30 out of the 40 patients
were selected to test a motor imagery fMRI-based par-
adigm19 but only one of them illustrated a response to
command with this paradigm (VS/UWS3); 25 of them
presented head movement preventing interpretable
data acquisition (see table e-1). The PET examination
of patient VS/UWS3 also illustrated active brain re-
gions similar to anMCS patient. The patient, however,
did not respond to command with our EMG para-
digm. This could be due to motor paralysis or lack
of awareness at the time of the test. Alternatively,
patient LIS2 tested an EEG-based motor imagery par-
adigm during her stay in our hospital and obtained

85% accuracy. Future studies should also evaluate
the effect of neuromuscular weakness on the perfor-
mance of the proposed method and compare classifi-
cation obtained during motor-based active task using
a multimodal EMG, fMRI, or EEG approach. Second,
the success of this paradigm relies on the patient’s
understanding of the instructions, ability to follow
the command and motivation, which might be
decreased in case of language or memory impair-
ments,32 dysexecutive syndrome such as akinetic mut-
ism33 or perseveration, posttraumatic agitation (often
associated with delirium),34 hypoarousal cause by
sedating medication,4 or loss of motivation.35,36

The proposed EMG-based paradigm allows
a 40-minute (which is around the time of a CRS-R
assessment) bedside evaluation of response to com-
mand using only a few EMG electrodes, an amplifier,
and a computer to present the stimuli and record and
analyze the signal. Moreover, the paradigm is inde-
pendent of the examiner’s experience or subjectivity.7

The results presented in this article were obtained
using a single session and may benefit from repetitive
evaluation within the week, as is the case with the
CRS-R. The potential use of the presented system as
a communication tool in the severely brain-injured
population should be investigated in the future.
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