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Résumé 
Jinhui Yang (2019). Détection de l'adultération du lait par des sources protéiques 

via la spectrométrie de masse et infrarouge (Thèse de doctorat) Gembloux, Belgique, 
Université de Liège, Gembloux Agro-Bio Tech, 157 p., 24 tables, 15 figs. 

L’adultération protéique du lait concerne l’ajout dans le lait ou les produits laitiers 
de substances exogènes riches en azote et présentant un faible coût afin de masquer la 
teneur naturellement faible en protéine du lait. Les protéines végétales sont de bons 
candidats pour une telle adultération. Ainsi, les protéines de soja, pois, blé et riz sont 
les plus prisées par les fraudeurs. La consommation de lait ainsi frelaté peut provoquer 
des problèmes de santé chez l’humain. Par conséquent, la mise au point de méthodes 
de détection de ces adultérants dans le lait revêt une grande importance pour garantir 
la sécurité alimentaire. La présente thèse vise à tester et comparer différentes 
méthodes comme l’électrophorèse bidimensionnelle sur gel (2-DE), la spectrométrie 
de masse en tandem avec la chromatographie en phase liquide et la spectroscopie 
proche et moyen infrarouge pour détecter l’ajout de protéines exogènes dans le lait, 
particulièrement des protéines végétales hydrolysées. Les principaux résultats sont :  

 (1) Par les spots de protéines mis en évidence sur le gel de polyacrylamide de lait 
frelaté, la β-conglycinine et la glycinine ont pu être détectées dans du lait frelaté avec 
des protéines de soja, tandis que la détection de viciline et de conviciline a indiqué 
l'addition de protéines de pois. La présence sur le gel de la β-amylase de de la serpine 
a indiqué quant à elle la présence de protéines de blé dans le lait. Un profil protéique 
établi par la méthode 2-DE a permis d’identifier le lait adultéré par des protéines de 
soja et de pois avec une limite de détection de 4% de protéines végétales dans la 
protéine totale. 

(2) Les gels de type dodécylsulfate de sodium et de polyacrylamide (SDS-PAGE) 
ont clairement révélé qu'une centrifugation à 20 000 g pendant 60 minutes réduisait 
l'intensité de la bande de caséine et d'albumine dans le lait. Aucun spot protéique n'a 
été observé pour les protéines hydrolysées de blé et de riz. La nano-HPLC-MS / MS 
a isolé les principales protéines du soja (β-conglycinine, glycinine), du pois (viciline, 
conviciline, légumine) et de blé (gluténine et gliadine) dans des laits frelatés. Cette 
méthode a  permis ainsi la détection de laits frelatés par des protéines hydrolysées de 
soja et de blé avec une limite de détection au-dessus de 0,5% en protéines totales. La 
limite pour la détection du pois était de 2 et 4%. Aucune protéine de riz n'a pu être 
identifiée. La nano-HPLC-MS/MS combinée à l’analyse en composantes principales 
(ACP) a discriminé tous les échantillons adultérés du lait authentique.  

(3) La spectroscopie infrarouge à transformée de Fourier utilisant la réflectance 
totale atténuée (ATR-MIR) appliquée à un lait commercial écrémé a aussi été testée 
pour identifier l’adultération protéique et pour estimer le contenu en nitrogène non-
protéique (eNPN). Des clusters spectraux ont été observés par l’ACP en fonction du 
contenu et du type d’adulterant. La régression des moindres carrés partiels (PLS) 
basée sur l’ATR-MIR a montré une bonne performance à prédire eNPN (R2 = 0.70, 
RMSE = 0.06 g/100 g obtenus par validation croisée). L’addition d’adultérant 
protéique dans le lait a bien augmenté le eNPN qui était compris entr 0.04 et 0.37 
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g/100g. Sur base de la différence entre le range contenu en NPN d’un lait standard et 
la valeur prédite de eNPN des laits frelatés, il a été possible de détecter des laits 
adultérés par des protéines hydrolysées de riz (HRP), soja (HSP) et blé (HWP) avec 
une teneur supérieure ou égale à 3.8 g/L. Cette étude ne peut pas être généralisée car 
les changements de composition naturels du lait n’ont pas été pris en compte. Par 
conséquent, une seconde étude a été menée pour valider ces observations et étende 
l’utilisation de la spectroscopie infrarouge au proche infrarouge.  

(4) Ainsi, 9 échantillons de lait de vache ont été frelatés avec HRP (2.5-40 g/L), 
HWP (1.875-30 g/L), du lactosérum (1.875-30 g/L), de l’urée (0.5-8 g/L) et de l’eau 
(3.125-50 g/L). Ces 234 échantillons ont été analysés par des spectromètres ATR-MIR 
et NIR. L’analyse discriminante par PLS sur base du NIR ou ATR-MIR n’a pas permis 
d’isoler les échantillons de lait de référence. Les spectres ATR-MIR discriminaient 
mieux l’adultération par HRP et HWP au-dessus de 6.25% alors que les spectres NIR 
après dérivée première détectaient le lactosérum à partir de 12.5%. Une bonne 
performance de prédiction a été constatée pour quantifier le contenu en HRP, en urée 
dans le lait par ATR-MIR et NIR (R² de validation > 0.96). ATR-MIR a montré 
également sa capacité à mieux prédire le contenu en HWP que le NIR (R² de validation 
= 0.95 vs. 0.88) alors que le NIR après dérivée première prédisait mieux le lactosérum 
(R² de validation = 0.97 vs. 0.40). De plus, les 2 techniques prédisaient bien la teneur 
totale en protéines exogènes (sans l’eau) dans le lait (R2 de validation =0.87-0.98 avec 
un  RMSEP=2.04-4.11 g/L). Par conséquent, l’utilisation de méthodes non ciblées est 
possible pour détecter le niveau de protéines exogènes dans le lait (urée, lactosérum 
et protéines végétals hydrolysées) en utilisant la spectroscopie NIR ou MIR. 
Cependant les performances de classification du type d’adultérant ont été plus 
contrastées selon la méthode et les teneurs en adultérant. 

Mots clés: adultération de protéines de lait, électrophorèse bidimensionnelle, 
spectre de masse tandem par chromatographie en phase liquide à haute performance, 
spectroscopie proche infrarouge, spectroscopie moyen infrarouge 
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Abstract  

Jinhui Yang (2019). Milk protein adulteration detection via mass spectra and 
infrared spectroscopy (PhD thesis) Gembloux, Belgium, Univeristy of Liège, 
Gembloux Agro-Bio Tech, 157 p., 24 tables, 15 figs. 

Milk protein adulteration concerns the addition of cheap foreign substance having 
high nitrogen content into milk and dairy products, to mask low natural protein in 
milk. Plant protein is a potential candidate of adulterants; soy, pea, wheat, and rice 
proteins being the most popular. The consumption of those adulterants could induce 
serious Human health disorders. Therefore, the development of detection methods for 
protein milk adulteration is of great importance to guarantee food safety. The current 
thesis aims to test and compare methods such as two-dimensional gel electrophoresis 
(2-DE), liquid chromatography tandem mass spectrometry, and infrared spectroscopy 
to detect foreign protein spiked in milk, especially hydrolyzed plant proteins. Here are 
the major results: 

 (1) According to the protein spots highlighted on the polyacrylamide gel of 
adulterated milk, β-conglycinin and glycinin were detected in milk adulterated with 
soy protein, while legumin, vicilin, and convicilin indicated the addition of pea protein, 
and β-amylase and serpin marked wheat protein. 2-DE-based protein profile allowed 
to identify milk spiked with soy and pea protein, with a detection limit of 4% plant 
protein in the total protein.  

(2) Sodium dodecyl sulfate -polyacrylamide gel electrophoresis (SDS-PAGE) gels 
revealed clearly that centrifugation at 20 000 g for 60 min reduced band intensity of 
casein and albumin in milk. No obvious protein line was observed for hydrolyzed 
wheat and rice protein. Results of nano-HPLC-MS/MS highlighted the major proteins 
of soy (β-conglycinin, glycinin), pea (vincilin, convicilin, legumin) and wheat 
(glutenin and gliadin) in adulterated milks. So, this method allows the detection of 
hydrolyzed soy and wheat protein at the level above 0.5% in total protein, and pea 
protein at the level of 2 and 4%. No rice protein was identified in milk samples 
adulterated with hydrolyzed rice protein. Combined with principal component 
analysis (PCA), nano-HPLC-MS/MS discriminated all the adulterated samples from 
authentic milk.  

(3) Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-
MIR) applied to commercial skimmed milk was also tested to identify protein milk 
adulteration and to estimate the non-protein nitrogen content (eNPN). Spectral 
clusters revealed by PCA depended on the level and type of adulterant. The developed 
partial least square (PLS) regression showed good performance of ATR-FTIR to 
predict eNPN (R2 = 0.70, RMSE = 0.06 g/100 g of full cross-validation). The addition 
of adulterants to milk increased the eNPN level for all samples and ranged from 0.04 
to 0.37 g/100 g. Based on the difference between the known NPN range in normal 
milk and the predicted eNPN of adulterated samples, it was possible to detect samples 
adulterated with hydrolyzed rice (HRP), soya (HSP) or wheat (HWP) with a content 
higher or equal to 3.8 g/L. This study cannot be generalized as the natural milk 
composition change was not taken into account. Therefore, a second study was 
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conducted to validate these first observations and to enlarge the use of infrared 
spectroscopy to near-infrared.  

(4) So, 9 raw cow milk samples were adulterated with different levels of HRP (2.5-
40 g/L), HWP (1.875-30 g/L), whey (1.875-30 g/L), urea (0.5-8 g/L), and water 
(3.125-50 g/L). Those 234 samples in total were analyzed using ATR-MIR and near-
infrared (NIR) spectrometers. The developed NIR and ATR-MIR PLS - discriminant 
analysis did not discriminate control milk from adulterated samples. Raw ATR-MIR 
spectra discriminated better on HRP and HWP adulteration above 6.25%, while first 
derivative NIR spectra detected whey content above 12.5% in milk. Good prediction 
performance was observed to quantify the level of HRP and urea in raw milk using 
both ATR-MIR and first derivative NIR spectra (validation R2p> 0.96). ATR-MIR 
showed better prediction on HWP level than NIR (validation R2p=0.95 vs. 0.88), while 
NIR had a better accuracy in whey level quantification (validation R2p=0.97 vs. 0.40). 
Moreover, both technics predicted well the total protein adulterant level (without 
water) in adulterated samples (validation R2=0.87-0.98, RMSE=2.04-4.11 g/L). 
Consequently, the use of untargeted quantitative analysis is possible to detect the level 
of protein adulterants (such as hydrolyzed plant protein, urea or whey) in milk using 
NIR or MIR infrared spectroscopy, although classification of samples between 
adulterants types gave contrasted performances depending on the adulterant level and 
the king of spectroscopy used. 

Key words: milk protein adulteration, two-dimensional electrophoresis, high 
performance liquid chromatography tandem mass spectrum, near- and mid- infrared 
spectroscopy 
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1. Introduction 

1.1. Dairy production in China 

Milk consumption in China raised in last 20 years. According to the report 
(http://www.chyxx.com/industry/201710/573395.html), growth rate of dairy product 
consumption ranged from 5% to 30% from 2000 to 2007. Affected by melamine 
scandal, milk consumption decreased in 2008 and 2009. After 2010, consumers 
restored faith on local dairy products, and consumption of dairy products increased 
slowly at rate of -2-8%. Intake of dairy product per capita in China increased from 28 
kg in 2012 to 36 kg in 2016; this is less than 260 kg consumed in developed countries 
such as America and Germany. Different from major intake (about 76%) of dry and 
powder dairy products in America, local consumers prefer to consume liquid milk 
(55%), then milk powder (32%) and dry milk products (13%). Even the average value 
of milk intake per year varied in different regions: people lived in large- and medium- 
size cities consumed 31 and 23 kg of liquid milk per capita per year respectively, while 
residents of small cities and countryside drink less than 15 kg. There is a large demand 
of milk products for people to improve their dietary input. 

Increased with milk consumption, production of dairy product in China increased 
from 1.5 million ton at beginning of 2010 to 2.8 million ton at the end of 2016 (Figure 
1-1A). To meet the demand of consumers, foreign dairy products are imported from 
New Zealand, Australia, and European Union. The imported volume of dairy product 
per year increased from 0.90 million tons in 2011 to 1.96 million tons in 2016 (Figure 
1-1B). Due to the increasing cost of dairy feeding from 2009, raw milk price increased 
from 2.7 to 3.1 Yuan/kg in 2010, then stabilized at range of 3.2 and 3.6 Yuan/kg in 
2010, 2011, 2015, and 2016. For the drought of weather and prevalence of cow disease 
in 2013 (http://www.chyxx.com/industry/201803/617800.html), milk price soared 
from 3.50 to 4.12 in second half year of 2013, then decreased slowly to 3.79 in 2014 
(Figure 1-1C).  

As encouraged by policies and forced by increasing feed, land, and labour cost, more 
and more cows are breeding in medium- (100 < cow number < 1000) and large- scaled 
(cow number≤ 1000) intensive farms. From 2012 to 2013, number of small dairy 
farms (cows number below 100) decreased from 30 to 14, while the ratio of medium- 
and large- scale farms increased from 89.5% to 94.4%. Milk performance of dairy 
cows in different scale farms are presented in Figure 1-2. Compared with small farms, 
medium- and large- scale farms tend to produce milk with higher contents of fat and 
protein, as well as a lower somatic cell count. Milk yield of individual cow is also 
higher. 

Except melamine scandal in 2008, inferior quality milk powder (protein contents 
below 1%) also caused 13 death and 200 malnutrition of infants and kids in Anhui 
province in 2004 (Zhang, 2005). After many food safety affairs, series of laws, 
standards, and guidance are issued to regulate the production of milk products (Jiang 
et al., 2018). Moreover, supervision and inspection leading by National Food and 
Drug Administration has been built in these years, targeted on nutrition, contaminant, 
mycotoxin, microbiology and other potential risk factors, and the results were open to 
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public. Inspection results in latest 3 years (2014-2016) showed qualified rate of 
formula powders for infants and kids exceeded 95% (Jiang et al., 2018). 

 

Figure 1-1: Domestic and imported dairy production, and prices of raw milk in each 
month from 2010 to 2016 in China. Data from China dairy yearbook 2017 

(http://www.chinayearbook.com/). 

Due to the large gap of cost between foreign and domestic dairy production 
(http://www.chyxx.com/industry/201803/617800.html), unlabelled reconstitute liquid 
milk processed from imported powder milk is another top issue in liquid milk 
authentication (http://www.xinhuanet.com/food/2016-12/06/c_1120059389.htm). In 
order to prevent the prevalence of reconstitute milk, standard of detection method on 
derivative of over-heated compounds has been issued by agriculture department 
(MOA, 2016). Heat-loading of liquid milk has been considered in National Quality 
Milk Project, which aims to restore consumers’ faith on dairy products and promotes 
dairy production of local farms and industry (Wang, 2012). 
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Figure 1-2: Milk performance of dairy cows feed in different sized farms from 2012 to 
2016. Data from China dairy yearbook 2017 (http://www.chinayearbook.com/). 

 

1.2. Milk adulteration  

To ensure a good and constant quality of milk, the dairy sector fixes the milk price 
based on some rules as a certain amount of fat, protein, cells and germs. To improve 
the milk price, the temptation is high to adulterate this “noble” and essential food stuff. 
However, such adulterated milks are harmful to consumer’s health (Nascimento et al., 
2017; Poonia et al., 2017). For instance, food safety incidents occurred in 2008 in 
China, addition of melamine exaggerated protein content in milk and dairy products, 
which resulted in illness, hospitalization, and death of many children (Domingo et al., 
2014). 

Generally, milk adulteration involves the addition of cheap, inferior, or even 
hazardous chemicals or products to increase the volume, mask poor quality, or inflate 
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nutrients in milk (Nascimento et al., 2017). This practice is common in developing 
and underdeveloped countries. Indeed, more than 60% of milk in India and around 
10% in Brazil is adulterated (Kamal and Karoui, 2015). In order to meet soaring 
seasonal demand of milk consumption in Pakistan, milk was diluted with water, then 
added starch, urea, and cane sugar to maintain compositional parameters; meanwhile, 
formalin, hydrogen peroxide, boric acid and various antibiotics were also added to 
extend shelf life of products (Afzal et al., 2011). In Brazil, the most frequent 
contaminants appeared in powdered milk were starch, whey, and sucrose, ranged 20-
25%, without obvious flavour changes (Borin et al., 2006). One determination of 300 
milk samples in Sudan showed 95% of samples were adulterated with water, and 35.5% 
with starch (Adam, 2009). An analysis of liquid milk in Kenya found 23.5% of 
pasteurized and 5.58% of raw samples were positive for H2O2, while 23.7% of 
pasteurized and 19.3% of raw milk were positive for antibiotics (Afzal et al., 2011). 
A comparative study of milk adulteration in India showed salt, skimmed powder, and 
urea are the top 3 adulterants, presented in 60-82% of milk samples, while occurrence 
of other adulterants, such as sucrose, neutralizers, formalin, detergents and H2O2, 
ranged from 22% to 44% (Singuluri and Sukumaran, 2014). Milk adulteration with 
H2O2, gentamycin, and vegetable oil was also reported in China (Salih and Yang, 2017). 
An adulteration ratio of 30% reconstituted milk in fresh milk was revealed by local 
media in Taiwan province in China (Salih and Yang, 2017). The most frequent 
adulterants in milk are summarized in Table 1-1. 

Table 1-1: Common milk adulteration practices  

 

Adulterants objective Detrimental effect to 
health 

Reference 

Water Increase milk volume Health concern by 
contaminated water 

(Das et al., 2016; 
Reddy et al., 2017) 

Detergents Emulsify and dissolve 
the oil in water 

Gastro-intestinal 
complication, 
damage to skin and 
eyes 

(Jaiswal et al., 2017) 

H2O2 Prolong the freshness Gastritis and 
inflammation of 
intestine 

(Azad and Ahmed, 
2016) 

Starch Increase the non-fat 
solid 

High amounts of 
addition cause 
diarrhea 

(Singuluri and 
Sukumaran, 2014) 

Na2CO3, 
NaHCO3 

Neutralize the acidic 
effect and preserve milk 
for long time 

Disruption in 
hormone signaling, 
abdominal pain, 
diarrhea, vomiting 

(Azad and Ahmed, 
2016; Reddy et al., 
2017) 

Vegetable oil Increase fat content of 
milk 

- (Reddy et al., 2017) 

Low valued 
milk 

Gain economic profit Allergy of certain 
protein 

(Jaiswal et al., 2015) 
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Milk protein adulteration is the result of the addition of nitrogen rich compounds to 
milk. This leads to an increase of apparent protein content and masks the natural low 
content of milk protein. Melamine, urea, and whey are the most common protein 
adulterants (Nascimento et al., 2017). Besides hazard effect of melamine on consumer 
health, the other two adulterants have also detrimental effects. Excessive urea in milk 
is harmful to liver and heart, and overburdens kidneys (Kandpal et al., 2012). Addition 
of rennet whey solid in milk would decrease blood pressure (Reddy et al., 2017). In 
addition, low price and extensive origin of plant protein products make them attractive 
as candidate adulterants in milk and dairy products (Haasnoot et al., 2001).  

2. Aim and outline of thesis 

Plant proteins are used as food additives to improve food characteristics, such as 
food texture, water retention, and fat emulsification (Garcia et al., 1997). For example, 
soy protein is often used as non-milk protein in milk replacers, such as simulated 
yoghurts, coffee whiteners, and frozen desserts (Lopez-Tapia et al., 1999). Besides, 
soy protein powder is a common adulterant spiked in dairy products, to increase 
protein content, for its low cost and availability in the market (Poonia et al., 2017). 
Different preparations of soy protein, such as flours, concentrates, isolates, and 
hydrolysates, are commercially available (Haasnoot et al., 2001). Compared with 
other preparations, hydrolysed protein products are inclined to be adulterated in liquid 
milk, for its higher contents of free amino acids and peptides, as well as higher 
solubility in water phase (Tessier et al., 2005). Other plant proteins derived from pea, 
wheat, and rice, are also considered as potential food ingredients (Janssen et al., 1994). 
Unlabelled addition of these plant protein is not allowed by food labelling regulation 
(China, 2000; Parliament, 2011). Health concern for consumers on unlabelled addition 
of plant protein is potential food allergy caused by cupin and prolamin superfamily, 
such as vicilins and legumins in soybean, and α-amylase and prolamin in wheat 
respectively (Breiteneder and Radauer, 2004). For example, allergic symptoms of 
wheat prolamins included atopic dermatitis and exercise-induced anaphylaxis 
(Shewry et al., 2002). Therefore, it is essential to detect plant protein adulterated in 
milk. 

Series of detection methods have been developed to identify dairy products 
adulteration with plant protein. In an interlaboratory study, sodium dodecyl sulfate-
capillary electrophoresis (SDS-CE) can detect soy and pea protein in milk powder at 
level of 1-5% in total protein, with standard deviations of repeatability and 
reproducibility ranged 9-15% and 25-30% respectively (Manso et al., 2002). 
Calibrated by external soy bean protein isolate as standard, a reversed-phase (RP)- 
high performance liquid chromatogram (HPLC) method was validated with recovery 
ranging from 87.9 to 106% in different bovine milks, and the limit of detection was 
13 μg/g of samples (Krusa et al., 2000). Chromatographic file of samples collected 
from HPLC with UV detection (UHPLC) at 215 nm would differentiate samples 
adulterated with soy, pea, and brown rice protein isolate at 3% and 10% from authentic 
milk powder (Jablonski et al., 2014). Development of polyclonal antibodies in 
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immunoassays has made it possible to detect soy, pea, or soluble wheat protein in a 
range of 1-5% of plant protein in total protein for milk powder adulteration (Haasnoot 
et al., 2001). Combined with multivariate linear regression (MLR), first derivative 
NIR absorption showed the best prediction accuracy on soy, pea, and wheat protein 
isolate in milk powder, with prediction error of 0.23, at range 0-5% of added plant 
protein (Maraboli et al., 2002). Comparison of these technics is presented in 
Table 1-2. However, most of these methods focused on milk powder 
adulteration, while most of adulteration is occurred more likely in liquid milk. 
Therefore, the aim for this thesis was to compare methods to detect foreign 
protein adulterated in milk, especially plant protein.  

 
Table 1-2: Summary of detection methods on plant protein in milk adulteration 

 

Electrophoresis, chromatographic, or spectral fingerprints of food compounds are 
used to detect milk adulteration (Zhang et al., 2011). Two-dimensional gel 
electrophoresis (2-DE) would show protein fraction fingerprints of samples on gel 
map with high resolution, and the separated foreign protein from milk protein could 
indicate the occurrence of adulteration. High performance liquid chromatography 
tandem mass spectroscopy (HPLC-MS/MS) exhibits chromatographic fingerprints of 
peptides in digested samples; peptides from adulterants would be identified by MS. 

Techniques  Advantages  Disadvantages  References 

Liquid 
chromatography 

Separation of various 
molecules, 
identification (with 
mass spectra) and 
quantification of 
target molecules, 
screen for many 
compounds 

Time consuming, high 
cost, labor intensive, 
complex sample 
pretreatment, need 
skilled operators 

(Kamal and 
Karoui, 2015) 

Immunoassays Large sample 
throughput, high 
sensitivity, low 
detection limit (0.5%) 

Underestimation for 
UHT treated samples, 
cross reactivity of 
antigen, semiquantitative 

(Haasnoot and du 
Pre, 2007; Poonia 
et al., 2017) 

SDS-Capillary 
electrophoresis 

Official detection 
methods of soy 
protein, higher 
accuracy than ELISA 

Poor reproducibility, 
unable to detect soluble 
wheat protein and soy 
protein hydrolysates 

(Lopez-Tapia et 
al., 1999; Manso 
et al., 2002; 
Sánchez et al., 
2002) 

Infrared 
spectroscopy 

Fast, low cost, 
environmentally 
friendly, rich 
information, suitable 
for online quality 
control, little sample 
preparation, easy to 
operate 

Low sensibility, low 
structure selectivity, and 
overlapped signals and 
noise bands for NIR 
spectra;  
Strong absorption of 
water for MIR spectra 

(Kamal and 
Karoui, 2015) 
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As a non-invasive and rapid analytical method, infrared spectroscopy presents spectral 
fingerprints of samples. Combined with chemometrics, absorption difference induced 
by adulterants is extracted to identify adulteration qualitatively and quantitatively.  

This manuscript is a compilation of 3 published and 2 submitted scientific papers. 
The current chapter (Chapter 1) introduced the dairy context in China as well as the 
milk adulteration. Chapter 2 will present the potentialities of two-dimensional gel 
electrophoresis to identify milk adulterated with soy, pea, and wheat proteins. Chapter 
3 will show the ability of liquid chromatography–mass spectrometry combined with 
chemometrics to isolate the differences of peptides between adulterated and control 
milk. Chapter 4 will review recent advances in milk production and detection by 
infrared spectroscopy, from composition prediction to quality assessment. Chapter 5 
will explore the feasibility of mid-infrared spectroscopy to identify skimmed milk 
samples spiked with hydrolyzed plant protein (i.e., soy, rice, and wheat) and whey. 
Chapter 6 will go deeper in the study of the feasibility of infrared spectroscopy to 
detect milk protein adulteration by using near and mid-infrared rays as well as by 
increasing the natural variation of protein in milk through the use of individual cow 
milk samples. Chapter 7 will concern the general discussion of the obtained results. 
Those will be confronted to the state of art in order to draw a final conclusion and 
perspectives about the methodology used to detect plan protein adulteration in milk.   

3. Thesis of framework 

This thesis research is the result of a joint PhD project between Gembloux Agro-
Bio Tech-University of Liege (GxABT-ULiège) and Graduate School of Chinese 
Academy of Agricultural Sciences (CAAS). Funded by Special Fund for Agro-
scientific Research in the Public Interest (201403071), Modern Agro-Industry 
Technology Research System of China (CARS-37, nycytx-04-01), Project of Risk 
Assessment on Raw Milk (GJFP2016008, GJFP2017008), the Agricultural Science 
and Technology Innovation Program (ASTIP-IAS12) from Chinese Ministry of 
Agriculture, researches in this thesis are carried out in Institute of Animal Sciences, 
CAAS in China before July 25, 2017, and subsequent studies are completed in 
GxABT-ULiège, with the support of Statistics, Informatics and Applied Modelling 
Unit (SIMa), Dept. AGROBIOCHEM as well as Food and Feed Quality Unit in 
Walloon Agricultural Research Centre (CRA-W).   
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In this chapter, two-dimensional gel electrophoresis was used to separate proteins 
of adulterated and control milk. Application of immobilized pH gradient (IPG) strips 
distributed protein spots linearly based on isoelectric points, and protein ladder of 
reference marker was used to calculate molecular weight in the second direction. 
Based on the spots difference presented in the gel, the remarkable proteins were 
identified by MALDI-TOF MS. Compared to control milk, the minimum level of 
adulterated samples distinguishable on gel maps by scanning was defined as detection 
limit.  

From Yang, J., N. Zheng, Y. Yang, J. Wang, and H. Soyeurt. 2018. Detection 
of plant protein adulterated in fluid milk using two-dimensional gel 
electrophoresis combined with mass spectrometry. Journal of food science and 
technology, 55(7): 2721-2728. 
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Abstract  

The illegal or unlabelled addition of plant protein in milk can cause serious 
anaphylaxis. For sustainable food security, it is therefore important to develop a 
methodology to detect non-milk protein in milk products. This research aims to 
differentiate milk adulterated with plant protein using two-dimensional gel 
electrophoresis (2-DE) coupled with mass spectrometry. According to the protein 
spots highlighted on the gel of adulterated milk, β-conglycinin and glycinin were 
detected in milk adulterated with soy protein, while legumin, vicilin, and convicilin 
indicated the addition of pea protein, and β-amylase and serpin marked wheat protein. 
These results suggest that a 2-DE-based protein profile is a useful method to identify 
milk adulterated with soy and pea protein, with a detection limit of 4% plant protein 
in the total protein.  

Key words: milk adulteration; plant protein; two-dimensional gel electrophoresis; 
mass spectrometry 
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1. Introduction 

Milk adulteration with exogenous nitrogen-rich components leads to increased 
apparent protein content, which is used, along with fat content, to define the price of 
milk. Due to their low cost and abundant sources, vegetable proteins are potential 
adulterants for dairy products (Haasnoot et al., 2001). Compared with whey, plant 
proteins in food such as soy protein and wheat gluten would induce a lower 
postprandial insulin response in consumers (Chalvon-Demersay et al., 2017). 
However, such plant proteins are also identified food allergens, which can result in 
hypotension and anaphylaxis (Nakamura and Teshima, 2013). The undeclared 
addition of these proteins into milk may therefore cause serious health risks. 
Consequently, the development of analytical methods to detect vegetable proteins in 
milk products is of paramount importance. 

In recent years, a variety of targeted analytical methods have been used to detect the 
addition of plant proteins (mainly soy, pea, and wheat) in dairy products. Most recent 
studies of milk adulteration with plant protein have focused on milk powder. Added 
soy, pea, and soluble wheat protein in milk powder could be detected through 
immunological tests. Development of polyclonal antibodies in immunoassays has 
made it possible to detect these adulterants in a range of 1-5% of plant protein in the 
total milk protein content, although the results seem to be significantly affected by 
ultra-high temperature (UHT) treatment applied to the samples (Haasnoot et al., 2001; 
Sanchez et al., 2002). Compared with Enzyme-Linked Immunosorbent Assay 
(ELISA), the results of vegetable protein percentages obtained from Sodium Dodecyl 
Sulfate-Capillary Electrophoresis (SDS-CE) had a higher rate of accuracy. However, 
due to its poor reproducibility, SDS-CE requires improvement in terms of instrument 
and operation standardisation before large-scale use is feasible (Sanchez et al., 2002). 
The application of mass spectroscopy (MS) allowed the identification of plant protein 
added to milk powder. With tetraborate- ethylene diamine tetraacetic acid (EDTA) 
extraction and trypsin digestion, the peptides from soy and pea proteins present in 
skimmed milk powder could be identified by quadrupling time-of-flight MS followed 
by High Performance Liquid Chromatography (HPLC) (Luykx et al., 2007). 
Untargeted MS was also developed for screening soy and pea protein mixed into 
skimmed milk powder. The comparative Liquid Chromatography-MS approach 
enabled unequivocal discrimination between skimmed milk powder (SMP) containing 
5% soy or pea protein and unadulterated skimmed milk powder (Cordewener et al., 
2009).  

Only a few studies have developed detection of the adulterated plant proteins in 
fluid milk. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) has 
been employed to detect the presence of soy milk in cow’s milk. Based on the infrared 
absorption of peaks of amide, α-34 tocopherol, and soybean kunitz trypsin inhibitor, 
the spectra of soy milk and control milk adulterated with soy milk presented 
significant differences to that of control milk (Jaiswal et al., 2015). Calibrated by the 
external standard method, a reversed phase HPLC method was validated to be good 
enough in terms of detection performance (such as robustness, reproducibility, 
accuracy, and precision). The reversed phase HPLC method was used to quantify soy 
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protein in milk, and had both a rapid separation run (11 min) and low detection limit 
(13μg/g of bovine milk) (Krusa et al., 2000).  

Thanks to the application of high-resolution spectrometers and bioinformatic tools, 
two-dimensional gel electrophoresis (2-DE) is used to separate protein mixtures in 
proteomic studies (Pomastowski and Buszewski, 2014). Combined with isoelectric 
focusing and SDS-polyacrylamide gel electrophoresis (PAGE) in two vertical 
directions, 2-DE was expected to separate foreign protein from milk protein in 
adulterated samples with a low detection limit. When compared with control samples, 
foreign protein spots in the adulterated samples would be visible in the gel map, which 
is helpful for the detection of exogenous protein in milk products. Coupled with mass 
spectrometry, 2-DE gel showed the different protein spot distribution of milk from 
different species, with several unique spots of casein and whey protein serving as 
markers to differentiate milk adulteration (Yang et al., 2014). These results mean that 
this method has the potential to detect vegetable proteins in adulterated milk, given 
different 2-DE gel maps for the major protein spots of animal and plant sources 
(Zarkadas et al., 2007; Sirtori et al., 2012; Yang et al., 2014). 

We assumed that plant protein in fluid milk would be separated from milk protein 
in the 2-DE gel, and that the foreign protein spots, identified by MS, would indicate 
the potential adulteration of milk. The objective of this study is to present the gel map 
of milk adulteration with soy, pea, and wheat protein at low levels (below 8% of total 
protein) using 2-DE, and to find the marker proteins that can serve as an indicator, 
identified via matrix-assisted laser desorption ionisation-time of flight mass 
spectrometry (MALDI-TOF-MS).  

2. Materials and methods 

2.1. Sample preparation 

Soy protein isolate (Nature’s Bounty, Inc, Bohemia, NY, USA), pea protein isolate 
(LifeTime Nutritional Specialties, Inc. Orange, CA, USA), and wheat protein isolate 
(Honeyville Food Products, Salt Lake City, UT, USA) were used in this study. Raw 
cow’s milk was obtained from a herd located in Beijing (China). Known amounts of 
plant protein isolate samples were dissolved in phosphate buffer solution (PBS, 0.1 
mol/L, pH 7.2) and vortexed for at least 3 min. Then the mixtures were sonicated for 
30 min and stirred by magnetic stirrer overnight. Vegetable protein solutions were 
prepared after centrifugation at 3000 g for 10 min. The protein contents of the raw 
milk and vegetable protein solution were determined using the Kjeldahl method 
(KjelROC Analyzer, Furulund, Sweden). Finally, different amounts of plant protein 
solution were added to raw milk in order to comprise 2%, 4%, and 8% of the total 
protein. Skimmed milk samples were prepared by centrifugation at 3000 g for 10 min 
to remove milk fat and stored at -20 ºC until further electrophoresis separation.  

2.2. Separation by 2-DE   

The protein concentration in thawed samples was determined using bicinchoninic 
acid (BCA) assay kits (P0010S, Beyotime Institute of Biotechnology, China) before 
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isoelectric focusing. Samples of a total of 250 mg protein mixed with rehydration 
buffer (8 M urea, 2 M thiourea, 4% (w/v) 3-[(3-cholamidopropyl)-
dimethylammonio]-1-propanesulfonate (CHAPS), 65 mM dithiothreitol (DTT), 0.4% 
immobilised pH gradient (IPG) buffer and trace bromophenol blue) were loaded onto 
17 cm pH 4-7 IPG strips (Bio-Rad), as described by Yang et al. (2014). Isoelectric 
focusing was carried out at 20oC. The IPG strips were rehydrated overnight and a 
series of focusing steps were performed as follows: desalting at 50 V for 2 h, 50-100 
V for 30 min, 100-500 V for 1 h, 500-1000 V for 1 h, 1000-9000 V for 5 h, and then 
9000 V for 80,000 V•h. Before the second separation, IPG strips were immersed in 2% 
(w/v) dithiothreitol, 0.05 mol/L Tris-HCl pH 8.8, 6 mol/L urea, 30% (v/v) glycerol, 
and 2% (w/v) sodium dodecyl sulphate (SDS) and shaken gently at room temperature 
for 12 min, followed another incubation in 2.5% (w/v) iodoacetamide, 0.05 mol/L 
Tris-HCl pH 8.8, 6 mol/L urea, 30% (v/v) glycerol, and 2% (w/v) SDS for 12 min. 
Subsequently, strips were transferred to 12% polyacrylamide gels and sealed with 0.5% 
(w/v) low-melting-point agarose. The electrophoresis conditions used were 50 V for 
30 min and 220 V to the end. Then the gels were stained with 0.12% Coomassie 
Brilliant Blue G-250 solution overnight, and destained with distilled water. Each 
sample was repeated three times. The gel images were scanned using a GS800 
calibrated densitometer (Bio-Rad, USA) and exported to PDQuest 8.0 (Bio-Rad, 
Hercules, CA, USA) for protein spot analysis. To compare the differences between 
gels, protein spots were automatically matched and manually compiled, with ‘all or 
none’ as the determining criterion. Finally, protein spots detected only in adulterated 
milk, when compared with pure milk, were selected. 

2.3. In-gel digestion, protein identification, and database search 

As reported in the existing literature (Yang et al., 2014), the selected protein spots 
were cut manually from the gels and washed three times in acetonitrile/water (v/v, 
50:50). After de-staining and drying, the chopped pieces were incubated with a 
volume of digestion buffer containing 5 ng sequence-grade trypsin solution for 20 h 
at 37 oC. Finally, the digestion was stopped through the addition of 100 μL 60% (v/v) 
acetonitrile in 0.1% (v/v) trifluoroacetic acid. The digested samples were then 
analysed using a 5800 Plus MALDI TOF Analyzer (Applied Biosystems, Foster City, 
CA, USA). Protein identification was performed using MASCOT (Matrix Science) to 
search the uniprot database (http://www.uniprot.org/). PDQuest 8.0 (Bio-Rad 
Laboratories, CA, USA) was employed to find the unique spots that appeared in 
adulterated milk in contrast to pure milk.  

http://www.uniprot.org/
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Figure 2-1: Two-dimensional electrophoresis maps of protein spots of cow’s milk (a), cow’s 

milk adulterated with 4% plant protein (b), and plant protein (c). Plant protein sources are 
soy, pea, and wheat. Protein spots labelled with arrow are only detected in adulterated milk 

compared with cow’s milk  
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Table 2-1:  Identification and optical density of protein spots only detected in spiked milk compared with control milk on the gels, analysed by 
Matrix-Assisted Laser Desorption/Ionisation Time of Flight Mass Spectrometry (MALTI-TOF MS) 

 

 

  

Protein 
spot 

Protein name 
(organism) 

Uniprot 
IDs a 

Molecular 
mass (kDa) 
a 

Isoelectric 
point a 

Score Number of 
matched 
peptides 

Average 
relative 
intensity 

CV of relative 
intensity (%) 

S1 β-conglycinin 
β subunit 
(Glycine max) 

F8WQS1 50.010 6.14 644 26 72.1 16.5 

S2 β-conglycinin 
β subunit 
(Glycine max) 

F7J077 50.468 5.88 592 26 105.4 37.4 

S3 β-conglycinin 
β subunit 
(Glycine max) 

Q50JD8 48.358 5.67 483 24 30.8 17.5 

S4 Uncharacteriz
ed protein 
(Glycine max) 

I1LST1 88.639 5.10 6 40 246.6 15.3 

S5 Uncharacteriz
ed protein 
(Glycine max) 

I1L939 71.254 5.23 3 43 254.2 6.8 

S6 Uncharacteriz
ed protein 
(Medicago 
truncatula) 

G7I2I6 6.749 5.14 3 47 211.1 12.1 

S7 Glycinin G2 
(Glycine soja) 

A0A0B2P
SP9 

59.640 5.79 350 14 287.0 8.4 

S8  
   

Glycinin 
A3B4 subunit 
(Glycine max) 

Q7GC77 58.608   5.52 132 10 96.4 23.5 
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Table 2-1 Continued 

Protein 
spot 

Protein name 
(organism) 

Uniprot 
IDs a 

Molecular 
mass (kDa) 
a 

Isoelectric 
point a 

Score Number of 
matched 
peptides 

Average 
relative 
intensity 

CV of relative 
intensity (%) 

S9 β-conglycinin 
α subunit 
(Glycine max) 

Q94LX2 70.549 5.12 628 20 94.4 55.2 

S10 β-conglycinin 
α subunit 
(Glycine max) 

O22120 63.184 4.92 725 23 87.9 55.7 

S11 β-conglycinin 
α subunit 
(Glycine soja) 

A0A0B2Q
6W9 

70.521 5.09 262 18 345.0 2.8 

S12 β-conglycinin 
α prime 
subunit 
(Glycine max) 

Q4LER6 72.469 5.50 233 22 244.8 5.3 

P1 Legumin A 
(Pisum 
sativum) 

P15838 59.633 6.21 295 15 361.3 8.2 

P2 Legumin A 
(Pisum 
sativum) 

Q9T0P5 59.153 6.16 137 12 387.7 6.2 

P3 Legumin A 
(Pisum 
sativum) 

P15838 59.633 6.21 305 11 214.4 10.9 

P4 Legumin A 
(Pisum 
sativum) 

P15838 59.633 6.21 241 14 253.4 5.5 
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Table 2-1 Continued 

Protein 
spot 

Protein name 
(organism) 

Uniprot 
IDs a 

Molecular 
mass (kDa) 
a 

Isoelectric 
point a 

Score Number of 
matched 
peptides 

Average 
relative 
intensity 

CV of relative 
intensity (%) 

P5 P54 protein 
(Pisum 
sativum) 

O49927 55.027 6.05 445 18 60.4 51.3 

P6 P54 protein 
(Pisum 
sativum) 

O49927 55.027 6.05 521 18 57.5 18.5 

P7 Vicilin (Pisum 
sativum) 

P13918 52.257 5.39 211 18 128.8 9.6 

P8 Vicilin (Pisum 
sativum) 

P13918 52.257 5.39 670 26 116.2 24.2 

P9 Convicilin 
(Pisum 
sativum) 

Q9M3X6 72.134 5.50 427 23 65.1 3.2 

P10 Convicilin 
(Pisum 
sativum) 

Q9M3X6 72.134 5.50 643 26 81.4 13.3 

W1 β-amylase 
(Triticum 
aestivum) 

W5EKI0 61.360 5.00 938 16 228.4 20.4 

W2 β-amylase 
(Triticum 
aestivum) 

W5C8P9 57.105 5.29 368 6 97.1 9.8 
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  Table 2-1 Continued 

Protein 
spot 

Protein name 
(organism) 

Uniprot 
IDs a 

Molecular 
mass (kDa) 
a 

Isoelectric 
point a 

Score Number of 
matched 
peptides 

Average 
relative 
intensity 

CV of relative 
intensity (%) 

W3 Serpin 3 
(Triticum 
aestivum) 

C0LF32 43.227 5.56 1010 13 97.8 38.3 

a ID, Molecular mass and isoelectric point derived from the uniport database. 
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3. Results and discussion 

In the current study, 2-DE maps were constructed for cow’s milk, soy, pea, and 
wheat plant protein extracted by PBS, and cow’s milk adulterated with 2%, 4%, and 
8% soy, pea, and wheat protein. The well-resolved and repeatable 2-DE gel maps of 
cow’s milk, plant proteins, and milk adulterated with plant protein at the 4% level are 
presented in Figure 2-1. There were no significant differences between raw milk and 
milk adulterated with plant protein at the 2% level. Typical vegetable protein spots 
were observed for milk adulterated with 4% and 8% pea or soy protein, with only a 
few foreign protein spots being detected in milk adulterated with 4% and 8% wheat 
protein. The foreign protein spots detected only in adulterated milk were selected as 
marker proteins. The relative intensity and identification of these spots is listed in 
Table 2-1. 

Due their potential to be food allergens (Nakamura and Teshima, 2013), the 
detection of plant proteins in adulterated milk is an important matter for public health. 
Therefore, the hypothesis of this research was to use 2-DE as a method to differentiate 
plant proteins from milk proteins, with a low detection limit (2% plant protein), in 
fluid skimmed milk spiked with soy, pea or wheat protein. For that, two sub-objectives 
must be fulfilled. Firstly, the 2-DE method must detect the presence of plant proteins 
in adulterated milk, and secondly, this detection must be reliable. 

3.1. Sample preparation 

The solubility of vegetable protein in skimmed milk and its availability for 
isoelectric focusing electrophoresis produced a good separation of plant protein via 
the 2-DE method in this study. PBS was used to prepare a plant protein solution in 
our experiment. Moderate pH values in PBS promoted the dissolution to aqueous 
solution of β-conglycinin and glycinin from soy-source protein, and legumin and 
vicilin from pea-source protein (Samoto et al., 2007). Tetraborate-EDTA buffer was 
an effective tool for extracting plant protein from milk powder, as 2% of milk protein, 
94% of soy-source protein, and 87% of pea-source protein were retrieved in the pellet 
after centrifugation (Luykx et al., 2007; Scholl et al., 2014). Moreover, protein 
extraction at pH 8.3 via tetraborate-EDTA buffer did not support isoelectric 
electrophoresis in this study (Scholl et al., 2014).  

3.2. Detection of plant protein  

Protein spots which were only detected in milk adulterated with soy protein were 
labelled S1-S12 (Fig. 3-1, Table 3-1). Gel maps containing soy protein showed soy 
protein spots related mainly to β-conglycinin and glycinin. β-conglycinin contained α 
(such as spots S9 to S12) and β (such as spots S1 to S3) subunits. Their identified 
molecular weight ranged from 63 to 72 kDa and from 48 to 50 kDa, respectively. 
Their isoelectric points ranged from 4.92 to 5.50 and from 5.67 to 6.14 for α and β 
subunits, respectively. The molecular weight and isoelectric point of glycinin 
identified in this study (spots S7 to S8) were between 59 and 60 kDa and between 
5.52 and 5.79. Our results were similar to those previously reported (Zarkadas et al., 
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2007). Although three additional spots detected in soy protein adulterated milk (spots 
S4 to S6) were not characterised by the Uniprot database, they have a location 
comparable to acidic subunits of glycinin observed by Zarkadas et al. (2007). Based 
on their acidic isoelectric point, spots S7 and S8 were likely to also be acidic subunits 
of glycinin. Disulfide bonds linking the subunits of glycinin were broken by the DDT 
used in the sample preparation and, therefore, the acidic subunits with a molecular 
weight of about 35 kDa would be dissociated from the basic subunits (Nishinari et al., 
2014). This explains why the molecular weight of spots S4 to S8 identified in our 2-
DE gels was around 36-37 kDa. Results for the optical intensity for the spots S4 to S7 
and S11 to S12, the relative density with a value above 200, and coefficients of 
variation (CV) ranging from 2.8% to 15.3%, suggest high β-conglycinin and glycinin 
content in soy protein adulterated milks. This was confirmed in a study by Zarkadas 
et al. (2007), where α and α’ subunits of conglycinin, as well as acidic subunits of 
glycinin, accounted for 21-33% and 35-45% of the soy protein content. The 
differentiation of soy protein spots compared to milk protein spots can be explained 
by the difference in molecular weight between these different proteins. Indeed, the 
identified soy protein spots (for example, S1 to S4 and S7 to S12) have a higher 
molecular weight than casein and whey protein, whose molecular weight is below 35 
kDa. In conclusion, β-conglycinin and glycinin are identified in this study as the 
indicator of milk adulteration with soy protein. Peptides originating from these 
proteins were also detected by mass spectrometry in reports on milk powder 
adulteration (Luykx et al., 2007; Cordewener et al., 2009). 

Protein spots (P1-P10) detected in milk spiked with pea protein (Fig. 3-1), were 
identified as legumin A, vicilin, convicilin, and P54 protein from peas in the uniprot 
database (Table 3-1). Pea protein spots identified as having higher relative intensities 
(from 214 to 387) were P1-P4. Their CV ranged from 55% to 10.9%. The relative 
intensity and CV for the rest of the identified pea protein spots (P5-P10) were 60% to 
129% and 3.2% to 51.3%, respectively. The molecular weight of these proteins varied 
from 52 to 72 kDa and their isoelectric point ranged from 5.39 to 6.21. The higher 
molecular weight of these proteins compared to milk proteins explains the observed 
separation on 2-DE gels. Meanwhile, it was observed that some of the extracted pea 
protein fractions were covered by casein and whey protein and therefore were not 
visible in the 2-DE gels of adulterated milks. The observed high relative intensity of 
spots P1 to P4 and the moderate relative intensity of spots P7 and P8 suggest high 
legumin contents and moderate vicilin contents in pea protein. This accords with 
previous findings (Sirtori et al., 2012), which also stated that the soluble globulin in 
pea seeds accounted for approximately 70% of the total protein; the two major 
proteins were vicilin and legumin, with a minor protein, convicilin. Tzitzikas et al. 
(2006) suggested that the ratio of legumin to vicilin ranged from 2 to 4 in pea globulin. 
Similar to glycinin in soy protein, legumin subunits (around 60 kDa) consisted of one 
acidic α (35-43 kDa) and one basic β (19-23 kDa) polypeptide, linked together via a 
disulfide bridge (Gatehouse et al., 1980). Legumin, identified in this study, was also 
found to be a major protein in kidney beans (Parmar et al., 2014). Based on their 
location on the gel, spots P1 to P4 in our 2-DE gels were more likely to be the acidic 
α polypeptides of legumin. P54 protein detected in our study was mentioned by Wang 
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et al. (2012) as an important storage protein in peas. As the major seed protein of peas, 
peptides from legumin and vicilin were also detected in adulterated milk powder 
(Luykx et al., 2007; Cordewener et al., 2009). 

The gel map of milk adulteration with wheat protein highlighted W1-W3 as marker 
proteins (Figure 3-1), which were characterised as beta-amylase and serpin 3 from 
wheat in the uniprot database. Fewer spots with high intensities for significant proteins 
were observed in wheat protein adulterated milk compared with those observed in soy 
and pea protein adulterated milks. This may pose some difficulty for unequivocal 
discrimination. The identified β-amylase (W1, W2) and serpin (W3) were shown to 
be wheat-source protein fractions in research performed by Becker et al. (2012). Only 
spot W1 indicated the existence of wheat protein in adulterated milk with high 
intensity (228.4), the other two spots showed low optical density (97). These spots 
also have a higher molecular weight (43-61 kDa) than major milk proteins. The wheat 
protein fraction extracted by PBS in this study was inconsistent with KCl 
soluble/methanol-soluble fractions from wheat flour in previous reports, due to the 
absence of gliadins or glutenin subunits (Hurkman and Tanaka, 2004). The protein in 
wheat seed is comprised of glutenins, gliadins, albumins, and globulins (Hurkman and 
Tanaka, 2004). The insolubility of gliadin and aggregation of glutenin were likely to 
contribute to the absence of these proteins in the supernatant after centrifugation 
(Becker et al., 2012). Interestingly, analysis of pellets of skimmed milk powder 
adulterated with wheat protein isolate after tetraborate-EDTA extraction has also 
failed to identify wheat source proteins (Scholl et al., 2014).  

3.3. Reliability 

The separation of soy and pea protein adulteration in milk was more visible than in 
the case of wheat protein adulteration. Typical foreign protein spot groups for pea and 
soy proteins appeared in the gel map at a 4% level of adulteration. Marker proteins 
(S4-S7, S11, S12, P1-P4) with high intensity (211.1-387.7) could be considered as 
indicators of milk adulteration and showed good reliability (CV ranged from 2.8% to 
15.3%). In contrast, only one spot (W1) detected for 4% wheat protein adulterated 
milk had an intensity above 200. Therefore, 2-DE used in our study was of limited 
use to detect the presence of wheat protein in milk.  

In this study, the detection limit of 2-DE for soy and pea protein in milk adulteration 
was 4% (8 μg). No obvious soy and pea protein spot appeared in the 2% plant protein 
adulterated samples, and only appeared when the foreign protein level was more than 
8 μg, as found in the 4% plant protein adulterated milk. Yang et al. (2014) observed 
around 1μg of bovine α-lactalbumin and β-lactoglobulin in a gel of goat’s and camel’s 
milk samples adulterated with 2% cow’s milk; however, this limit detection was not 
confirmed in this study. The poor detection limit found in the present study can be 
ascribed to the incomplete aqueous solubility of plant protein. In future research, low 
non-target protein preparation (ultracentrifugation) may improve the resolution and 
detection limit for plant protein with 2-DE (Yang et al., 2014). In addition, the 
application of fluorescence staining could allow a lower limit (1-2 ng) of protein 
detection than Coomassie Brilliant Blue staining (8-16 ng) for 2-DE detection, as 
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applied in current study (Berggren et al., 2000). 

2-DE separated soy protein β-conglycinin and glycinin, pea protein legumin, vicilin, 
and convicilin, as well as wheat protein β-amylase and serpin from milk casein and 
whey protein on the gel of adulterated milk. This not only highlights the exogenous 
plant protein from milk protein, but prevents the masking of the trace amounts of plant 
protein by highly abundant casein and whey proteins in the successive identification 
by MS. Preliminary screening for manufactured skimmed milk powder containing 5% 
soy or pea protein isolates using MS showed few plant protein peptides were identified 
(Luykx et al., 2007). Similar peak profiles were also observed in the comparative LC-
MS analysis between skimmed milk powder and skimmed milk powder adulterated 
with 5% soy protein isolates, and discrimination of these samples needs multivariable 
analysis by a post-alignment clustering procedure (Cordewener et al., 2009). From 
this point of view, 2-DE provided high sensitivity and specificity for the final 
identification of added plant protein, using MALDI-TOF MS. 

4. Conclusions 

The results demonstrate that 2-DE would be effective for screening milk adulterated 
with at least 4% soy and pea protein, with successive mass spectrometry analysis 
identifying several peptides: β-conglycinin and glycinin from soy and legumin, vicilin 
and convicilin from peas. For milk adulteration with wheat protein, only β-amylase 
and serpin were identified. As a potential detection method, 2-DE is robust for the 
validation of milk adulteration with soy and pea protein. Moreover, an improved 
electrophoresis procedure with special sample preparation and staining methods 
would reduce the limit of detection effectively. 
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In this chapter, plant protein (soy and pea) and hydrolyzed plant proteins (wheat 
and rice) were used to prepare the adulterated samples. High-performance liquid 
chromatography tandem mass spectroscopy was used to separate peptides of control 
and adulterated samples, with a three-dimensional approach using selected 
informative data: retention time, mass to charge ratio of precursor ion and product 
ions. Combined with principal components analysis, the fingerprints of peptides could 
discriminate all adulterated samples from control milk. Therefore, the detection limit 
of HPLC-MS/MS in this study was the minimum level of each type of adulterated 
samples.  

From Yang, J., N. Zheng, H. Soyeurt, Y. Yang, and J. Wang. 2018. Detection of 
plant protein in adulterated milk using non-targeted nano-high performance liquid 
chromatography -tandem mass spectroscopy combined with principal component 
analysis. Food Science and Nutrition (available online). 
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Abstract  

The objective of this study was to detect plant protein adulterated in fluid milk using 
nano-high performance liquid chromatography (HPLC) -tandem mass spectroscopy 
(LC-MS/MS) combined with proteomics. Unadulterated milk and samples adulterated 
with soy protein, pea protein, hydrolyzed wheat protein, and hydrolyzed rice protein 
were prepared, with plant protein level ranged from 0.5% to 8% in total protein. 
Sodium dodecyl sulfate -polyacrylamide gel electrophoresis (SDS-PAGE) gels 
clearly revealed that centrifugation at 20 000 g for 60 min would reduce band intensity 
of casein and albumin in milk. Results of nano-HPLC-MS/MS indicated the major 
proteins of soy (β-conglycinin, glycinin), pea (vincilin, convicilin, legumin) and 
wheat (glutenin and gliadin) in adulterated milks, allowing detection of soy protein 
and hydrolyzed wheat protein at the level above 0.5% in total protein, and pea protein 
at the level of 2 and 4%. No rice protein was identified in milk samples adulterated 
with hydrolyzed rice protein. Combined with principal component analysis, nano-
HPLC-MS/MS could discriminate all the adulterated samples from authentic milk. 
This study demonstrated the feasibility of nano-HPLC-MS/MS on the detection of 
(hydrolyzed) plant protein adulterated in milk.  

Key words: milk adulteration, plant protein, sodium dodecyl sulfate -
polyacrylamide gel electrophoresis, nano-high performance liquid chromatography -
tandem mass chromatography, high speed- centrifugation  
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1. Introduction 

Milk products are considered to be the second highest food in the adulteration 
database, behind olive oil (Moore et al., 2012). The addition of foreign nitrogenous 
compounds to milk products to mask original low protein content is common in dairy 
adulteration (Nascimento et al., 2017). Adulterants in milk products can cause serious 
food safety incidents, e.g., melamine (Moore et al., 2012). Vegetable protein is a 
potential candidate to spike milk products for economic reasons (Luykx et al., 2007). 
Some allergens from plant proteins can cause serious anaphylaxis and disorders 
(Nakamura and Teshima, 2013), so unlabeled or illegal addition could threaten 
consumer health and food safety. For these reasons, it is necessary to develop effective 
techniques to detect plant proteins in milk. 

Detection of plant protein in dairy products have been reported in previous 
literatures. Capillary zone electrophoresis (CZE) has been approved as the official 
reference method to detect soy protein in skimmed milk powder (Manso et al., 2002). 
An automated fluorescent microsphere-based flow cytometric triplex immunoassay 
was developed to detect soy protein (SP), pea protein (PP), and soluble wheat protein 
in milk powder simultaneously, and the limit of quantification of this triplex 
immunoassay was above 0.1% (Haasnoot and du Pre, 2007). Detection of soy, pea, 
wheat, rice protein at 0.1% -0.2% of sample weight in milk powder was realized by a 
rapid turbidimetric measure based on the absorbance of the resuspended pellet 
solution (Scholl et al., 2014). Whereas, these methods fail to present the origin of these 
adulterants. With amino acid sequences revealed by fragmented peptides, mass 
spectrometry (MS) is successful in the identification of plant protein added to milk 
products (Luykx et al., 2007; Cordewener et al., 2009; Lu et al., 2017). High 
performance liquid chromatography (HPLC) -mass spectrometry (MS) can identify 
numerous peptides from major seed proteins of soy and pea in the adulterated milk 
powder, after borate buffer extraction and tryptic digestion (Luykx et al., 2007). 
Although previous studies have shown that borate buffer was effective to extract 
insoluble soy and pea protein from milk powder (Luykx et al., 2007; Scholl et al., 
2014), the borate buffer enrichment step may not be effective in the detection of plant 
protein in adulterated fluid milk, because soluble foreign protein is dominant in the 
adulterated protein and should be the target of detection. Hydrolyzed plant protein 
tends to have high solubility due to its high content of free amino acids and peptides 
(Aaslyng et al., 1998). A previous study had found that sodium dodecyl sulfate 
(SDS) -capillary electrophoresis (CE) failed to detect hydrolyzed SP in adulterated 
milk powder (Lopez-Tapia et al., 1999). Combined with multivariable statistics, a 
variety of non-targeted detection methods have been proposed to identify plant protein 
adulterated in raw milk. Partial least squares -discriminant analysis (PLS-DA) and 
principal component analysis (PCA) using the fingerprints of intact protein flow 
injection mass spectra (MS) and ultra-high-performance liquid chromatography 
(UHPLC) -quadrupole time-of-flight (QTOF) -MS were able to detect SP and PP in 
adulterated milks at the 1% level (Lu et al., 2017; Du et al., 2018). Based on the 
chromatographic files of authentic and adulterated milk powder obtained by UHPLC 
with UV detection at 215 nm, the t test approach and multivariate Q statistic from a 
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SIMCA model would classify milk powder with SP at 1% and 3% levels correctly, 
and failed to recognize adulterated samples with brown rice and hydrolyzed wheat 
protein below 10% (Jablonski et al., 2014). 

The objective of this study is to identify the (hydrolyzed) plant protein in adulterated 
milk using non-targeted liquid chromatography-tandem mass spectrometry (LC-
MS/MS). PCA is used to reveal the differences of proteins between samples identified 
by MS. High-speed centrifugation of samples prior to MS is expected to reduce the 
cover signal from a high abundance of milk protein over small amounts of adulterant 
protein, and the corresponding separation would be validated by SDS- polyacrylamide 
gel electrophoresis (PAGE). 

2. Materials and methods 

2.1. Sample preparation 

Pasteurized milk samples were purchased from Sanyuan Foods (Beijing, China). 
The following plant protein products were used in this study: SP isolate (Nature’s 
Bounty, Inc., Bohemia, NY11716, USA), PP isolate (LifeTime Nutritional Specialties, 
Inc., Orange, CA92865, USA), HWP (CP100, Conpro, Kangke Food Engineering 
Tech Ltd., Wuxi, Jiangsu, China) and hydrolyzed rice protein (HRP) (Shuaixing, 
Yongguodanbaifen Ltd., Wuhan, Hubei, China). About 10 g of plant protein powder 
was added to 100 ml phosphate buffer (pH = 6.8, 0.2 M). After magnetic stirring 
overnight, the plant protein solutions were obtained through centrifugation at 5000 g 
for 20 min followed by filtration with a 0.2 μm syringe filter (13 mm, GHP Minispike, 
Waters). The protein contents in SP, PP, HWP, HRP solution, and milk were 31.0, 
23.5, 52.1, 66.4, and 30.7 mg/mL, respectively, as determined by KjelROC analyzer 
KD310 (OPSIS AB Inc, Sweden) using the Kjeldahl method (IDF, 2014).  

A series of “adulterated” milks (containing 0.5, 1, 2, 4, 8 g of plant protein/100 g 
total protein) were prepared by mixing the plant solution and milk in mass proportions. 
Skimmed samples were collected after centrifugation at 5000 g for 20 min. Additional 
high-speed centrifugation at 20 000 g for 1 h was used to prepare samples before 
further LC-MS/MS analysis. Both samples (before and after centrifugation at 20 000 
g) were analyzed by SDS-PAGE. 

2.2. SDS-PAGE  

2.2.1. Gel electrophoresis 

Sample protein concentrations were spectrophotometrically determined using 
bicinchoninic acid (BCA) assay kits (P0010S, Beyotime Institute of Biotechnology, 
China) before analysis. SDS-PAGE were undertaken according to Laemmli (1970). 
After heating at 95°C for 5 min with an equal volume of 2× SDS-PAGE loading buffer, 
samples containing 30 mg protein were loaded onto a 12% SDS-PAGE gel, and the 
separation was performed at 120 V for 2 h. The gels were stained for 8 h in Coomassie 
blue dye solution [0.12% (w/v) Coomassie brilliant blue G250, 0.12% (w/v) 
ammonium sulfate, 10% (v/v) phosphoric acid, 20% (v/v) methanol]. This was 
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followed by destaining steps, in which gels were washed by shaking in 10% (v/v) 
ethanol and 10% (v/v) acetic acid (destaining solution). Triplicate destained gels were 
scanned and optically analyzed with Quantity One software (V4.6.2, Bio-Rad, CA, 
USA). Unique protein bands in the gel of adulterated samples were excised and trypsin 
digested following the method of Yang et al. (2014). 

2.2.2. Protein identification and database search 

MS and MS/MS of extracted peptides were collected using a 4800 plus matrix-
assisted laser desorption/ionization (MALDI)- time of flight/ time of flight (TOF/TOF) 
Analyzer (Applied Biosystems, Foster City, CA, USA) equipped with a 355 nm 
Nd:YAG laser at an acceleration voltage of 20 kV. Acquisition of positive ions was 
completed in reflector mode by delayed extraction. Peptide masses ranged from 800 
to 4000 Da. The top eight precursor ions with a signal-to-noise ratio more than 50 for 
each sample were processed in tandem MS mode with 2500 laser shots, and collision 
energy set as 20 keV. The National Center for Biotechnology Information (NCBI) 
non-redundant database was used to identify the protein via MASCOT (Matrix 
Science) search. Peaks with a signal-to-noise ratio below 15 were excluded from the 
search. The search parameters were set as follows: fixed and variable modifications 
were carbamidomethylation of cysteine and methionine oxidation, tolerance for one 
missing cleavage, monoisotopic mass accuracy below 100 ppm, fragment and peptide 
mass tolerances were ± 0.4 Da and ± 100 ppm. 

2.3. LC-MS/MS analysis 

2.3.1. Protein digestion 

100 μL of samples were mixed with same volume of lysis buffer (8 M Urea, 100 
mM TrisHCl, pH 8.0), treated by ultrasound (100 W, 10 s, interval 15 s, 10 times) and 
bathed in ice. After centrifugation at 12 000 g at 4°C for 15 min, supernatants were 
collected for protein concentration test using a Bradford test (Bio-Rad, Shanghai, 
China). Then samples containing 200 μg protein were reduced with dithiothreitol 
(DTT) at a final concentration of 10 mM and incubated at 37°C for 2 h. After cooling 
to room temperature, samples were mixed with 55 mM iodoacetamide, and vortexed 
at 600 rpm for 1 min, then incubated at 37°C in the dark for 30 min. The same volume 
of 100 mM NH4HCO3 were added to samples to decrease urea concentration to less 
than 2 M. Next, 4 μg trypsin was mixed with the samples and kept at 37°C overnight. 
The digestion was stopped by addition of 100 μL 60% (v/v) acetonitrile in 0.1% (v/v) 
formic acid solution. StageTip with Empore C18 extraction disks (3M, South Eagan, 
MN) was prepared to desalt and dry the samples. Authentic milk (control) and samples 
adulterated with SP and HWP at 0.5-4% were prepared in triplicate, and adulteration 
with PP and HRP at 2% and 4% levels were prepared in duplicate in this part. 

2.3.2. LC-MS/MS analysis 

The tryptic digestion products were separated by nano -HPLC prior to Q Exactive 
HF Mass Spectrometry (Thermo Scientific). The separation conditions were adapted 
from Cordewener et al. (2009). Samples were injected on a Thermo Scientific EASY 
column (C18, 2 cm × 100 μm, 5 μm), which was equilibrated with 95% of solvent A 
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before sample loading, and the peptides were separated on a Thermo Scientific EASY 
C18 column (100 mm × 75 μm, 3 μm) at a flow rate of 250 nL/min. Solvent A 
consisted of aqueous 0.1% formic acid solution and solvent B consisted of 84% 
acetonitrile in aqueous 0.1% formic acid solution. Gradient conditions started at 5% 
B, then a linear gradient to 8% B at 2 min, then a linear gradient of 23% B at 90 min, 
then a linear gradient to 40% B at 105 min, then a linear gradient to 100% B at 110 
min, and 100% B was maintained for the final 10 min.  

Peptide analysis was performed in positive ion mode for 120 min, with a selected 
mass range of 300 -1 800 mass/charge (m/z). For the survey scan, resolving power 
was set to 60 000 at m/z 200, maximum ion injection time was 50 ms, and the 
automatic gain control target was 3e6. MS/MS data were acquired using the top 20 
most abundant precursor ions, as determined by the survey scan, and activation type 
was HCD. These were selected with an isolation window of 1.5 m/z and fragmented 
via higher energy collisional dissociation with normalized collision energies of 27 eV. 
For the MS/MS scans, dynamic exclusion of the selected precursor ions was set to 30 
s, resolving power was set to 15 000 at m/z 200, maximum ion injection time was 
fixed at 50 ms. 

2.4. Data analysis 

Raw files were processed by the Maxquant software (version 1.5.3.17) of the 
selected species database. The protein databases of bovine, soybean, pea, wheat, and 
rice were downloaded from Uniprot, which contained 138 035, 250 621, 88 489, 
393 298, and 753 301 proteins, respectively. The following parameters were applied: 
trypsin was the enzyme, and two missed cleavages were allowed up, 
carbamidomethylation of cysteine was defined as a fixed modification; and oxidation 
of methionine and acetylation of protein N-term were set as variable modifications. 
Main search and first search of MS/MS ions were set at 6 and 20 ppm, and MS/MS 
tolerance was 20 ppm. The false discovery rate for protein and peptide identification 
was 1 %. Relative quantification of identified protein was calculated from the 
intensities of razor and unique peptides. The decoy database pattern was set as the 
reverse of the target database.  

Identified protein intensities were output to process using Unscrambler software 
(version 10.4, CAMO AS, Trondheim, Norway). Data processing was described as 
Cordewener et al. (2009), after log transformation of protein intensities, data 
standardization before PCA was performed by centering (subtracting median 
intensities) and normalization (dividing by the standard deviation).  

3. Results and Discussion 

3.1. SDS-PAGE 

Results of SDS-PAGE of skimmed milk samples and samples treated with high 
speed centrifugation are listed in Figure 3-1 and Figure 3-2, respectively. The distinct 
bands labelled in Figure 3-1a, Figure 3-1b, Figure 3-2a, and Figure 3-2b were 
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identified by MALDI-TOF/TOF MS, and the protein information is listed in Table 4-
1. As shown in Figure 4-1, the major proteins in skimmed milk consisted of albumin, 
α-, β-, and κ-casein, β-lactoglobulin, and α-lactalbumin. Several protein bands 
observed in the lane of SP (Figure 3-1a) and PP (Figure 3-1b) had a similar location 
to SDS-PAGE data for pea and soy samples reported in a previous study (Scholl et al., 
2014), although plant protein extraction methods differed. Although some faint bands 
are observed between 11 and 17 kD in the lane of HWP (Figure 3-1c), most protein 
fraction residues from HWP and HRP (Figure 3-1d) are gathered in the bottom line, 
and this is in line with previous findings, in which 95% of the peptides of hydrolysates 
were below 1000 Da (Tessier et al., 2005). Similar protein profiles are presented for 
milk and adulterated milk with 0.5-4% levels of SP, and only the 8% level sample 
shows weak stripes of β-conglycinin (α and α' subunit, labelled S2 and S1), and 
glycinin (G2, labelled S3) besides milk protein (Figure 3-1a). Obvious stripes of PP 
(vicilin and legumin A2, labelled P1 and P2) are observed in milk adulteration at 4-
8% level (Figure 3-1b). No visible lane variance appears between milk and samples 
adulterated with HWP and HRP (Figure 3-1c and Figure 3-1d).  

After high speed centrifugation, weak albumin and casein bands appeared for milk 
protein (Figure 3-2), while increased intensity was observed in plant protein lanes. 
Decreased milk protein intensities indicate more visible foreign protein lines from 
plant protein in adulterated milk. Additional protein lines are identified as α subunits 
of β conglycinin (S4) and glycinin (S5) emerging at 4% and 8% levels of adulteration 
with SP. Visible S1, S2, and S3 appeared in adulterated samples at levels of 1% 
(Figure 3-2a). Another protein band (convicilin, labelled P3) from PP could be 
observed in lanes for 4% and 8% levels of adulteration with PP, and P1 and P2 could 
be observed at all levels of adulteration with PP (Figure 3-2b). We found still no 
obvious difference between different levels of adulteration with HWP after high speed 
centrifugation treatment (Figure 3-2c). Interestingly, as the adulteration level of HRP 
increased, the intensities of casein and albumin lines was found to decrease (Figure 3-
2d), possibly as a result of high NaCl content (40% in dry matter) in hydrolyzed plant 
protein (Aaslyng et al., 1998). Saturation of milk with NaCl precipitates the casein 
and albumin while the major whey proteins remain soluble (Fox et al., 2015).  

Centrifugation at 5 000 g for 20 min was used to prepare skimmed milk in this study, 
and ultra-centrifugation at 100 000 g for 1 h could sediment most (90-95%) of the 
casein from whey (Fox et al., 2015). Therefore, enhanced centrifugation above 5000 
g would reduce the amount of casein in milk, and it is confirmed by the comparison 
of gel electrophoresis (Figure 3-1 vs. Figure 3-2) in current study. The detection limit 
of SDS-PAGE for SP and PP in milk reduced from 8% (soy) and 4% (pea) to 1% and 
0.5%, respectively, and more visible SP and PP (S1-S5, and P1-P3) lines in 
adulterated samples appeared after centrifugation at 20 000 g at 4°C for 60 min. In 
other words, high-speed centrifugation for skimmed milk is an alternative 
pretreatment, which may magnify the minor difference between low amounts of plant 
protein in adulterated milk revealed by successive LC-MS/MS analysis.  
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Figure 3-1: SDS-PAGE gel profile of milk adulterated with soy protein (a), pea protein 
(b), hydrolyzed wheat protein (c), and hydrolyzed rice protein (d), centrifugation at 5000 g 

for 20 min. SP, Soy protein; PP, pea protein; HWP, hydrolyzed wheat protein; HRP, 
hydrolyzed rice protein; MW, molecular weight; ALB, albumin; IgH, immunoglobulin heavy 

chain; CN, casein; α-LA, α-lactalbumin; β-LG, β-lactoglobulin 
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Figure 3-2: SDS-PAGE gel profile of milk adulterated with soy protein (a), pea protein 
(b), hydrolyzed wheat protein (c), and hydrolyzed rice protein (d), centrifugation at 20 000 g 

for 60 min. SP, Soy protein; PP, pea protein; HWP, hydrolyzed wheat protein; HRP, 
hydrolyzed rice protein; MW, molecular weight; ALB, albumin; IgH, immunoglobulin heavy 

chain; CN, casein; α-LA, α- lactalbumin; β-LG, β-lactoglobulin 
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Table 3-1: Identification of marker protein spots in adulterated milk contrasted with 
control milk on the gel by MALDI-TOF MS 

3.2. LC-MS/MS coupled with multivariable statistics 

The total ion chromatogram of SP, PP, HWP and HRP are shown in Figure 3-S1. 
There are 430, 902, 356, and 9 proteins identified in SP, PP, HWP, and HRP solutions, 
respectively. Compared with other plant proteins, fewer peaks appeared in the peptide 
chromatograms generated from HRP, and fewer proteins were identified. The 
destruction of tryptophan (Trp) and cysteine (Cys), deamination of glutamine (Gln) 
and asparagine (Asn), as well as high levels of hydrolysis occurred in the 
manufacturing process (Aaslyng et al., 1998) may have disturbed the proteomic 
identification of rice protein in adulterated milk in this study. More adulterant proteins 
were identified in milk spiked with HWP than samples with HRP. More peptide peaks 
observed in the chromatogram profile (Figure 3-3d) of HWP indicated less extensive 
hydrolysis in the manufacturing process for wheat protein, a result which was also 
confirmed by gel electrophoresis (Figure 3-1c). 

Figure 3-S2 shows the summed spectra of replicated measurements for control milk 
and milk samples adulterated with SP (4% level). No obvious visible difference was 
observed in the peak intensities of typical LC-MS runs between replicates or among 
samples, which indicates the reproducibility of sample measurements and the 
similarity of major peptides between samples. Visible differences between pure milk 
and samples adulterated with SP at 10% level on MS fingerprints and 
chromatographic files were observed in recent studies using flow injection MS and 
ultra HPLC-UV detection respectively (Jablonski et al., 2014; Du et al., 2018). 
However, direct comparison of chromatograph profiles does not often reveal the 
difference between adulterated samples and control milk. Discrimination of milk 

Band ID Protein name Organism Molecular 
weight 
(kDa) 

Protein 
isoelectric 
point 

Peptide 
count 

Protein 
Score 

P1 P13918 Vicilin Pisum 
sativum 

52199.7 5.39 25 464 

P2 P15838 Legumin A2 Pisum 
sativum 

59233.6 6.21 20 315 

P3 Q9M3X6 Convicilin Pisum 
sativum 

72019.7 5.50 29 374 

S1 Q9FZP9 α' subunit of β-
conglycinin 

Glycine 
max 

65103.4 5.23 31 605 

S2 Q94LX2 β-conglycinin 
α subunit 

Glycine 
max 

63248.8 5.00 18 520 

S3 A0A0B2
PSP9 

Glycinin G2 Glycine 
soja 

59013.1 5.79 14 291 

S4 O22120 α subunit of β 
conglycinin 

Glycine 
max 

63126.9 4.92 20 576 

S5 Q9SB12 Glycinin Glycine 
max 

55337.2 5.46 14 279 
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powder adulterated with 5% SP from control samples by visual inspection of peak 
profiles was not realized in previous reports, using either HPLC-MS or LC-QTOF MS 
(Luykx et al., 2007; Cordewener et al., 2009). Therefore, necessary multivariable 
statistics, such as PCA, should be used to discover the minor difference in peak 
profiles between adulterated samples and control milk in this study. 

 

Table 3-2: Summary of samples and identified protein number 

1 CV, coefficients of variation, expressed as median (range) 

 

Item Adulterant Level Replicates Number 
of 
identified 
proteins  

CV of 
intensities log 
values (%)1 

Percentage 
of adulterant 
protein 

Milk None 0 3 418 0.804(0.02-
13.8) 

0 

Soy 0.5 Soy protein 
isolate 

0.5 3 372 1.077(0.00-
28.5) 

23.4 

Soy 1 Soy protein 
isolate 

1 3 403 1.121(0.03-
10.8) 

29.8 

Soy 2 Soy protein 
isolate 

2 3 423 1.052(0.01-
19.5) 

33.3 

Soy 4 Soy protein 
isolate 

4 3 421 0.809(0.01-
18.1) 

37.8 

Pea 1 Pea protein 
isolate 

2 2 272 0.831(0.00-
7.00) 

20.2 

Pea 2 Pea protein 
isolate 

4 2 280 0.672(0.00-
14.6) 

21.4 

Wheat 
0.5 

Hydrolyzed 
wheat 
protein 

0.5 3 329 1.392(0.01-
14.8) 

19.8 

Wheat 
1 

Hydrolyzed 
wheat 
protein 

1 3 333 1.095(0.06-
14.0) 

20.7 

Wheat 
2 

Hydrolyzed 
wheat 
protein 

2 3 337 1.078(0.06-
12.1) 

22.8 

Wheat 
4 

Hydrolyzed 
wheat 
protein 

4 3 339 0.790(0.00-
17.9) 

27.4 

Rice 2 Hydrolyzed 
rice protein 

2 2 145 0.813(0.00-
6.86) 

0 

Rice 4 Hydrolyzed 
rice protein 

4 2 145 0.684(0.00-
3.68) 

0 
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Figure 3-3: Score (a) and correlation loading (b) plots of principal component analysis 
(PCA) for adulterated and control milk. a, numbers labelled above sample points are the 
percentage of plant protein in total sample milk protein, and different colors indicate the 
different adulterated (SP, soy protein; PP, pea protein; HWP, hydrolyzed wheat protein; 
HRP, hydrolyzed rice protein) or control milk samples. Coloured points in b show the 

identified protein from adulterants or milk 
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Score and correlation loading plots of PCA analysis are shown in Figure 3-3. The 
first 2 PCs accounted for 56% of the total variance, which clearly distinguishes 
adulterated milk from control milk. In the loading plot (Figure 3-3b), identified SP 
and wheat protein are separated by PC1 for their opposite loading values; PP are also 
divided for their negative PC2 loadings, while milk protein scatters evenly across the 
plot. A score plot (Figure 3-3a) lists each individual LC-MS/MS profile as one point 
and replicated sample points overlap. Samples adulterated with different plant 
proteins cluster into four groups and are separated from authentic milk. Samples 
adulterated with SP, PP, and HWP tend to have a similar location to corresponding 
identified adulterant proteins in the loading plot. The distance between each level of 
adulteration with SP and PP is larger than that of adulteration with HWP and HRP. 
An approximate linear relationship of data points dependent on protein levels could 
be observed for samples adulterated with SP. Results of PCA in the current study are 
similar to those reported in other literature (Cordewener et al., 2009; Lu et al., 2017). 
Our results show that the adulterated samples could be separated from authentic milk 
for adulterants proteins. Although no rice protein was identified in the samples 
adulterated with HRP (Table 3-2), these samples were also distinguishable from pure 
milk. 

Descriptive statistics for proteins in samples identified by LC-MS/MS are listed in 
Table 3-2. Reproducible peak intensities for sample measurements were also 
presented by coefficients of variation (CV) values, which is ranged from 0.00 to 
28.5%, and corresponding medians were below 2%, this was comparable to previous 
reports (Cordewener et al., 2009). There were 372-421 and 272-280 proteins 
identified in samples adulterated with SP and PP respectively, while 329-339 and 145 
proteins were identified in adulteration with HWP and HRP respectively. About 19.8-
37.8% of the total identified protein was found to be adulterant protein from soy, pea, 
and wheat, and no rice protein was identified. As the adulterant levels increased, the 
ratio of identified adulterant protein in total protein also increased, except for 
adulteration with HRP. The top 10 adulterant proteins from adulteration with SP, PP, 
and HWP are shown in Table 4-S1. Among them, β-conglycinin, glycinin, trypsin 
inhibitor from SP, and vincilin, convicilin, legumin, provicilin from PP were also 
identified in other studies, using ultra HPLC-QTOF MS proteomics, as reported by 
Lu et al. (2017). Meanwhile, proteins identified from SDS-PAGE are also presented 
in the results of LC-MS/MS identification. Highly abundant adulterant proteins from 
HWP derive from gluten proteins in wheat seeds (Garcia-Molina et al., 2017). In 
addition, the top 10 most abundant proteins from milk were also defined in our study 
(Table 3-S2). All these proteins were identified in adulterated milk 

4. Conclusion 

In our study, high speed centrifugation at 20 000 g for 60 min was found to be an 
effective pre-treatment to reduce highly abundant milk protein in milk samples before 
MS analysis. LC-MS/MS protein fingerprints coupled with PCA successfully 
differentiated adulterated samples (SP and HWP at level of 0.5-4%, PP and HRP at 
level of 2% and 4 %) from authentic milk, and subsequent protein identification 
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allowed the identification of adulterants (SP, PP, and HWP) used in milk adulteration. 
However, no rice protein was identified in the samples adulterated with HRP. The 
identification of adulterants protein by LC-MS/MS may be disturbed by the degree of 
hydrolysis of plant protein.  
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7. Supporting information 

Additional Supporting information may be found in the online version of this 
article: 

 
Table 3-S1: Top 10 proteins identified from each adulterant in corresponding adulterated 

milk 

 

Adulte-
rants 

Protein name Organism Protein 
numbers 

Razor + 
unique 
peptides 

Mass 
(kDa) 

Coverage 
(%) 

Score 

Soy 
protein 

Alpha' subunit 
of β-conglycinin 

Glycine 
max 

9 43 65.14 59.2 323.31 

Alpha subunit of 
β-conglycinin 

Glycine 
max 

10 33 63.16 63.5 323.31 

Glycinin A3B4 
subunit 

Glycine 
soja 

13 19 57.70 70.6 323.31 

Glycinin Glycine 
max 

6 32 63.80 62.7 323.31 

Uncharacterized 
protein 

Glycine 
max 

5 7 18.46 43.7 221.18 

Kunitz trypsin 
inhibitor 

Glycine 
max 

23 13 24.14 44.9 311.72 

Uncharacterized 
protein 

Glycine 
max 

3 25 57.99 65.1 323.31 

Beta-
conglycinin β 
subunit 

Glycine 
max 

1 24 48.33 67.1 323.31 

Seed maturation 
protein PM31 

Glycine 
max 

2 11 17.75 52.9 248.57 

Uncharacterized 
protein 

Glycine 
max 

1 27 54.68 72.5 323.31 

Pea 
protein 

Convicilin Pisum 
sativum 

1 34 72.06 65.9 323.31 

Vicilin Pisum 
sativum 

4 24 64.6 47.3 323.31 

Legumin A2 Pisum 
sativum 

2 32 59.27 61.9 323.31 

Provicilin Pisum 
sativum 

2 12 31.54 70.5 323.31 

Vicilin 47k Pisum 
sativum 

1 3 49.66 72.1 255.19 

P54 protein Pisum 
sativum 

1 28 54.66 61.5 323.31 
 

Legumin (Minor 
small) 

Pisum 
sativum 

1 20 64.87 
 

55.1 323.31 
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Table 3-S1 continued  

Adulter
ants 

Protein name Organism Protein 
numbers 

Razor + 
unique 
peptides 

Mass 
(kDa) 

Coverage 
(%) 

Score 

Pea 
protein 

LegA class Pisum 
sativum 

3 10 58.79 61.9 323.31 

Vicilin, 14 kDa 
component 

Pisum 
sativum 

1 2 14.04 51.6 89.15 

Legumin J Pisum 
sativum 

1 13 56.90 
 

69.2 323.31 

Hydrol-
yzed 
wheat 
protein 

Alpha-amylase 
inhibitor CM3 

Triticum 
turgidum 
subsp. 
Durum 

3 8 18.22 75.6 323.31 

0.19 dimeric α-
amylase 
inhibitor 

Triticum 
aestivum 

25 5 13.34 91.1 323.31 

0.19 dimeric α-
amylase 
inhibitor 

Triticum 
aestivum 

8 8 13.25 89.5 323.31 

Low molecular 
weight glutenin 
subunit 

Triticum 
aestivum 

95 3 34.78 18.5 323.31 

Gamma-gliadin Triticum 
dicoccoide
s 

1 2 14.6 29.2 94.17 

Alpha-
amylase/trypsin 
inhibitor CM3 

Triticum 
aestivum 

1 2 17.30 52.5 19.22 

High molecular 
weight glutenin 
subunit Bx17 

Triticum 
aestivum 

43 6 80.07 12.6 100.22 

Uncharacterized 
protein 

Triticum 
aestivum 

10 5 21.89 35.8 123.43 

Alpha-amylase 
inhibitor CM1 

Triticum 
aestivum 

4 5 13.10 68.3 323.31 

Putative α-
amylase 
inhibitor CM2 

Triticum 
aestivum 

1 4 13.01 60.0 321.18 
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Table 3-S2: Top 10 identified milk proteins in unadulterated (control) milk 

 

  

Protein name Organis
m 

Number 
of 
proteins 

Razor + 
unique 
peptides 

Mass 
(kD) 

Coverage 
(%) 

Score 

Beta-
lactoglobulin 

Bos 
taurus 

7 24 19.97 86.5 323.31 

Kappa-casein Bos 
indicus 

20 11 17.33 58.3 323.31 

Alpha-S1-
casein 

Bos 
taurus 

3 17 24.53 59.3 323.31 

Serum 
albumin 

Bos 
taurus 

5 58 69.32 74.5 323.31 

Alpha-
lactalbumin 

Bos 
taurus 

7 18 14.16 65.9 323.31 

Lactoferrin Bos 
taurus 

14 47 76.27 67.1 323.31 

Lactadherin Bos 
taurus 

5 26 47.41 58.3 323.31 

Beta-
lactoglobulin 

Bos 
taurus 

2 4 19.88 86.5 323.31 

Beta-casein Bos 
taurus 

2 5 25.00 25.0 187.74 

Polymeric 
immunoglobul
in receptor 

Bos 
taurus 

2 30 82.43 47.3 323.31 
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Figure 3-S1: Base peak chromatogram of mass spectra of soy protein solution (a), pea 
protein solution (b), hydrolyzed wheat protein solution (c), and hydrolyzed rice protein 

solution (d) 
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Figure 3-S2: Base peak chromatogram of mass spectra of milk (a1, a2) and adulterated 
samples (b1, b2) with soy protein at 4% of total protein 
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As one of detection methods, the infrared spectroscopy has been extensively applied 
to each link in the chain of milk production, from prediction of milk composition to 
assessment of milk quality. Many milk composition contents have been predicted by 
infrared spectroscopy, including fat, protein, lactose, and mineral elements. Reports 
on milk adulteration identified by near- and mid- infrared spectroscopy was also 
reviewed in this chapter.  

This chapter was extracted from one published paper, and related parts with thesis 
topic, such as, introduction, data processing and model establishment, and 
application of infrared spectroscopy on milk composition and milk adulteration, were 
selected. The whole paper would be presented as appendix at the end of this thesis.    

From Yang, J., N. Zheng, Y. Yang, Y. Zhang, and S. Li. 2016. Research 
advances in milk production and detection by infrared spectroscopy. 
Transactions of the Chinese Society of Agricultural Engineering, 32(17): 1-11 
(in Chinese). 

Extraction from Yang, J., N. Zheng, Y. Yang, Y. Zhang, and S. Li. 2016. 
Research advances in milk production and detection by infrared spectroscopy. 
Transactions of the Chinese Society of Agricultural Engineering, 32(17): 1-11 
(in Chinese). 
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1. Introduction 

Compared with the time-consuming and labor-intensive laboratory reference 
methods, spectroscopy methods are becoming more popular for their rapid non-
destructive testing. Infrared spectra (IR) are produced by the absorption change of 
infrared radiation interacting with molecular groups. According to the wavelength 
region, the spectra can be classified into near-infrared (NIR, 14 000-4 000 cm-1), mid-
infrared (MIR, 4 000-400 cm-1), and far-infrared (FIR, 400-50 cm-1). NIR and MIR 
are often used to detect, characterise, and quantify chemical components. NIR is the 
result of overtone and combination bands associated with the fundamental vibrations 
of hydrogen-containing functional groups. The band signal is relatively weak and 
suitable for direct analysis of highly-absorbed or strongly-scattered samples without 
pretreatment (Arbuckle et al., 1996; Rodriguez-Saona and Allendorf, 2011). MIR is 
the absorption band that is caused by the fundamental vibration of specific functional 
groups and can be used to identify the structure of organic components. The 
fingerprint area contains various structural information such as fats and proteins, and 
the ratio of band intensity to functional group concentration can be used for 
quantitative analysis (Paré and Bélanger, 1997; Rodriguez-Saona and Allendorf, 
2011). Fourier transform (FT) devices improve the analysis speed and accuracy of 
spectroscopic techniques by resolving overlapping spectral bands, reducing 
bandwidth, and increasing peak height (Markovich and Pidgeon, 1991). Attenuated 
total reflectance (ATR) technology improves the accuracy of FTIR data, because 
multiple reflectance in samples increases the spectral response when compared with 
single-reflection crystals (Rodriguez-Saona and Allendorf, 2011). 

NIR is widely used for the quantification of components in liquid milk and milk 
powder (Wu et al., 2008; Aernouts et al., 2011a; Inácio et al., 2011; Huang et al., 
2014), identification of adulterants (Borin et al., 2006; Balabin and Smirnov, 2011; 
Huang et al., 2015), quality inspection (Al-Qadiri et al., 2008; Kong et al., 2013; 
Yazdanpanah and Langrish, 2013), and can be used for real-time on-line monitoring 
of raw milk production (Lyndgaard et al., 2012; Melfsen et al., 2012a; Santos et al., 
2013b). MIR can not only accurately determine the milk composition, but also predict 
the milk fatty acids (FAs), and protein components. Through algorithm optimisation, 
spectral data standardisation between different instruments could be achieved. It has 
been proposed that a large spectral database based on networks across regions could 
be established to improve farm management (Grelet et al., 2015). This part focuses on 
the literature on IR applications for milk composition prediction and quality 
inspection, to provide some directions for future studies using IR. 

2. Data processing and model establishment 

Spectra are affected by many factors, such as the complexity and specificity of the 
absorption spectrum of chemical bonds, sample particle scattering and molecular 
interactions, variance in environmental conditions, differences in equipment 
performance, and so on. Band selection and data preprocessing are required to reduce 
the differences in data collection and improve model reliability (Zou et al., 2010; De 
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Marchi et al., 2014). Common band selection methods include manual selection, 
multiple linear regression (MLR), successive projection algorithm (SPA), 
uninformative variable elimination (UVE), artificial neural networks (ANN), and 
genetic algorithms (GA). Data preprocessing methods mainly include scattering 
correction and its derivatives (Zou et al., 2010). 

Cross-validation for the whole data set would overestimate the predictive power of 
an IR model, therefore a small additional test set is necessary for external validation. 
The number of samples in the calibration set should account for 50% or 75% of the 
total data (Bittante et al., 2014). Qualitative models classify samples according to 
absorption peaks based on pattern recognition methods such as correlation, distance, 
and discriminant analysis (Roggo et al., 2007). Commonly used evaluation parameters 
include the false positive rate, false negative rate, sensitivity, specificity, etc. (de Roos 
et al., 2007; Botelho et al., 2015). The quantitative model is based on the regression 
model derived from the relationship between spectral data and dependent variables in 
the calibration set and predicts the dependent variable using spectral data in the 
validation set. The root-mean-square error of prediction (RMSEP), calculated from 
the predicted value and the measured value, or the standard error of prediction (SEP) 
and determination coefficient (R2) are used to evaluate the model performance (Zou 
et al., 2010). The ratio-performance deviation (RPD), range error ratio (RER), relative 
prediction error (RPE), and concordance correlation coefficient (CCC) are also 
important evaluation parameters (De Marchi et al., 2014). The qualitative analysis 
methods include the Mahalanobis distance, partial least squares discriminant analysis 
(PLS-DA), soft independent modelling of class analogy (SIMCA), and principal 
component analysis (PCA), etc., while the quantitative model commonly uses partial 
least square regression (PLSR), support vector machine (SVM), and ANN 
(Rodriguez-Saona and Allendorf, 2011; Domingo et al., 2014). 

3. Determination of milk composition and quality 

NIR predictions for milk composition are influenced by the spectral region, sample 
thickness, and measurement modes. The best accuracy for a NIR model was obtained 
with long wavelength bands (1 100 to 2 400 nm), 1 mm sample thickness, and the first 
derivative data transformation. For short wavelengths from 700 to 1 100 nm, the best 
accuracy for fat was obtained with a 10 mm sample, and for total protein with a 1 mm 
sample thickness. Lactose prediction was less affected by the sample thickness and 
spectral region (Tsenkova et al., 1999). NIR in reflectance mode resulted in accurate 
prediction of fat and crude protein in milk (R2 > 0.95) and poor lactose prediction 
(R2 < 0.75). In contrast, the transmittance spectra can achieve more accurate 
predictions for these items, and the corresponding R2 of prediction were 0.99, 0.93, 
and 0.88 (Aernouts et al., 2011a). Moreover, some studies have shown that NIR (851-
1 649 nm) in diffusion reflectance has a similar or better prediction for fat, protein, 
and lactose in milk, compared with transmittance or transflectance mode (Melfsen et 
al., 2012b). NIR in diffusion reflectance not only accurately predicted fat, protein, and 
lactose in milk (R2 = 0.99, 0.98, and 0.92, respectively, SEP = 0.09, 0.05, and 0.06), 
but also achieved a good prediction for urea and somatic cell counts (logarithmic 
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transformation), R2 of prediction was 0.82 and 0.85, and SEP was 19.3 mg/L and 0.18, 
respectively (Melfsen et al., 2012a). The presence of too many somatic cells in milk 
affected the NIR prediction for milk composition, so sorting of raw milk by somatic 
cell counts is necessary before dataset partition (Tsenkova et al., 2001). The prediction 
parameters for the main components in milk using NIR models from different studies 
are shown in Table 4-1, and NIR in diffuse reflectance is widely used. The good 
prediction performance of the NIR model makes it possible to assess fresh milk 
quality in real time, provide farmers with milk composition information and dairy 
cows’ physiological status, and thereby to improve the efficiency of milk production 
(Kawasaki et al., 2008). 
 

Table 4-1: Model performance of near-infrared spectroscopy for major milk components 

 
Pretreatment of milk samples, such as the addition of preservatives and 

homogenisation, would influence the MIR prediction. The addition of 0.02% 
potassium dichromate had little influence on the results of the MIR detection, whereas 
bromo-n-propylene glycol (0.02%) preserved milk had higher protein readings (a 
positive bias of about 0.01%) than potassium dichromate preserved or unpreserved 
milks. During cold preservation, uncorrected MIR readings for milk increased with 
the storage time, the growth rate was higher for raw milk than for pasteurised milk, 
and the stability of the instrument zero was lower for raw milk than for pasteurised 
milk (Barbano et al., 2010). The prediction results for ATR on milk composition are 
better than those of high-throughput transmission spectra. Homogenisation was 
crucial to obtain a good fat prediction, but had little effect on the prediction of other 
components (Aernouts et al., 2011b). IR can predict not only the milk composition, 
but these spectroscopies can also detect the protein fraction, FA composition, and 
other trace substances in milk. 

Spectral mode Fat Protein Lactose References 

R2 RMSEP R2 RMSEP R2 RMSEP 

Diffuse 
reflectance 

0.977 0.154 0.960 0.134 - - Wang et al. 
(2015) 

Transmittance 0.998 0.001 0.998 0.001 - - Zhao et al. 
(2014) 

Fourier 
transform 

0.995 0.136 0.975 0.195 - - Zhang 
(2010) 

Transflectance 0.903 0.225 0.959 0.048 0.902 0.044 Yang et al. 
(2013) 

Diffuse 
reflectance 

0.998 0.09 0.98 0.05 0.92 0.06 Melfsen et 
al. (2012a) 

Diffuse 
reflectance 

0.95 0.25 0.83 0.26 0.72 0.15 Kawasaki 
et al. (2008) 

Diffuse 
reflectance 
(Transmittance 
for lactose） 

0.997 0.047 0.959 0.099 0.883 0.115 Aernouts et 
al. (2011a) 
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3.1. Protein 

Determination of milk proteins related to the characteristic absorption of amide I 
and II bands at 1 700 to 1 500 cm-1, and phosphate groups bound to casein at 1 100 to 
1 060 cm-1, other milk components (fat and lactose), and protein particles would affect 
the prediction of the PLS model for milk proteins (Etzion et al., 2004). A suitable 
region selection algorithm, SIMPLe-to-use Interactive Self-modeling Mixture 
Analysis, combined with IR can quantitatively predict the secondary structure of the 
polypeptide chain, and the correlation coefficient of cross-validation between the 
predicted and measured values of the α-helix and β-sheet was 0.86-0.98 (Bogomolov 
and Hachey, 2007). MIR may not be ideal for predicting individual milk protein 
composition with high accuracy. The R2 of cross-validation (R2cv) of MIR prediction 
of casein (CN), αs1CN, αs2CN, βCN, κCN, and γCN (g/L milk) in milk were 0.77, 
0.66, 0.49, 0.53, 0.63, and 0.60, respectively, while the R2cv for whey protein, alpha 
lactalbumin, and beta lactoglobulin (g/L milk) were 0.61, 0.31, and 0.64, respectively 
(Bonfatti et al., 2011). Other studies have similar predictions of whey protein and its 
fractions (alpha lactalbumin, and beta lactoglobulin), and poor prediction of total and 
individual caseins, using raw MIR spectra (De Marchi et al., 2009; Rutten et al., 
2011a), whereas there are some reports that predict the total CN with validation 
R2 > 0.90 (Luginbuhl, 2002). The difference between these models may be associated 
to the reference methods for protein determination used in these studies (De Marchi 
et al., 2014). The MIR prediction for milk protein composition can be used to estimate 
breeding values and improve protein composition on a genetic level (Rutten et al., 
2011a). FTIR combined with PLS can distinguish the milk produced by goats with 
two weak haploids from others, thereby selection of goats with high casein expression 
or screening for milk samples with high casein content is possible (Berget et al., 2010). 
FTIR prediction of β-LG genotypes showed a repeatability of 0.85, and it can improve 
the percentage of correctly predicted β-LG genotypes, in combination with pedigree 
information and derived genotypes (Rutten et al., 2011b). 

3.2. Milk Fatty Acid Composition 

There are two absorption bands for milk fat in the MIR region, fat A at 5.73 μm and 
fat B at 3.48 μm, which involved the stretch of C=O and C–H, respectively (Biggs 
and McKenna, 1989). Fat B MIR predictions increased and fat A MIR prediction 
decreased relative to reference chemistry with increasing FA chain length. When MIR 
fat prediction of fat B was corrected according to unsaturation variation between 
samples, fat B had a positive correlation with the FA chain length (correlation 
coefficient was 0.42-0.89); when the corrected ratio of fat B for unsaturation was 
45:55, fat A gave the best fit between MIR prediction and the reference (Kaylegian et 
al., 2009). Oleic acid and linoleic acid presented different spectra in the MIR region. 
Oleic acid has two characteristic peaks at 1 119 and 1 091 cm-1, while the 
characteristic peaks of linoleic acid appear at 1 048, 1102, and 1 121 cm-1 (Yang, 
2011). The IR prediction of milk FAs in different studies are shown in Tables 4-2, 
4- 3, and 4-4. Among unsaturated FAs, a better prediction accuracy for c9C18:1 is 
observed; meanwhile, the prediction accuracy for saturated FAs and monounsaturated 
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FAs is greater than that of polyunsaturated FAs, which may be in line with individual 
and grouped FA concentration in milk (Soyeurt et al., 2006; Rutten et al., 2009; De 
Marchi et al., 2011). There are two ways of expressing FAs in milk, namely the 
concentration of FAs in milk (g/L milk or g/kg milk) and the FA content in fat 
(g/kg total FAs). The accuracy of MIR predictions expressed as the FA concentration 
are better than those of models expressed as FA content (Soyeurt et al., 2006; De 
Marchi et al., 2014), which is similar to the NIR prediction for liquid milk (Coppa et 
al., 2014). However, the comparison of prediction accuracy between MIR and NIR 
for FAs in oven-dried milk varied with FAs and expression. When expressed as 
g/kg of milk, the accuracy of NIR prediction was worse than MIR for almost all FAs. 
When expressed as g/100 g total FAs, MIR and NIR shared a similar prediction 
accuracy for the group of even-chain saturated FA, odd-chain FA, unsaturated FA, 
conjugated linoleic acid, n-3 FA, and c9C18:1/C16 ratio; while monounsaturated FA, 
n-6/n-3 ratio, polyunsaturated FA (PUFA), and n-6 FA were better predicted by NIR 
(Coppa et al., 2014). High levels of FAs in milk, such as even-chain FAs, could 
achieve good MIR prediction fitting with measured values, no matter the expression 
of FAs (Soyeurt et al., 2006). Compared with predictions for liquid milk, NIR 
quantification of milk FA was more accurate or similar for oven-dried milk (Coppa et 
al., 2010; Coppa et al., 2014), but the reliability decreased for thawed liquid milk 
(Coppa et al., 2014). MIR prediction was also used to estimate heritability and 
correlation of FAs in goat milk (Maroteau et al., 2014). Strong relationships between 
the sample size of calibration and validation R2, as well as strong genetic correlations 
were observed. As the calibration number increased, the variation range of the 
validation R2 and the genetic correlation coefficient gradually narrowed. When there 
were 1 000 samples in calibration, the genetic correlation changed within a range of 
0.1 (Rutten et al., 2010). 
 



4. Research advances in milk production and detection by infrared spectroscopy 

58 

 

Table 4-2: Model prediction of infrared spectroscopy for milk fatty acids (saturated fatty acid) 

 

Sample 
size 

Unit C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C15:0 C16:0 C17:0 C18:0 References 

267 
g/L of 
cow milk 

- - 
0.74 
(0.07) 

0.73 
(0.19) 

0.75 
(0.25) 

0.77 
(0.6) 

0.63 
(0.07) 

0.70 
(1.59) 

0.56 
(0.03) 

0.65 
(0.75) 

De Marchi et 
al. (2011) 1 

600 
g/L of 
cow milk 

0.51 
(0.08) 

0.52 
(0.04) 

0.59 
(0.02) 

0.64 
(0.04) 

0.74 
(0.02) 

0.82 
(0.05) 

0.40 
(0.01) 

0.82 
(0.17) 

- 
0.69 
(0.13) Soyeurt et al. 

(2006) 2 
600 

g/kg of 
milk fat 

0.39 
(1.60) 

0.41 
(0.98) 

0.46 
(0.50) 

0.53 
(0.90) 

0.64 
(0.53) 

0.67 
(1.14) 

0.53 
(0.2) 

0.50 
(3.5) 

- 
0.09 
(2.77) 

517 
g/L of 
cow milk 

0.94 
(0.01) 

0.97 
(0.00) 

0.97 
(0.00) 

0.96 
(0.01) 

0.96 
(0.01) 

0.97 
(0.02) 

- 
0.95 
(0.08) 

0.89 
(0.00) 

0.90 
(0.05) 

Soyeurt et al. 
(2011) 2 

3 660 
g/L of 
cow milk 

0.91 
(0.10) 

0.96 
(0.20) 

0.94 
(0.50) 

0.92 
(0.10) 

0.85 
(0.30) 

0.94 
(0.3) 

- 
0.94 
(0.10) 

- 
0.82 
(0.70) Rutten et al. 

(2009) 3 
3 660 

g/kg of 
milk fat 

0.55 
(0.00) 

0.73 
(0.30) 

0.73 
(0.60) 

0.75 
(0.20) 

0.68 
(0.30) 

0.73 
(0.3) 

- 
0.71 
(0.00) 

- 
0.51(1.
20) 

238-241a 
g/L of 
cow milk 

0.93 
(0.006) 

0.96 
(0.003) 

0.96 
(0.002) 

0.95 
(0.007) 

0.95 
(0.008) 

0.94 
(0.024) 

- 
0.94 
(0.066) 

- 
0.84 
(0.041) 

Ferrand-
Calmels et 
al. (2014) 4 

98-104b 
g/L of 
cow milk 

0.61 
(0.01) 

0.86 
(0.004) 

0.89 
(0.003) 

0.85 
(0.011) 

0.82 
(0.018) 

0.84 
(0.03) 

- 
0.82 
(0.111) 

- 
0.49 
(0.054) 

135-140 
g/L of 
sheep 
milk 

0.93 
(0.01) 

0.97 
(0.005) 

0.96 
(0.008) 

0.93 
(0.041) 

0.97 
(0.019) 

0.96 
(0.045) 

- 
0.94 
(0.091) 

- 
0.83 
(0.061) 

215-229 
g/L of 
goat milk 

0.96 
(0.004) 

0.95 
(0.004) 

0.97 
(0.004) 

0.98 
(0.013) 

0.92 
(0.013) 

0.93 
(0.023) 

- 
0.96 
(0.042) 

- 
0.86 
(0.034) 

154 
g/L of 
cow milk 

0.87 
(0.009) 

0.97 
(0.003) 

0.97 
(0.002) 

0.95 
(0.008) 

0.95 
(0.011) 

0.83 
(0.040) 

0,67 
(0.005) 

0.91 
(0.087) 

0.74 
(0.002) 

0.75 
(0.048) 

Ferrand et al. 
(2011) 2 
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Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross-

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5) 

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from MilkoScan FT6000, b) data from Bentley FTS  

Table 4-2 continued 

Sample 
size 

Unit C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C15:0 C16:0 C17:0 C18:0 References 

1 167-
1 187 

g/L of 
cow milk 

0.93 
(0.008) 

0.96 
(0.005) 

0.96 
(0.003) 

0.96 
(0.008) 

0.95 
(0.01) 

0.95 
(0.028) 

- 
0.97 
(0.068) 

0.89 
(0.003) 

0.90 
(0.045) 

Maurice-
Van 
Eijndhoven 
et al. (2013) 2 

279-344 
g/kg of 
total FA 

0.66 
(0.42) 

0.88 
(0.21) 

0.90 
(0.13) 

0.91 
(0.34) 

0.89 
(0.41) 

0.88 
(1.07) 

0.53 
(0.14) 

0.91 
(2.20) 

0.65 
(0.08) 

0.80 
(1.31) 

Coppa et al. 
(2010) 5 
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Table 4-3: Model prediction of infrared spectroscopy for milk fatty acids (unsaturated fatty acids and fatty acid groups) 

Sample 
size 

Unit c9C14:1 c9C16:1 c9C18:1 c11C18:1 
c9c12C1
8:2 

C18:3n-3 
c9t11C18
:2 

References 

267 
g/L of 
cow milk 

0.68 
(0.08) 

0.60 
(0.11) 

0.73 
(1.13) 

0.59 
(0.04) 

- 
0.51 
(0.04) 

0.58 
(0.04) 

De Marchi 
et al. (2011)1 

600 
g/L of 
cow milk 

0.07 
(0.01) 

0.65 
(0.02) 

- - 
0.62 
(0.02) 

0.14 
(0.01) 

0.07 
(0.02) (Soyeurt et 

al., 2006) 2 
600 

g/kg of 
milk fat 

0.23 
(0.28) 

0.37 
(0.37) 

- - 
0.11 
(0.44) 

0.20 
(0.20) 

0.34 
(0.37) 

517 
g/L of 
cow milk 

0.68 
(0.01) 

0.71 
(0.01) 

0.97 
(0.05) 

- 
0.74 
(0.01) 

0.71 
(0.01) 

0.74 
(0.01) 

Soyeurt et 
al. (2011) 2 

3 660 
g/L of 
cow milk 

- - 
0.92 
(0.30) 

0.27 
(0.10) 

0.36 
(0.90) 

0.45 
(3.30) 

0.58 
(1.00) Rutten et al. 

(2009) 3 
3 660 

g/kg of 
milk fat 

- - 
0.84 
(0.50) 

0.22 
(0.40) 

0.28 
(0.60) 

0.38 
(2.80) 

0.56 
(1.10) 

238-241a 
g/L of 
cow milk 

- - 
0.96 
(0.039) 

- 
0.77 
(0.006) 

0.85 
(0.004) 

0.82 
(0.003) 

Ferrand-
Calmels et 
al. (2014) 4 

98-104b 
g/L of 
cow milk 

- - 
0.86 
(0.063) 

- 
0.75 
(0.006) 

0.81 
(0.003) 

0.64 
(0.003) 

135-140 
g/L of 
cow milk 

- - 
0.97 
(0.057) 

- 
0.49 
(0.012) 

0.74 
(0.007) 

0.91 
(0.011) 

215-229 
g/L of 
cow milk 

- - 
0.95 
(0.037) 

- 
0.89 
(0.007) 

0.79 
(0.003) 

0.71 
(0.003) 

154 
g/L of 
cow milk 

- - - - 
0.76 
(0.006) 

0.85 
(0.003) 

0.66 
(0.004) 

Ferrand et 
al. (2011) 2 
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Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross-

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5) 

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from MilkoScan FT6000, b) data from Bentley FTS  

Table 4-3 continued 

Sample 
size 

Unit c9C14:1 c9C16:1 c9C18:1 c11C18:1 
c9c12C1
8:2 

C18:3n-3 
c9t11C18
:2 

References 

1 167-
1 187 

g/L of 
cow milk 

0.78 
(0.007) 

0.78 
(0.011) 

- - - - - 

Maurice-
Van 
Eijndhoven 
et al. (2013) 
3 

279-344 
g/kg of 
total FA 

0.57 
(0.22) 

0.44 
(0.25) 

0.93 
(1.77) 

0.29 
(0.13) 

0.34 
(0.28) 

0.48 
(0.16) 

0.73 
(0.87) 

Coppa et al. 
(2010) 5 
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Table 4-4: Model prediction of infrared spectroscopy for milk fatty acids (fatty acid groups) 

 

  
Sample 
size 

Unit SCFA MCFA LCFA SFA MUFA PUFA UFA 
References 

267 
g/L of 
cow milk 

- 
0.73 
(2.66) 

0.76 
(1.94) 

0.72 
(2.97) 

0.74 
(1.39) 

0.64 
(0.22) 

0.71 
(1.57) 

De Marchi et al. 
(2011)1 

600 
g/L of 
cow milk 

- - - 
0.94 
(0.20) 

0.85 
(0.22) 

0.39 
(0.04) 

0.66 
(0.34) Soyeurt et al. (2006) 

2 
600 

g/kg of 
milk fat 

- - - 
0.63 
(3.75) 

0.52 
(4.10) 

0.10 
(0.74) 

0.63 
(3.75) 

517 
g/L of 
cow milk 

0.98 
(0.02) 

0.98 
(0.09) 

0.98 
(0.09) 

1.00 
(0.05) 

0.99 
(0.04) 

0.85 
(0.02) 

0.99 
(0.04) 

Soyeurt et al. (2011) 
2 

3 660 
g/L of 
cow milk 

0.95 
(0.00) 

0.97 
(0.00) 

- - - - - 
Rutten et al. (2009) 3 

3 660 
g/kg of 
milk fat 

0.82 
(0.30) 

0.77 
(0.10) 

- - - - - 

238-241a 
g/L of 
cow milk 

- - - 
1.00 
(0.035) 

0.97 
(0.037) 

0.76 
(0.01) 

0.98 
(0.038) 

Ferrand-Calmels et 
al. (2014) 4 

98-104b 
g/L of 
cow milk 

- - - 
0.96 
(0.09) 

0.89 
(0.068) 

0.60 
(0.01) 

0.83 
(0.10) 

135-140 
g/L of 
cow milk 

- - - 
1.00 
(0.049) 

0.99 
(0.044) 

0.96 
(0.015) 

0.99 
(0.048) 

215-229 
g/L of 
cow milk 

- - - 
0.99 
(0.043) 

0.96 
(0.037) 

0.92 
(0.01) 

0.97 
(0.039) 

154 
g/L of 
cow milk 

- - - 
0.99 
(0.045) 

0.97 
(0.044) 

0.62 
(0.010) 

- 
Ferrand et al. (2011) 
2 
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Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross- 

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5)  

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from MilkoScan FT6000, b) data from Bentley FTS 

SCFA: short chain fatty acids; MCFA: medium chain fatty acids; LCFA: long chain fatty acids; SFA: saturated fatty acid; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UFA: unsaturated fatty acids. 

 

 

Table 4-4 continued 

Sample 
size 

Unit SCFA MCFA LCFA SFA MUFA PUFA UFA References 

1167-
1 187 

g/L of 
cow milk 

0.96 
(0.02) 

0.98 
(0.086) 

- 
1.00 
(0.051) 

- - - 
Maurice-Van 
Eijndhoven et al. 
(2013) 3 

279-344 
g/kg of 
total FA 

- - - 
0.97 
(1.94) 

0.97 
(1.81) 

0.85 
(0.87) 

0.97 
(2.23) 

Coppa et al. (2010) 5 
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3.3. Other components 

MIR can be used to predict cheese production. Favourable predictions were 
observed for the yield of total solid cheese and fresh cheese, with R2cv of 0.95 and 
0.83, respectively, and promising results were obtained for the recovered protein, total 
solids, and energy (R2cv were 0.81, 0.86, and 0.76, respectively) (Ferragina et al., 
2013). Visible and short wavelength NIR diffuse reflectance spectroscopy (600-
1 000 nm) can be used to monitor spoilage of pasteurised skimmed milk by predicting 
the bacterial counts and pH of milk (R2cv = 0.99 and 0.99, SEP = 0.34 cfu/mL and 
0.031, respectively) (Al-Qadiri et al., 2008). FT-MIR can also accurately determine 
the titration acidity of milk, with R2cv of 0.96, RMSE of the cross validation set of 
0.72°T, and the RPD of 5.1 (Calamari et al., 2016). The pretreated NIR spectra 
combined multivariate regression model could predict the IgG level in colostrum, 
where the R2 of the calibration set and cross validation set were 0.95 and 0.94, 
respectively (Rivero et al., 2012). The potential for MIR prediction of lactoferrin was 
also confirmed by studies, with R2 of cross validation and external validation of 0.71 
and 0.60 (Soyeurt et al., 2012), and there was a positive correlation between predicted 
lactoferrin and somatic cell scores, but a negative genetic correlation between 
predicted lactoferrin and milk yield was also observed (Soyeurt et al., 2007). When 
MIR combined with atomic absorption spectrometry was used to predict major 
mineral elements Ca, K, Mg, Na, and P in milk, only Ca, Na, and P showed the 
sufficient R2cv (0.80, 0.70, and 0.79) for potential application. Finally, potential 
application of Ca and P equations were confirmed, whose R2 of external validation 
were 0.97 and 0.88 (Soyeurt et al., 2009). Accurate MIR prediction for Ca and P was 
confirmed by other studies, and the contents of these elements were closely related to 
the agglutination traits of milk (Toffanin et al., 2015). FT-MIR can predict tetracycline 
levels in milk, validation R2 reached 0.85-0.89, the detection range was 4-2 000 μg/kg, 
and SEP was from 89 to 387 μg/kg (Sivakesava and Irudayaraj, 2002). 

4. Milk quality inspection  

Combined with SIMCA, short-wave NIR can distinguish milk stored for 30 hours 
at different temperatures (6, 21, and 37°C) from control samples, with an accuracy of 
about 90% (Al-Qadiri et al., 2008). FT-NIR combined with principal component 
analysis can accurately recognise different brands of milk with an accuracy of 100% 
(Jin et al., 2016). And coupled with Fisher's multi-class linear discriminant analysis, 
FT-NIR can identify milk adulteration with plant cream, vegetable protein, and starch, 
and the correct rate was achieved in more than 94% of cases (Li and Ding, 2010). 
Compared with 1 704-1 400 cm-1 in the MIR region, 4 800-4 200 cm-1 in NIR was 
more sensitive to urea adulterated milk; for unknown samples, the prediction R2 
reached 0.999, and RMSEP was 0.219 g/L (Yang et al., 2012). Based on changes in 
fat and protein contents in milk within 52 hours, NIR could indicate changes in milk 
quality (Shi, 2014). Based on the prediction of pH and acidity of goat milk, NIR can 
also be used to evaluate the freshness of goat milk (Chu, 2012). Since phenolic 
compounds were stable during fermentation and manufacturing processing, it was 
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possible to discriminate probiotic milk samples according to the type of extract added 
and to evaluate the ‘stability’ of the product using NIR spectra combined with 
multivariate analysis (Aliakbarian et al., 2015). The adulterant levels in milk affected 
the discrimination of the NIR models, and the combination of non-linear pattern 
recognition and NIR could be useful for the identification and authentication of raw 
cow milks (Zhang et al., 2014). Nevertheless, some results indicated that the MIR 
system was superior to the NIR system in monitoring milk adulteration for additives 
such as water, whey protein, synthetic milk, synthetic urea, urea, and hydrogen 
peroxide (Santos et al., 2013b). A comprehensive index Q was constructed using milk 
indexes detected by a FTIR analyser, total solid-fat, ice-lactose, and lactose 
parameters were mainly included, and the addition of butter ( > 0.058 g/100 g), gelatin 
hydrolysate ( > 0.020 g/100 g), ammonium chloride ( > 0.395 g/100 g), melamine ( > 
0.310 g/100 g), urea ( > 0.443 g/100 g), sucrose and maltodextrin ( > 0.024 g/100 g), 
whey ( > 0.072 g/100 g), and milk powder and water ( > 0.500 g/100 g) to milk could 
be recognised (Liu et al., 2015). FTIR could quantitatively detect the spiked level of 
baking soda, sodium citrate, and lactalbumin in milk, with all calibration R2 above 
0.91 and the detection limits of 0.015%, 0.017%, and 3.9%, respectively (Cassoli et 
al., 2011). ATR-MIR combined with PLS-DA was able to detect the presence of water, 
starch, sodium citrate, formaldehyde, and sucrose in milk, and the detection range was 
0.5% to 10.0% (w/v) (Botelho et al., 2015). ATR-MIR also detected whey protein, 
hydrogen peroxide, synthetic urine, urea, and synthetic milk adulterated milk, and 
SEP was 2.33, 0.06, 0.41, 0.30, and 0.014 g/L, respectively, and the detection limits 
were 7.5, 0.019, 0.78, 0.78, and 0.1 g/L respectively (Santos et al., 2013a). Combined 
with PLS, single-beam ATR-FTIR can quickly predict melamine content in milk with 
the limits of detection and quantitation 2.5 and 15 mg/kg, respectively (Jawaid et al., 
2013). If the correct data processing and multivariate algorithm was applied in the 
developed model, the detection limit of melamine for IR prediction could be less than 
1 mg/kg, and a non-linear relationship was found between melamine content and IR 
response (Balabin and Smirnov, 2011; Domingo et al., 2014). 

MIR was also sensitive to adulteration between different milks. The ratio of cow’s 
milk, goat’s milk, and sheep’s milk in their mixture could be quantitatively predicted 
by FTIR. The prediction R2 for a binary mixture was 0.91-0.98, RMSEP was 3.95%-
8.03%; the prediction R2 for a ternary mixture was 0.92-0.97, RMSEP ranged from 
3.36% to 6.40% (Nicolaou et al., 2010). A main peak located at 1745 cm-1, related to 
the degree of sugar carboxyl methyl esterification, was observed on the FTIR 
comparison between goat’s and sheep’s milk, and corresponding hierarchical and 
discriminant analyses showed goat samples could be separated from sheep samples 
(Pappas et al., 2008). Differences between soy milk and cow-buffalo milk, as well as 
their mixture at different ratios were centred on the MIR region at 1 680 to 1 058 cm- 1. 
PCA indicated that the addition above 5% of soybean milk to milk showed a 
significant difference from control milk. Based on the absorption of 1 472 to 
1 241 cm-1, the multivariate linear regression analysis showed that validation R2 was 
0.92 and the SEP was 7.56 for soybean milk levels in the mixture (Jaiswal et al., 2015). 
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Mid-infrared (MIR) spectroscopy reflects fundamental vibrations, 
deformations, elongations, twistings… of molecular groups, which were used 
to identify samples adulterated with hydrolyzed plant (soy, rice, and wheat) 
protein and whey. In order to avoid untargeted fat interference on sample 
spectral data, skimmed samples were prepared. In addition, estimated non-
protein nitrogen (eNPN) of samples, subtracting true protein reading from 
total protein values, were also calculated to pinpoint adulteration. There was 
only one mixed commercial milk used as control sample, which means sample 
spectral variation among authentic milk was not considered in this part. 
Therefore, the chapter relates a preliminary study to investigate the feasibility 
of MIR spectroscopy and eNPN measurement to make sure that spectral 
variations caused by protein difference between adulterated samples could be 
measured. In this Chapter, detection limit of MIR was the minimum level of 
qualitative model classified. For the classification model developed using 
eNPN data, the threshold value was determined.  

From Yang, J., N. Zheng, V. Baeten, X. Guo, Y. Yang, J. Wang, and H. Soyeurt. 
Feasibility of detection of milk adulterated with hydrolysed plant protein using 
mid-infrared spectra or predicted non-protein nitrogen content. Submitted 
manuscript. 
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Abstract:  

Hydrolysed plant proteins are considered as candidates for milk adulteration due to 
their solubility in aqueous phases. The objective of this study is to identify milk 
adulteration with hydrolysed plant protein via mid-infrared (MIR) spectroscopy or 
MIR estimated non-protein nitrogen (eNPN). Milk samples adulterated with different 
levels (30, 15, 7.5, 3.75, 1.88 g/L) of hydrolysed plant protein [soy (HSP), rice (HRP), 
wheat (HWP)] or whey were prepared for this study. Crude and true protein contents 
were determined using the Kjeldahl method and a MIR analyser. Spectral data were 
collected for 21 skimmed milk samples (including adulterated and control samples) 
using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-
FTIR). Estimated NPN (eNPN) was calculated by subtracting true protein from crude 
protein predicted by MIR. Spectral data point clusters revealed by principal 
component analysis depended on the level and type of the milk adulterants used. 
Partial Least Square - Discriminant Analysis (PLS-DA) showed favourable 
classification of adulterated samples, with specificity of 87.5-100% and sensitivity of 
80-100%, only the control milk was misclassified. Subsequent PLS regression models 
showed good performance of the MIR model on the prediction of adulterant levels 
(R2 = 0.95, RMSE = 2.25 g/L of full cross-validation) and eNPN (R2 = 0.70, 
RMSE = 0.06 g/100 g of full cross-validation). The addition of adulterants to milk 
increased the eNPN level for all samples, ranging from 0.04 to 0.37 g/100 g. 
Combined with the NPN range in normal milk and the predicted eNPN difference of 
adulterated samples from the control, it was possible to detect samples adulterated 
with HRP, HSP, or HWP ≥ 3.8 g/L. This study indicates the feasibility of detection of 
milk adulteration with hydrolysed plant protein using MIR or corresponding eNPN 
prediction, as well as a higher accuracy of classification using MIR. 

Key words: Milk adulteration, non-protein nitrogen, Hydrolysed plant protein, 
Mid-Infrared Spectroscopy  
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1. Introduction 

Milk protein adulteration is the addition of cheap nitrogen-rich compounds to milk 
to increase the apparent protein content. Milk adulterated with melamine, urea, and 
whey protein are common cases because these adulterants have high nitrogen or 
protein contents (Nascimento et al., 2017). Unfortunately, the addition of foreign 
protein to milk can have detrimental impacts on human health. For instance, the intake 
of milk powder spiked with melamine causes the occurrence of serious kidney stones, 
especially for children (Zhang et al., 2014). Additionally, natural milk contained 180-
400 mg/L of urea; however, the consumption of urea above 700 mg/L may cause 
disorders of digestive and excretory systems (Jha et al., 2015). Some milk allergies 
can be induced by the addition of whey protein, which is rich in α-lactalbumin and β-
lactoglobulin that are responsible for these allergies (Chen et al., 2014). Another 
potential candidate adulterant is hydrolysed plant protein, which includes acidic or 
enzymatic hydrolysates of high protein plant tissues. These compounds contain a large 
proportion of free amino acids and peptides, giving them good water solubility 
(Aaslyng et al., 1998). Although some studies have shown no evidence that 
hydrolysed plant protein would induce allergic reactions in people who are sensitive 
to soy or wheat (Reuter et al., 2010), the unlabelled addition of hydrolysed wheat or 
soy protein to food is not allowed for allergen labelling (Council, 2011).  

The Kjeldahl and Dumas methods, which are the current reference methods used to 
quantify the protein content of milk, unfortunately cannot distinguish foreign nitrogen 
compounds from authentic milk protein (Nascimento et al., 2017). Therefore, various 
detection methods have been developed to identify adulteration. For instance, 
spectroscopy, biosensors, and chromatographic techniques have been investigated 
(Nascimento et al., 2017; Poonia et al., 2017). The detection of hydrolysed plant 
proteins seems to be more problematic. Previous studies have found that ultra-high-
performance liquid chromatography (UHPLC) systems equipped with UV detection, 
and sodium dodecyl sulfate (SDS) capillary electrophoresis (CE) have failed to detect 
hydrolysed wheat protein (at levels below 10%) and hydrolysed soy protein 
adulterated milk powder, respectively (Lopez-Tapia et al., 1999; Jablonski et al., 
2014). However, even if such reference chemical analysis would work, these methods 
are not suitable for screening purposes due to their cost, the analysis time, and the 
requirement for qualified staff. For these reasons, an alternative must be found. 

One alternative method could be mid-infrared (MIR) spectroscopy which is 
sensitive to variation of milk protein. There are specific absorbances of milk proteins 
on the MIR spectrum. For instance, amide I and II bands are located in the 1 500-
1 700 cm-1 range and the covalent band at 1 060-1 100 cm-1 (Etzion et al., 2004). The 
application of attenuated total reflectance (ATR)-MIR could improve the detection of 
milk protein adulteration, where a multifold increase in the sample’s response is 
compared with single refraction crystals (Rodriguez-Saona and Allendorf, 2011). 
When combined with the correct multivariate algorithm, such as polynomial partial 
least square version (Poly-PLS), artificial neural network (ANN), support vector 
regression (SVR), and least squares support vector machine (LS-SVM), ATR-MIR 
was successfully used to detect low concentrations of melamine added to liquid milk 
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( < 14.6 mg/kg), with a root mean square error for prediction (RMSEP) less than 
0.5 mg/kg (Balabin and Smirnov, 2011). From PLS regression, Santos et al. (2013) 
developed a model to predict the content of whey and urea added to milk, using FT-
MIR for 135 samples per adulteration (5 levels × 9 lots × 3 replicates). The obtained 
standard errors of prediction (SEP) 2.33 g/L for whey and 0.30 g/L for urea, and 
validation coefficients of determination (R2v) were 0.96 for whey and 0.98 for urea. 
More recently, using 210 ATR-MIR spectra (6 levels and 1 control), Jha et al. (2015) 
developed a model based on soft independence modelling of class analogy (SIMCA) 
to discriminate milk from milk spiked with urea (100-900 mg/kg and 1 300-
2 000 mg/kg). The obtained classification efficiency was higher than 80%. This 
discrimination was based on the spectral difference in the stretching region between 
1 670 and 1 564 cm-1. However, to our knowledge, no studies have investigated the 
detection of hydrolysed plant protein adulterated milk using ATR-MIR. Therefore, 
the first objective of this study was to explore the feasibility of using ATR-MIR to 
qualitatively and quantitatively detect milk adulteration with hydrolysed plant protein.  

Another efficient way to monitor milk protein adulteration is to detect the non-
protein nitrogen (NPN) levels, estimated by subtracting the casein and whey protein 
contents (also called true protein, TP) from the crude protein (CP) (Gao et al., 2015; 
DeVries et al., 2017). The NPN fraction in milk, including urea, ammonia, and free 
amino acids, ranged from 0.162 to 0.255%, which is much less than CP contents (2.88-
4.19%) (Ruska and Jonkus, 2014). Therefore, a level of NPN in milk over this range 
could indicate milk protein adulteration. The ratio of NPN to crude protein (NPN 
index) was effectively used by Gao et al. (2015). These authors observed a higher 
NPN index for raw milk adulterated with melamine (above 0.2 mg/kg) or urea, 
ammonium chloride, and ammonium sulfate (0.2%, w/w). NPN indices for those 
adulterated samples were above 1.60, and 5.05-5.42, respectively; while the values 
for the control milk ranged between 0.81 and 1.50. Currently, FT-MIR spectrometers 
used for milk testing predict the TP content (Lynch et al., 2006). The estimated 
quantity of NPN (eNPN) in milk can be found by subtracting milk TP predicted by 
MIR analysis from CP measured by the Kjeldahl method. Due to the potential of 
eNPN, the second objective of the current study was to test the feasibility of predicted 
eNPN to detect the plant protein adulterated milk samples. To our knowledge, this 
method has not yet been tested by other research teams.  

2. Materials and methods 

2.1. Sample preparation 

Ten retailed milk samples were obtained from Sanyuan Foods (Beijing, China), and 
a mixture of these milks was prepared as the control milk. Samples were spiked with 
hydrolysed wheat protein (HWP, CP100, Conpro, Kangke Food Engineering Tech 
LTD, Wuxi, Jiangsu, China), hydrolysed rice protein (HRP, Shuaixing, 
Yonggudanbaifen LTD, Wuhan, Hubei, China), and hydrolysed soy protein (HSP, 
LP0044, Oxoid LTD, Basingstoke, Hampshire, England), as well as whey powder 
(Xierma, Tongzhougongji Bio-Tech LTD, Minhang district, Shanghai, China). 
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Protein contents for HWP, HRP, HSP and whey were 71.47 ± 0.12, 56.08 ± 0.26, 
49.77 ± 0.09, and 79.93 ± 0.30 g/100g, determined in triplicate using a KjelROC 
analyser (KD310, OPSIS AB Inc., Sweden). Adulterant-milk solutions of 30 g/L for 
hydrolysed plant protein and whey protein were homogenised (JJ-2B homogeniser, 
200W, 50Hz, 220V, Ronghua Instrument Manufacturing Co. LTD, Changzhou, 
Jiangsu, China) at 8,000 rpm for 5 min. The subsequent successive gradient dilution 
process ranged from 6.25 to 50% (v/v), following Santos et al. (2013). So, milk 
samples were adulterated using the four studied adulterants with 5 different levels (30, 
15, 7.5, 3.75, 1.875 g/L). Therefore, 21 samples were prepared in total, including 
control milk.  

2.2. Measurement from whole milk 

The CP contents of milk samples were determined in triplicate using a KjelROC 
analyser (KD310, OPSIS, Furulund, Sweden). TP contents of samples were 
determined in duplicate using a FT-MIR spectrometer (MilkoScan FT120, FOSS A/S, 
Hillerød, Denmark). The contents of eNPN were calculated by subtracting average TP 
from average CP. To evaluate the influence of adulterants on the CP and TP contents 
of samples, regression lines were drawn between dependent CP and TP values and 
independent adulterant levels, and corresponding slopes were used to describe the 
changes of CP and TP in studied samples with increasing adulterant levels in milk.  

2.3. Spectral acquisition 

In order to avoid scattering caused by milk fat globules, milk samples were skimmed 
according to the method proposed by Santos et al. (2013). In brief, equal volumes of 
sample and chloroform were mixed by vortex shaking to remove milk fat. The 
supernatant after centrifugation was collected for spectra scanning.  

Mid-infrared spectra of skimmed samples were acquired by a Fourier Transform 
Infrared spectrometer (Tensor 27, Bruker optics, MA, US) in attenuated total 
reflectance (ATR) mode, equipped with a ZnSe cell. Three drops of skimmed samples 
were placed on the ZnSe crystal. For each individual spectrum an average of 64 scans 
were carried out at 4 cm-1 resolution and over 4 000-650 cm-1 range. Between each 
spectrum acquisition, the crystal cell was wiped dry using soft tissue paper and 
cleaned by wiping with an alcohol pad. This procedure was repeated 20 times for each 
adulterated sample and 38 times for the control milk sample to ensure good 
repeatability. The background spectra of ethanol were recorded at an interval of 20 
independent spectra. Finally, all independent spectra from the same adulterated 
sample were averaged. The final dataset contained 21 spectra.  

2.4. Multivariate Data Analysis 

Spectra were normalized by subtracting the mean and dividing by the standard 
deviation of each individual spectra. These normalized spectra were then exported to 
R software (version 3.4.1, Bell Laboratories, New Jersey, USA). The library caret 
(version 6.0-78) was used to realise the multivariate analysis. Principle component 
analysis (PCA) was used to derive the sample clustering according to adulterant type 
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and level. The score and loading plot of the first two principal components were 
exported to show the sample distribution. Partial Least Square - discriminate analysis 
(PLS-DA) with a leave-one-out cross-validation was carried out to identify the type 
of adulterant in the studied samples. Metrics of classification model, such as 
sensitivity, specificity, precision, and accuracy, were exported to explain the model 
performances in adulterant identification, as well as the confusion matrix to assess the 
discernment ability of the developed models. The VIP score of PLS-DA and the 
decision tree scheme were used to clarify the important variables of the corresponding 
model. A PLS regression with a leave-one-out cross-validation was also performed to 
predict the quantity of adulterant in the studied milk. Moreover, a PLS regression 
model to predict eNPN contents of samples was developed. Standard error (SEC) and 
coefficients of determination of calibration (R2c) and of cross-validation (R2cv) were 
calculated to assess the robustness of the developed regression models.  

 

Table 5-1: Average and standard deviation of crude protein (CP) measured by Kjedahl 
(g/100 g of milk), and true protein (TP) determined by MIR spectrometer (g/100 g of milk) 

following the studied adulterant and level (g/L of milk). 

 
Notes: HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; HWP = hydrolysed 
wheat protein. Slopes indicate the changed protein values (g/100 g) of samples with the per 
unit (g/L) addition of adulterants. 

3. Results and Discussion 

3.1. Sample protein contents 

The sample values for CP measured by Kjeldahl and TP predicted by MIR 
spectrometry are listed in Table 5-1. The CP and TP contents in control milk are 3.17 
and 3.22 g/100 g, respectively. Independent of the adulterant type, the inclusion of 
hydrolysed plant protein or whey in milk increased the content of TP (3.30-
5.42 g/100 g) and CP (3.31-5.45 g/100 g). However, the increments of TP and CP 
were different. The addition of whey and HWP increased CP by 0.07 units (1 unit 

 Adulterant level 
(g/L of milk) 

Protein contents (g/100 g of milk) 

HRP HSP HWP Whey 

CP 30.0 4.78 ± 0.01 4.70 ± 0.00 5.42 ± 0.01 5.45 ± 0.03 
15.0 4.03 ± 0.03 3.95 ± 0.00 4.29 ± 0.01 4.32 ± 0.04 
7.5 3.70 ± 0.00 3.59 ± 0.00 3.75 ± 0.00 3.80 ± 0.03 
3.8 3.50 ± 0.01 3.41 ± 0.01 3.49 ± 0.02 3.52 ± 0.00 
1.9 3.38 ± 0.01 3.31 ± 0.01 3.32 ± 0.01 3.40 ± 0.05 
Slope 0.05 0.05 0.07 0.07 

TP 30.0 4.68 ± 0.00 4.39 ± 0.00 5.04 ± 0.01 5.42 ± 0.01 
15.0 3.96 ± 0.01 3.78 ± 0.00 4.11 ± 0.01 4.33 ± 0.00 
7.5 3.60 ± 0.00 3.51 ± 0.00 3.64 ± 0.01 3.78 ± 0.00 
3.8 3.41 ± 0.00 3.36 ± 0.01 3.44 ± 0.00 3.50 ± 0.00 
1.9 3.31 ± 0.01 3.30 ± 0.01 3.33 ± 0.00 3.35 ± 0.00 
Slope 0.05 0.04 0.06 0.07 
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equals 1 g/100 g of milk protein per 1 g/L of adulterant level), while addition of HRP 
and HSP raised CP by 0.05 units. The TP increments caused by the addition of HSP, 
HRP, HWP, and whey were 0.04, 0.05, 0.06 and 0.07 units, respectively.  

 

Figure 5-1: Score plots of spectra data by adulterants added to samples (A) and levels 
(g/L) of adulterants (B) derived from principle component analysis of different levels of milk 

adulteration. Notes: HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; 
HWP = hydrolysed wheat protein. 

3.2. Identification and quantification of milk adulteration using MIR 

Score plots of normalised spectral data from PCA are presented in Figure 5-1. The 
first two principal components (PCs) accounted for 83.96% of the total variance. 
Score plots of the first 2 PCs from PCA showed potential sample clusters by adulterant 
type and level. Based on the score plots, PC1 allowed a partial discrimination of 
samples according to adulterant (Figure 5-1a). Milk samples spiked with whey were 
clearly separated by PC1 as they showed the highest values. Then, HSP milk was 
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separated and was located between adulterated whey samples and the remaining 
adulterated samples. However, the distinction between control milk, HRP and HWP 
milk was not possible based on PC1 scores. Adulterated samples with high levels of 
adulterant (30 g/L) gathered at the positive values of the PC2 axis (Figure. 5-1b). 
There was a gradual transition of samples located in the downward direction of PC2 
as a function of the adulteration level, but no visible boundaries were observed 
between samples with adulteration levels below 30 g/L.  

 

Table 5-2: Confusion matrix of PLS-DA with leave-one-out cross validation 

Notes: HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; HWP = hydrolysed 
wheat protein. 
 

Table 5-3: Performance of the PLS-DA model on each type of milk adulteration with 
leave-one-out cross validation 

Notes: HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; HWP = hydrolysed 
wheat protein. 

 

In order to confirm the first PCA observations of the feasibility of MIR to detect 
milk samples adulterated with hydrolysed plant protein or whey, a PLS-DA analysis 
was performed. Based on cross-validation results, 3 factors were included in the PLS-
DA model. The cross-validation confusion matrix and corresponding statistical 
parameters are given in Table 5-2 and 5-3, respectively. These results suggest that the 
PLS-DA model was more sensitive to adulteration with HSP and HWP. The 
specificity and accuracy for all of the studied adulterants were higher than 85% and 
90%, respectively. These parameters are comparable to the models’ performance with 
other adulterants, as published in recent literature (Botelho et al., 2015; Coitinho et 
al., 2017; Gondim et al., 2017), in which both sensitivity and specificity ranged from 
80% to 100%. Based on the results of the confusion matrix (Table 5-2), nearly all 
samples were well classified, except 3 samples: the control milk, one sample with 
HRP, and one sample with whey were classified as HSP, HSP and HWP samples, 

 Reference value 

Milk HRP HSP HWP Whey 

Predicted 
value 

Milk 0 0 0 0 0 

HRP 0 4 0 0 0 

HSP 1 1 5 0 0 

HWP 0 0 0 5 1 

Whey 0 0 0 0 4 

Adulterants HRP HSP HWP Whey 

Sensitivity 80.0% 100% 100% 80.0% 
Specificity 100% 87.5% 93.8% 100% 
Precision 100% 71.4% 83.3% 100% 
Accuracy 90.0% 93.8% 96.9% 90.0% 
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respectively. The misclassified HWP and whey samples had a low level of adulterant 
(1.9 g/L). The VIP scores exported from the developed PLS-DA model allowed for 
interpretation of the regions responsible for the obtained classification. As plotted in 
Figure 5-2, high VIP scores (> 40) occurred at 600-640, 951-976, 1 468-1 518, 1 688-
1 996, 2 361-2 369, and 3 746-3 757 cm-1. High scores at 600-640 cm-1 are associated 
with out-of-plane bending of N-H and C=O, while high weight at 1 468-1 518 cm-1 
and 1 688-1 996 cm-1 are related to absorption of amide II and I (Carbonaro and 
Nucara, 2010). The VIP score peaks centred at 2 365 and 3 750 cm-1 are associated 
with the absorption of CO2 and water, respectively (Aernouts et al., 2011).  

 
Figure 5-2: Variable importance in project (VIP) scores for the PLS-DA models detecting 

adulteration. Notes: HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; 
HWP = hydrolysed wheat protein. 

 

Another objective of this study was also to quantitatively detect the presence of 
adulterant in milk, independent of the adulterant type. Therefore, PLS regression 
based on adulterant level was also performed. The obtained PLS regression plot 
(Figure 5-3a) showed a good fit between the prediction and reference, with standard 
error = 0.65 g/100 g, R2 = 0.998 of calibration, and R2 = 0.952 of cross validation.  
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Figure 5-3: Plots of reference vs. predicted values and metrics for calibration and cross-
validation of each partial least square (PLS) regression model: a, adulteration level; b, 

estimated non-protein nitrogen (eNPN). 
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Figure 5-4: Estimated non-protein nitrogen (eNPN) levels in different samples of 
adulterated milk. HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; 

HWP = hydrolysed wheat protein. 

 
Figure 5-5: Predicted estimated non-protein nitrogen (eNPN) difference for each sample 

from control milk as a function of the levels and types of adulterants in milk adulteration. 
The NPN threshold for normal milk is 0.093 g/100 g, suggested by Ruska and Jonkus (2014). 

HRP = hydrolysed rice protein; HSP = hydrolysed soy protein; HWP = hydrolysed wheat 
protein. 

 

3.3. Identification of milk adulteration using eNPN predictions 

The eNPN contents in samples are presented in Figure 5-4. Nearly all adulterated 
samples have a higher level (–0.01-0.38 g/100 g) than control milk (–0.05 g/100 g). 
An increase in eNPN in samples was observed when HSP and HWP adulteration 
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increased. This is related to the high content of dissolved NPN (Aaslyng et al., 1998) 
from the hydrolysed plant proteins used. However, a more or less flat tendency with 
an average content of 0.09 g of eNPN/100 g of milk was observed for HRP samples. 
The constant eNPN contents for HRP adulteration may indicate a low released level 
of NPN (0.07-0.10 g/100 g) in HRP adulterated milk samples. A similar flat tendency 
was also observed for whey adulteration, with a lower content (0.02 g of eNPN/100 g 
of milk). This can be explained by the low content of NPN in whey protein powder 
(less than 1%) (Svanborg et al., 2015). Three negative values of eNPN content were 
obtained: one in control milk (–0.05 g/100 g) and one for samples adulterated with 
whey and HWP at 1.9 g/L (–0.01 g/100 g). The eNPN level of the control sample in 
this study is lower than the NPN range (0.162-0.255 g/100 g) reported in other studies 
(Ruska and Jonkus, 2014). Corresponding biases may result from overestimation of 
TP by the FT-MIR spectrometer.  

Although the detection of NPN has been used for the identification of milk 
adulteration (Gao et al., 2015), Kjeldahl measurements of CP and TP in milk take time. 
Therefore, it could be faster to directly predict eNPN using MIR. The performance of 
eNPN prediction using PLS regression is shown in Figure 5-3b. Values of R2 and 
RMSE for cross validation of eNPN were equal to 0.70 and 0.06 g/100 g, respectively. 

Combined with the NPN range of normal milks, the predicted eNPN would be useful 
for the identification of milk adulteration. As reported by Ruska and Jonkus (2014), 
NPN varied from 0.162 to 0.255 g/100 g in normal milk. In other words, when the 
predicted eNPN gap between sample and control milk exceeds the NPN range in 
control milk, 0.093 g/100 g, the sample would be classified as adulterated. 
Alternatively, calculation of the difference of the sample eNPN from control milk 
could reduce potential bias caused by overestimation of TP in this study. 

Figure 5-5 presents predicted eNPN difference plots for each sample compared to 
control milk, only samples with predicted eNPN difference (sample minus control 
milk) less than 0.093 g/100 g are recognised as normal. Therefore, whey samples, 
HSP and HWP samples at the level of 1.9 g/L are identified as normal milk. It should 
be noted that all samples adulterated with whey could not be recognised by the 
developed model. As discussed above, amounts of NPN released from whey powder 
in adulterated samples is limited (0.05 g/100 g). The NPN proportion for adulteration 
with whey would be very low, even less than the control milk (Gao et al., 2015). 
Therefore, this model may not be sensitive to milk adulteration with whey. Otherwise, 
NPN contents in milk products are sensitive to adulteration with ammonium, urea, 
melamine, and other nitrogen-rich substances (Gao et al., 2015; DeVries et al., 2017). 

Compared with the developed classification model using spectra data, the predicted 
eNPN model is not so efficient for the recognition of milk adulteration with whey and 
low level (1.9 g/L) HSP and HWP, which means that for the detection of milk 
adulteration a classification model directly using spectral data is more suitable than 
calculated parameters using spectra predictions in this study. This is in line with 
efficiency comparisons of direct and indirect models for the estimated breeding value 
of milk composition (Dagnachew et al., 2013). 

The eNPN model in the current study needs to be improved and validated in future 
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studies: (1) The spectral variance of normal milk should be taken into consideration; 
more NPN values for normal milk samples should be added to the database, which 
primarily affects the threshold value of the developed eNPN model. (2) Spectral and 
NPN data for adulteration with urea, melamine, and other nitrogen-rich substances in 
milk should be included. (3) As a potential identification model for non-targeted 
adulteration, the composition of the NPN fraction recognised by this model, such as 
pure chemicals, free amino acids, or small peptides, should be defined.  

4. Conclusion 

In this study, we evaluated the potential for the detection of milk adulteration with 
hydrolysed plant protein in 2 ways: a MIRS model of identification and quantification 
of milk adulteration, and predicted eNPN to identify adulteration. The developed 
classification model using a decision tree could correctly classify all the adulterated 
samples according to type of adulterant, and successive PLS regression models could 
quantify the adulterant level with high accuracy (R2cv = 0.95, RMSEcv = 2.25 g/L). 
Combined with reported NPN range (0.162-0.255 g/100 g) in unadulterated milk and 
predicted eNPN differences from control milk in samples using a MIRS model, 
samples with HRP at all levels, and HSP and HWP at levels above 3.8 g/L are 
classified as adulterated samples. 
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In this chapter, nine raw milks were designed as control samples, in order to take 

into account spectral variation between authentic milks. The results were interpreted 

on the basis of “corrected” spectra excluding absorbances linked to the fat moiety of 

milk. Hydrolyzed wheat and rice protein, whey, and urea were spiked in milk as 

foreign protein or nitrogen adulterants. Near- infrared spectroscopy, response of 

overtone and combination vibrations of chemical bonds, was used to identify the milk 

adulteration, together with mid-infrared spectroscopy. In model validation, an 

innovative double validation strategy was adopted in this part. Ten-folds cross-

validation was performed to obtain the best performance for each classification and 

regression model and random whole dataset splitting was replicated to evaluate the 

variability of statistics parameters. Detection limits of spectroscopy methods in this 

part was defined as the minimum level of classification model could identify.  

  

From Yang, J., N. Zheng, J. Wang, V. Baeten, and H. Soyeurt. Identification 
of non-milk protein adulterated in milk using mid-infrared spectroscopy- a case 
of detection of hydrolyzed plant protein. Submitted paper. 
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Abstract 

This study aims to develop a rapid detection method for milk adulterated with 
foreign proteins using mid- and near- infrared spectroscopy. A total of 9 raw milk 
samples were adulterated with 5 levels of hydrolysed rice protein (HRP, 2.5-40 g/L), 
hydrolysed wheat protein (HWP, 1.88-30 g/L), whey (1.88-30 g/L), urea (0.5-8 g/L), 
and water (3.13-50 g/L), as a result of a series dilution process (50.0-3.13%). These 
samples were analysed using attenuated total reflectance mid-infrared (ATR-MIR) 
and near-infrared (NIR) spectrometers. Raw ATR-MIR and first derivative NIR 
spectra data showed better classification and regression model performance than other 
pre-treated data studied. The developed partial least squares-discriminant analysis 
(PLS-DA) model could not discriminate control milk from adulterated samples, 
probably due to the compositional variability of control milks. ATR-MIR had better 
discriminability for HRP and HWP above 6.25%, while NIR showed its better 
performing discriminability for whey above 12.5%. Similar good regression model 
performance was seen for quantification of the level of HRP and urea in milk using 
both ATR-MIR and NIR milk spectra (validation R2p > 0.96). ATR-MIR predicted 
the HWP level better than NIR (validation R2p = 0.95 vs. 0.88), while NIR had a better 
accuracy for whey level quantification (validation R2p = 0.97 vs. 0.40). Moreover, 
both spectroscopies provided a good prediction of the protein adulterants level 
(excluding water) in adulterated samples (validation R2p = 0.87-0.97, RMSEP = 1.98-
4.10 g/L). Consequently, this study shows the complementarity of information 
provided by NIR (water and whey detection) and MIR (HRP, HWP and urea). 
However, strong variability was observed between the validation sets used, suggesting 
a need to increase the size of the calibration sets used to build the models. 

Key words: mid-infrared, near-infrared, hydrolyzed plant protein, milk adulteration 
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1. Introduction  

Milk protein adulteration is the addition of foreign nitrogen components to milk or 
dairy products in order to increase the apparent crude protein content. Melamine, urea, 
whey, and different plant proteins are often used as candidate adulterants due to their 
low cost and high nitrogen content (Poonia et al., 2017). The illegal or undeclared 
addition of such adulterants has negative health consequences. Besides the serious 
damage to kidneys caused by overdose intakes of melamine and urea (Handford et al., 
2016), possible hypotension induced by whey (Renny et al., 2005) and anaphylaxis 
associated with plant proteins (Ho et al., 2014) could occur. Unfortunately, the 
chemical reference methods used to quantify the protein content in milk, such as 
Kjeldahl and Dumas, are not able to distinguish between non-milk protein and true 
milk protein (Nascimento et al., 2017). Therefore, reliable and accurate methods 
should be developed to detect these milk adulterations that are potentially dangerous 
to human health. 

As a rapid and non-invasive detection methodology, infrared spectroscopy is based 
on the vibrations of molecules at different frequencies (Luykx and van Ruth, 2008). 
Near-infrared (NIR) spectra are the result of overtones and combinations of 
fundamental vibrations related to chemical groups, such as C-H, N-H, and O-H, 
generally at high vibrational frequency (4 000-12 500 cm-1) (Rodriguez-Saona and 
Allendorf, 2011). Mid-infrared (MIR) spectroscopy at 400-4 000 cm-1 focuses on the 
electromagnetic spectrum, monitoring the fundamental vibrational and rotational 
stretch of molecules in organic compounds (Lohumi et al., 2015). Generally, 
compared with models developed from dispersive NIR spectra, MIR models using the 
region located between 700 and 1 200 cm-1 have superior performance for quantitative 
prediction and qualitative classification (Rodriguez-Saona and Allendorf, 2011). 
Some investigations have already used infrared spectroscopy to detect adulterated 
milk samples. Santos et al. (2013b) developed a 3D plot of soft independent modelling 
of class analogies (SIMCA) obtained from a hand-held NIR system (10 000-
4 000 cm- 1). This plot only separated samples with the highest level (≥ 50%) of 
adulterants (whey, water, synthetic urine, urea, synthetic milk and hydrogen peroxide) 
from other samples according to a dilution process. The classification performance of 
validation was 80% for control milk and 56% for adulterated milk. These authors also 
tested detection using MIR spectroscopy. A portable MIR instrument (1 300-950 cm- 1) 
and a hand-held one (1 800-800 cm-1) provided spectra that allowed good separation 
between control and adulterated fluid milk samples. The correct classification 
performance was 100% and 70%, respectively. For the fluid milk adulterated with 
melamine at a range of 0-14.6 mg/kg and 14.6-2 000 mg/kg, Balabin and Smirnov 
(2011) obtained similar or superior root mean squared errors (RMSE) of prediction 
(0.28 and 6.1 mg/kg) from NIR (450-3 850 cm-1) compared with MIR spectroscopy 
(4 500-9 000 cm-1). According to Jaiswal et al. (2015), the MIR spectral region 
between 1 680-1 058 cm-1 allows the differentiation of milk, soy milk, and milk 
adulterated with soy milk. This spectral differentiation is related to amides (I, II, III), 
beta-sheet proteins, α-tocopherol and Kunitz soybean trypsin inhibitor. Based on the 
spectral differences, the SIMCA model allows classification of control milk versus 



Milk protein adulteration detection via mass spectra and infrared spectroscopy 

93 
 

adulterated samples at a level of 2-40% with a classification performance above 93% 
(Jaiswal et al., 2015). Within the spectral range at 1 089-1 058 cm-1 and using PLS 
regression, the soy milk levels in adulterated samples can be predicted with a R2 of 
0.97 and prediction RMSE of 4.59% (Jaiswal et al., 2015). Combined with multiple 
linear regression, the first derived NIR spectra predict vegetable protein levels (0-5%) 
in adulterated milk powder, with a standard error (SE) of prediction of 0.23% and a 
validation SE of 0.21% (Maraboli et al., 2002). 

This study aims to investigate the possibility of using MIR and NIR spectroscopy 
to detect raw milk adulteration, especially with hydrolysed plant protein. Besides the 
use of hydrolysed plant protein, the innovative aspect of this paper is based on the 
collection of individual cow milk samples in order to introduce the natural variation 
in protein contents in control milk samples. 

2. Materials and Method 

2.1. Milk samples 

Table 6-1: Level of adulterant in the adulterated milk samples following the used dilution. 

Notes: HRP = hydrolysed rice protein; HWP = hydrolysed wheat protein 

 
Nine individual milk samples were collected from 9 different cows belonging to 2 

local Belgian dairy farms (Gembloux and Jodoigne, Belgium) during February and 
April 2018. Samples were adulterated with hydrolysed wheat protein (HWP, CP100, 
Conpro, Kangke Food Engineering Tech LTD, Wuxi, Jiangsu, China), hydrolysed rice 
protein (HRP, Shuaixing, Yongguodanbaifen LTD, Wuhan, Hubei, China), whey 
powder (Xierma, Tongzhougongji Bio-Tech LTD, Minhang district, Shanghai, China), 
urea (Sigma-Aldrich Co., 3050 Spruce Street, St. Louis, MO 63103, USA), and 
distilled water. Protein contents of HWP, HRP, and whey were 71.47 ± 0.12, 56.08 ± 
0.26, and 79.93 ± 0.30 g/100 g, as determined by KjelROC analyzer (KD310, Sweden, 
OPSIS AB Inc.) from triplicates. The levels of spiked whey and urea used this study 
(30 and 8 g/L, respectively) were the same as those mentioned in previous reports 
(Santos et al., 2013a, Santos et al., 2013b). In order to have similar protein levels to 
whey samples, milk samples with 40 g/L of HRP and 30 g/L of HWP were prepared 
for this study. Control milk samples were also adulterated by adding water to check 
spectral changes during the dilution process. The target concentrations of adulterant 
in milk (40 g/L for HRP, 30 g/L for HWP and whey, 8 g/L for urea, and 50 g/L for 
water) were prepared by magnetic stirring for 20 min. Calculated crude protein 
increases in samples induced by the addition of HRP, HWP, urea, and whey were 2.24, 

Dilution (% v/v) 50.00 25.00 12.50 6.25 3.13 

HRP (g/L of milk) 40.00 20.00 10.00 5.00 2.50 
HWP (g/L of milk) 30.00 15.00 7.50 3.75 1.88 
Urea (g/L of milk) 8.00 4.00 2.00 1.00 0.50 
Whey (g/L of milk) 30.00 15.00 7.50 3.75 1.88 
Water (g/L of milk) 50.00 25.00 12.50 6.25 3.13 
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2.14, 2.40, and 2.34 g/100 g respectively. Then, a serial gradient dilution with milk of 
adulterated samples was followed, as described by Santos et al. (2013b) and ranged 
from 3.13% to 50.00% v/v. Therefore, five types of adulterated samples (i.e., HWP, 
HRP, urea, whey and water) at five different levels were created. Table 6-1 shows the 
links between adulterant level and dilution. The control milk was also included in the 
set. Therefore, 26 samples were created per analysed milk sample. All samples were 
then stored at 4°C and warmed to 40°C for 20 min before spectral analysis. The 
spectroscopic measurements were completed within 24 hours of sample preparation. 
This sample preparation was repeated 9 times as 9 different milk samples were 
collected. Consequently, there were a total of 234 samples for spectra scanning.  

2.2. Infrared spectroscopy measurements 

Mid-infrared spectral measurements were carried out on a Fourier Transform (FT)-
MIR spectrometer (Tensor 27, Bruker optics, MA, US) with an attenuated total 
reflectance (ATR) accessory (GS10500-Z, Specac Ltd, Orpington, Kent, England). 
Three drops of each well shaken sample were placed on the diamond crystal. Spectra 
were collected in the region located between 4 000 and 600 cm-1 co-adding 64 scans 
at room temperature (24-25°C). The resolution was 4 cm-1. Four individual spectra 
(i.e., 4 replicates) were collected for each sample via OPUS software (v. 6.5, Bruker 
Optics, Ettlingen, Germany), and distilled water was used as the background during 
sample measurement intervals. After scanning each sample, the ATR crystal was 
cleaned using soft tissue paper with alcohol and air-dried. All spectra were averaged 
for further analysis. Therefore, the final data set contained 234 ATR-MIR spectra. 

NIR measurements were taken using a FT-NIR spectrometer (MPA, Bruker Optics, 
Ettlingen, Germany), attached to a liquid sampling module which could pump and 
homogenise raw milk samples. The sampling apparatus used 40 mL of each sample. 
Two individual transmitted spectra ranging from 12 500 to 4 000 cm-1 were collected 
with a resolution of 16 cm-1. NIR spectra collection was performed by OPUS software 
(V6.5, Bruker Optics, Ettlingen, Germany). At the end, NIR spectra were averaged 
for the further chemometric analysis (N = 234). In order to observe the changes in 
milk composition, the contents of fat, protein, lactose, and total solids of samples were 
also predicted using the same spectrometer. 

2.3. Chemometric analysis 

All data treatments were performed using R software (version 3.4.1, Bell 
Laboratories, New Jersey, USA). First milk composition changes were assessed using 
P-values of paired t-tests (package “stats) to compare adulterated vs. control milk 
using the contents of fat, protein, lactose and total solids predicted by NIR.  

Second, principal component analysis of centered and scaled spectra was performed 
(R package “FactoMineR”, version 1.41; Le et al., 2008) to screen potential spectral 
outliers and to investigate potential samples clusters by adulterant type, level, 
sampling date, and dilution process. According to Whitfield et al. (1987), a modified 
Mahalanobis distance (GH) higher than 3 suggests a potential outlier. This distance 
was calculated for the obtained principal components and only 2 ATR-MIR spectral 
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data showed a GH higher than 3. These were discarded from the database (N = 232). 
For the NIR spectral data, 12 NIR spectra were considered to be outliers (N = 220). 

Using R package “prospectr” (Version 0.1.3; Stevens and Ramirez-Lopez, 2013), 
different data processing methods were tested: standard normal variate (SNV), first 
derivative with a gap of 5 (1D), second derivative with a gap of 5 (2D), as well as 
combinations of 1D+SNV and 2D+SNV. SNV treatment allowed multiplicative 
scatter correction in reflectance spectroscopy (Rodriguez-Saona et al., 2000), while 
first and second derivatives removed additive baseline effects to enhance signal/noise 
ratio. The combination of these two pretreatments has often been applied in previous 
studies (Wang et al., 2006, Balabin and Smirnov, 2011). 

Classifications based on adulterant type were realised using PLS-discriminant 
analysis (R package “caret”, version 6.0-80; Kuhn et al., 2018). The number of 
components was fixed when the largest 10-fold cross-validation accuracy was reached 
(i.e., the ratio of the number of correct classifications to the total number of records). 
In order to assess the robustness of the obtained classification, the Cohen’s kappa 
unweighted parameter was also calculated. This compared the calculated accuracy 
with the expected accuracy representing the random chance of having a good 
classification. Sensitivity and specificity for each adulterant type were also calculated. 

Quantification of the level of the adulterants in milk was performed using PLS 
regression (R package “caret”, version 6.0-80; Kuhn et al., 2018). The optimal number 
of PLS components for each model was defined by the minimum value of root mean 
square of standard error (RMSE) obtained after a 10-folds cross validation. The 
maximum number of latent variables in the model was set to 20. The performance of 
each regression model was evaluated using RMSE and the coefficient of 
determination (R²) of calibration and cross-validation. As the number of samples was 
much higher than the number of components in the model, RMSE was calculated as 
follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒
 

Before chemometric analysis, the centred and scaled spectral dataset was split into 
three groups according to the randomly chosen sampling dates (R package “cvTools”, 
version 0.3.2; Alfons, 2012). Spectral data from 2 groups were used as the calibration 
set and the remaining group data as the validation set. This selection procedure was 
repeated three times in order to assess the variability of performance statistical 
parameters. Therefore, this validation is a second cross-validation in terms of 
sampling dates. ATR-MIR train and test sets contained 155 and 77 records 
respectively. The first NIR train and test sets contained 153 and 67 records. The 
second NIR train and test sets included 151 and 69 records. The third NIR train and 
test sets contained 142 and 78 records. 
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3. Results 

3.1. Control milk samples 

Table 6-2: Contents of the major milk components (mean ± SD) in the used samples 
determined by MPA spectrometer (Bruker Optics, Ettlingen). The P-values of the paired t 

test between adulterated and control milk samples are mentioned within brackets. 

 

 

  

Adulterant 
Type 

Level 
(g/L) 

Fat 
(g/100 g) 

Protein 
(g/100 g) 

Lactose 
(g/100 g) 

Total solids 
(g/100 g) 

Control 0 3.15±0.78 3.21±0.12 4.88±0.06 12.09±0.85 

HRP  

40 
3.50±0.69 

(ns) 
5.56±0.16 

(***) 
4.62±0.10 

(***) 
14.22±0.73 

(***) 

20 
3.51±0.71 

(ns) 
4.36±0.21 

(***) 
4.76±0.11 

(**) 
13.21±0.75 

(**) 

10 
3.31±0.70 

(ns) 
3.77±0.15 

(***) 
4.81±0.08 

(§) 
12.65±0.76 

(ns) 

5 
3.32±0.56 

(ns) 
3.50±0.13 

(***) 
4.83±0.06 

(ns) 
12.49±0.64 

(ns) 

2.5 
3.32±0.74 

(ns) 
3.37±0.12 

(ns) 
4.83±0.07 

(ns) 
12.37±0.84 

(ns) 

HWP 

30 
3.30±0.70 

(ns) 
5.38±0.20 

(***) 
5.36±0.05 

(***) 
14.10±0.78 

(***) 

15 
3.31±0.74 

(ns) 
4.22±0.39 

(***) 
5.04±0.12 

(**) 
13.06±0.91 

(*) 

7.5 
3.26±0.69 

(ns) 
3.80±0.18 

(***) 
4.96±0.06 

(*) 
12.67±0.83 

(ns) 

3.75 
3.27±0.70 

(ns) 
3.56±0.23 

(**) 
4.89±0.10 

(ns) 
12.45±0.80 

(ns) 

1.88 
3.32±0.68 

(ns) 
3.39±0.15 

(**) 
4.88±0.04 

(ns) 
12.39±0.80 

(ns) 

Urea 

8 
3.31±0.64 

(ns) 
3.14±0.13 

(ns) 
4.76±0.07 

(***) 
11.91±0.74 

(ns) 

4 
3.64±1.16 

(ns) 
3.17±0.12 

(ns) 
4.79±0.08 

(*) 
12.38±1.16 

(ns) 

2 
3.60±1.00 

(ns) 
3.18±0.12 

(ns) 
4.82±0.08 

(§) 
12.42±1.03 

(ns) 

1 
3.48±0.83 

(ns) 
3.19±0.11 

(ns) 
4.83±0.08 

(ns) 
12.36±0.90 

(ns) 

0.5 
3.41±0.80 

(ns) 
3.20±0.12 

(ns) 
4.84±0.06 

(ns) 
12.31±0.89 

(ns) 
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Notes: HRP = hydrolysed rice protein; HWP = hydrolysed wheat protein. P values indicate 

the significance of paired t-tests of composition values between adulterated samples and 

control milk. ns = P > 0.1; § = 0.05 < P < 0.1; * = 0.01 < P < 0.05; ** = 0.001 <P < 0.01; 

*** = P < 0.001. 

 

Milk samples were collected from 9 different cows in 2 herds. The idea behind this 
particular sampling was to increase the natural variability of milk composition within 
the calibration and validation datasets. The mean and SD values for the main milk 
components are given in Table 2. The most variable milk component from the 9 milk 
samples used was the fat content (coefficient of variation (CV) = 24.93%) with a 
minimum and maximum value of 1.66% and 4.84%, respectively. The second most 
variable component was the total solids content (CV = 7.00%, maximum = 13.74% 
and minimum = 10.35%). This is due to the variability observed for the milk fat and 
protein contents. The average value for protein content was 3.21% with a minimum 
and maximum value of 2.90% and 3.29% (CV = 3.59%) respectively. The quantity of 
lactose was more stable in the collected samples. The content varied from 4.77 to 4.94% 
with a mean of 4.88% (CV = 1.29%). 

Table 6-2 continued 

Adulterant 
Type 

Level 
(g/L) 

Fat 
(g/100 g) 

Protein 
(g/100 g) 

Lactose 
(g/100 g) 

Total solids 
(g/100 g) 

Water 

50 
3.07±0.67 

(ns) 
3.05±0.11 

(**) 
4.64±0.05 

(***) 
11.70±0.76 

(ns) 

25 
3.15±0.69 

(ns) 
3.11±0.11 

(§) 
4.76±0.06 

(***) 
11.93±0.78 

(ns) 

12.5 
3.18±0.73 

(ns) 
3.16±0.12 

(ns) 
4.81±0.07 

(*) 
12.05±0.82 

(ns) 

6.25 
3.23±0.79 

(ns) 
3.19±0.13 

(ns) 
4.86±0.05 

(ns) 
12.15±0.88 

(ns) 

3.13 
3.25±0.75 

(ns) 
3.19±0.12 

(ns) 
4.85±0.06 

(ns) 
12.18±0.83 

(ns) 

Whey 

30 
3.47±0.65 

(ns) 
5.27±0.18 

(***) 
4.60±0.10 

(***) 
14.48±0.72 

(***) 

15 
5.45±0.68 

(ns) 
6.70±0.14 

(***) 
7.22±0.08 

(***) 
13.32±0.76 

(**) 

7.5 
3.35±0.68 

(ns) 
3.72±0.12 

(***) 
4.80±0.07 

(*) 
12.80±0.79 

(§) 

3.75 
3.35±0.75 

(ns) 
3.47±0.12 

(**) 
4.82±0.06 

(§) 
12.54±0.85 

(ns) 

1.88 
3.37±0.78 

(ns) 
3.33±0.12 

(*) 
4.84±0.07 

(ns) 
12.43±0.87 

(ns) 
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3.2. Composition of adulterated milk samples 

Figure 6-1: Average ATR-MIR (a) and NIR (b) spectra of control milk and samples with 
targeted concentration of adulterants [hydrolyzed rice protein (HRP), 40 g/L; hydrolyzed 

wheat protein (HWP) and whey, 30 g/L; urea, 8 g/L; water, 50 g/L]. 
 

The composition of adulterated milk samples predicted using the MPA spectrometer 
is listed in Table 6-2. Compared with control milk, no significant changes in fat 
predictions were induced by the addition of adulterants to milk. However, remarkable 
increases in predicted protein values were observed in HRP-, HWP-, and whey-
adulterated milk samples. Higher levels of water addition (50 and 25 g/L) caused a 
lower prediction of protein content in adulterated samples than the protein content 
measured in control milk. In this study, medium to high levels of HWP added to 
samples (≥ 7.5 g/L) increased the predictions of lactose, while corresponding levels 
of other adulterants reduced the prediction of lactose content in samples. In addition, 
high levels of HRP, HWP, and whey in adulterated samples (≥ 15 g/L) also resulted 
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in an increase of the total solids contents in samples, explained by the increase in 
protein predictions. These results allow us to conclude that the addition of adulterants 
to milk changed the NIR milk spectra, as the predictions produced by the MPA 
spectrometer are based on NIR transmittance.  

3.3. Spectra characteristic of adulteration 

Average ATR-MIR and NIR spectra for control milk and samples spiked with the 
highest level of adulterant are presented in Figure 6-1a and 6-1b, respectively. As 
expected, based on the observed milk compositions, spectral changes can be seen 
between samples.  

Major MIR spectral differences between adulterated samples focused on the regions 
of 600-850, 1 450-1 720, and 3 000-3 600 cm-1. HRP samples showed higher 
absorbance than other samples. For all samples, two primary peaks centred at 1 645 
and 1 550 cm-1 were observed. For urea-spiked samples, there were 2 extra minor 
peaks at 1 596 and 1 630 cm-1. In addition, HWP and whey samples also showed 
higher absorbance than averaged control milk and samples adulterated with water in 
the region of 1 450-1 720 cm-1.  

All samples showed two prominent NIR bands centred at 6 950 and 5 200 cm-1. 
HRP samples showed higher absorbance than other samples in NIR regions of 4 190-
4 930 and 5 340-8 940 cm-1. 

Scores plots for PCA obtained with MIR and NIR spectra did not show any samples 
clusters according to adulterant type or level, sampling date, or dilution (data not 
shown).  

3.4. Classification model per adulterant type 

PLS-DA models were developed to discriminate adulterated milk samples from 9 
different control milk samples. The classification performances following the 5 
spectral pre-treatments based on ATR-MIR and NIR spectra are summarised in Table 
6-3. 

For ATR-MIR, the cross-validation accuracy ranged from 0.51 to 0.65. Similar 
results were obtained for the validation based on the sampling data (i.e., the second 
cross-validation). Lower values were estimated for the Cohen’s kappa parameters. 
The value ranged from 0.39 to 0.57 for the cross-validation and between 0.40 and 0.50 
for the sampling date validation. All of these results suggest a moderate performance 
of ATR-MIR in classifying samples according to adulterant type. However, the use of 
spectral pre-treatment provided worse classification performances compared to those 
without pre-treatment for ATR-MIR.  

For NIR, the accuracy obtained based on the sampling date validation was similar 
to that observed for MIR and ranged from 0.52 to 0.58, although higher values were 
observed for the 10-fold cross-validation (0.64-0.70). The Cohen’s kappa parameter 
of no pre-treatment data for NIR of cross-validation (0.64) also had values comparable 
to those observed for ATR-MIR (0.65). However, NIR classification using first 
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derivative pre-treatment showed better accuracy (0.70), nearly 10% higher than using 
no pre-treatment data (0.64).  

 

Table 6-3: Mean and SD of accuracy and Cohen’s Kappa unweighted parameter obtained 
from the cross-validation and the sampling date validation for the classification of adulterant 

type. 

Notes: ncomp= number of components; N = number of samples; 1D = first derivative of gap 

5; 2D = second derivative of gap 5; SNV = standard normal variate. 

 

Although the global accuracy was moderate, based on Figure 6-1a and 6-1b, we can 
easily assume that the accuracy can depend on the adulterant used. Table 6-4 shows 
the sensitivity and specificity per adulterant type, calculated based on the sampling 
date validation. Sensitivity for ATR-MIR ranged from 0.00% for the detection of 
control milk to 75.56% observed for HWP. For NIR, the sensitivity ranged from 0.00% 
for milk to 80.95% for water. Specificity ranged from 60.22% to 100% for ATR-MIR 

        Cross-validation Validation 

 Pre-treatment Ncomp N Accuracy Kappa N Accuracy Kappa 

A
T

R
-M

IR
 

None  
Mean 11 155 0.65 0.57 77 0.60 0.50 

SD 0 0 0.02 0.03 0 0.06 0.07 

1D 
Mean 6 155 0.51 0.39 77 0.52 0.40 

SD 2 0 0.09 0.11 0 0.07 0.08 

1D + SNV  
Mean 10 155 0.54 0.43 77 0.54 0.43 

SD 3 0 0.03 0.03 0 0.04 0.05 

2D 
Mean 5 155 0.58 0.48 77 0.56 0.46 

SD 1 0 0.05 0.06 0 0.06 0.07 

2D + SNV  
Mean 6 155 0.52 0.40 77 0.53 0.42 

SD 2 0 0.02 0.03 0 0.06 0.07 

N
IR

 

None 
Mean 17 149 0.64 0.55 71 0.52 0.40 

SD 2 6 0.04 0.05 6 0.11 0.13 

1D 
Mean 9 149 0.70 0.63 71 0.58 0.48 

SD 1 6 0.04 0.06 6 0.10 0.13 

1D + SNV 
Mean 11 149 0.64 0.56 71 0.55 0.44 

SD 1 6 0.03 0.04 6 0.10 0.12 

2D 
Mean 9 149 0.68 0.60 71 0.57 0.47 

SD 1 6 0.02 0.03 6 0.11 0.13 

2D + SNV  
Mean 11 149 0.57 0.47 71 0.52 0.40 

SD 7 6 0.02 0.02 6 0.07 0.09 
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and from 74.44% to 100% for NIR. With milk, whey detection presented the second 
lowest sensitivity value using ATR-MIR (30.48%). For NIR, it was HWP (56.07%). 
From Table 6-4, we can easily observe a complementary between NIR and MIR. For 
instance, NIR gave better results in detecting water and whey, while MIR was better 
for discriminating HRP, HWP and urea. 

From Table 6-3 and 6-4, we can sometimes observe a strong variability in results 
for sensitivity and specificity from the sampling date validation dataset. This could 
suggest that the developed classification models are not robust enough. If we pooled 
all available samples (i.e., 232 for ATR-MIR and 220 for NIR), the calibration 
accuracy was equal to 0.79 for ATR-MIR and NIR. Cohen’s kappa parameters were 
slightly lower at 0.74 and 0.73 respectively (Table 6-5). Using a 10-fold cross-
validation, the classification performances were 0.65 and 0.70 for ATR-MIR and NIR 
accuracy and 0.57 and 0.63 for ATR-MIR and NIR kappa parameter (in Table 6-3). 
These values were globally higher than those observed previously using 3 different 
calibration and validation datasets (in Table 6-3). 

  

Table 6-4: Sensitivity and specificity for the classification of adulterant type using ATR-
MIR and NIR spectroscopy from the sampling date validation set. 

  Pretreatment   HRP HWP Milk Urea Water Whey 

Sensitivity (%)               

ATR-MIR 
  

None 
  

Mean 66.67 75.56 0.00 63.01 73.33 30.48 

SD 13.34 10.18 0.00 23.88 20.00 9.07 

NIR 
  

1D 
  

Mean 56.30 56.07 0.00 55.40 80.95 55.55 

SD 3.40 14.15 0.00 15.94 21.82 32.88 

Specificity (%)        

ATR-MIR 
  

None 
  

Mean 98.92 95.16 100.00 99.46 60.22 96.29 

SD 1.86 5.59 0.00 0.93 11.33 1.82 

NIR 
  

1D 
  

Mean 98.30 86.19 100.00 99.37 74.44 89.28 

SD 1.70 11.98 0.00 1.09 7.13 10.34 

Notes: 1D = first derivative of gap 5; HRP = hydrolysed rice protein; HWP = hydrolysed 

wheat protein; milk = control milk; SD = standard deviation. 

 

We observed changes in sensitivity and specificity between the adulterant types. 
The dilution can also impact the performances of classification. To assess these 
performances, the NIR and ATR-MIR classifications developed from the full dataset 
were used in order to have a high enough number of samples per dilution percentage. 
The results are summarised in Table 6-5. The values obtained for the calibration 
accuracy and Cohen’s kappa parameters increased with the dilution percentages for 
both NIR and ATR-MIR. This was expected as there is a smaller spectral fingerprint 
for the adulterant present in the milk spectra when the level of this adulterant is low.  
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Table 6-6 shows the changes of sensitivity per adulterant type as a function of the 
dilution percentage. Based on these results from ATR-MIR spectroscopy, a perfect 
discrimination of HRP and HWP in milk was possible from 6.25% v/v. From 12.5% 
v/v, it was possible to discriminate urea. Perfect discriminations of water and whey 
were not possible using ATR-MIR. The use of NIR was less interesting for 
discriminating HRP, HWP and urea compared to ATR-MIR. However, NIR allowed 
a perfect discrimination of whey from 12.5% v/v. The discrimination of water 
adulteration using NIR was largely better than that observed using ATR-MIR 
(between 88.89% to 100% for NIR and between 66.67% and 77.78% for ATR-MIR). 

3.5. Prediction of adulterant level 

Performances for adulterant level quantification using ATR-MIR and NIR with 
different pre-treatments are listed in Table 6-7. Based on these results, as observed for 
the classification performances of adulterant type, the best performances were 
observed without pre-treatment for MIR and with a first derivative pre-treatment for 
NIR. Therefore, these pre-treatments were used for further analysis. 

The global quantification of adulterant level provided a cross-validation and 
sampling date validation R² of 0.45 and 0.44 for ATR-MIR, and 0.70 and 0.29 for first 
derivative NIR, respectively (Table 6-7). Water was present in the dataset used. As 
this adulterant is not a protein source, this led to some noise in the equation. If the 
water is left out from the datasets, the prediction performances greatly increased 
(Table 6-8). For ATR-MIR, cross-validation and date sampling validation R² reached 
0.88 and 0.87. This is an increase of 95.6% and 97.7%, respectively, compared to the 
equation constructed with water-adulterated samples. For NIR, these values were 
equal to 0.99 and 0.97, respectively. This represents an increase of 41.4% and 234.4% 
compared to the equation built from datasets containing water-adulterated samples. 
This increase of sampling date validation of NIR was higher than the increase 
observed for ATR-MIR. This may be related to the higher sensitivity of NIR to water.  

Prediction equations were built per adulterant type to observe if the performance of 
prediction can be improved and to find the less well-predicted adulterant level (Table 
6-8). As observed for the classifications of adulterant type, ATR-MIR gave the good 
ability to predict the level of HRP-, HWP- and urea-spiked milk. The quantification 
of HWP level by ATR-MIR (validation R2 = 0.95, RMSE = 3.80 g/L) was better than 
prediction by NIR (validation R2 = 0.88, RMSE = 3.70 g/L). The content of whey in 
adulterated samples was better predicted using NIR (validation R² = 0.97, RMSE = 
2.10 g/L). The prediction of water content in diluted milk was also better using NIR 
but the performance was weak (validation R² = 0.41 with a RMSE = 21.19 g/L of 
milk). 

4. Discussion 

4.1. Spectral characteristics 
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Table 6-5: Accuracy and Cohen’s kappa parameter for classifications based on adulterant 
type following the dilution percentage. This classification used all available samples. 

 

      Calibration 

    N Accuracy Kappa 

ATR-MIR  

All samples 232 0.79 0.74 

3.13 45 0.58 0.47 

6.25 45 0.82 0.78 

12.5 45 0.87 0.83 

25 44 0.91 0.89 

50 44 0.93 0.91 

First derivative NIR 

All samples 220 0.79 0.73 

3.13 44 0.43 0.29 

6.25 42 0.74 0.67 

12.5 42 0.98 0.97 

25 42 0.98 0.97 

50 41 1.00 1.00 

Notes: MIR = mid-infrared spectroscopy; NIR = near-infrared spectroscopy 
 

The changed composition values (except fat; Table 6-2) between control and 
adulterated samples observed between major milk components involved differences 
in the spectral information. The ATR-MIR spectra (in Figure 6-1a) of control milk 
was similar to a previous study (Aernouts et al., 2011). The sample adulterated with 
urea showed different peaks from the classical two peaks of Amide I (1 645 cm-1) and 
II (1 550 cm-1) observed in other samples; a minor peak (1 596 cm-1) appeared between 
these two peaks, and an extra peak (1 630 cm-1) before the Amide I peak. These two 
additional peaks involved the C=O absorption of urea (Santos et al., 2013b) and 
structural modification of milk protein caused by the addition of urea (Santos et al., 
2013a), respectively. Higher absorbance of ATR-MIR spectra presented by HRP in 
the region of 3 000-3 600 cm-1 was related to O-H stretching of water absorption 
(Aernouts et al., 2011). In addition, higher absorption of samples with HRP at 1 400 
cm- 1 was observed and can be associated with Asp and Glu in hydrolysed plant protein 
(Barth, 2007). Major MIR spectral differences between adulterated samples focused 
on the region of 1 450-1 720 cm-1 and were associated with the characteristic 
absorption of Amide I and II of milk protein. High absorbance of samples with HRP, 
medium absorbance of samples with HWP and whey, and low absorbance of control 
samples and samples adulterated with water, corresponded to the protein contents 
levels shown in Table 6-2.  

The NIR spectra of samples obtained in the current study (Figure 6-1b) were 
comparable to those presented in other studies (Santos et al., 2013b). Higher 
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absorbance of samples with HRP at 6 950 cm-1 than other samples was associated with 
overtones of water absorption in the NIR region (Laporte and Paquin, 1999). The 
region located between 3 996 and 8 000 cm-1 is correlated to water absorption (Laporte 
and Paquin, 1999). 

4.2. Classification of adulterant type 

In this study, both ATR-MIR and NIR spectroscopy were not be able to separate 
control milks from adulterated samples (Table 6-4). For comparison, a similar study 
showed that normalised and second derivative ATR-MIR could separate control milk 
from adulterated samples but processed NIR could not, for bovine milk adulterated 
with water, whey, hydrogen peroxide, synthetic milk, synthetic urine, and urea 
(Santos et al., 2013b). This inability could be explained by a larger variability of milk 
composition in this study, which was collected from individual cows and not 
commercial skimmed milk. However, by combining prediction of adulterant level and 
classification results, it could be possible to make this separation. This hypothesis 
must be tested using a larger number of control milk samples. 

 

Table 6-6: Sensitivity for the classification of adulterant type in function of the dilution 
and adulterant type from the sampling date validation set. 

Notes: HRP = hydrolysed rice protein; HWP = hydrolysed wheat protein; milk = control milk; 

ATR-MIR = attenuated total reflectance mid-infrared; NIR = near-infrared 

 

A better sensitivity was observed for HRP-adulterated samples using ATR-MIR 
(91.11%) than NIR (66.67%) using the entire dataset (Table 6-6), and this difference 
between NIR (56.30%) and ATR-MIR (66.67%) were also obtained in the validation 

  
Dilution           
(% v/v) 

  Sensitivity 

  N HRP HWP Urea Water Whey 

ATR-MIR  

3.13 45 55.56 66.67 44.44 66.67 55.56 

6.25 45 100.00 100.00 88.89 66.67 55.56 

12.5 45 100.00 100.00 100.00 66.67 66.67 

25 44 100.00 100.00 100.00 66.67 87.50 

50 44 100.00 100.00 100.00 77.78 88.89 

All 232 91.11 93.33 86.36 68.89 70.45 

First derivative 
NIR 

3.13 44 12.50 44.44 33.33 88.89 33.33 

6.25 42 37.50 87.50 55.56 100.00 88.89 

12.5 42 100.00 100.00 100.00 88.89 100.00 

25 42 100.00 100.00 100.00 88.89 100.00 

50 41 100.00 100.00 100.00 100.00 100.00 

All 220 66.67 85.71 77.27 93.18 84.44 
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based on sampling date (Table 6-4). The specificity was equal to 98.92% for ATR-
MIR (Table 6-4). Compared to NIR, ATR-MIR also allowed a better classification for 
a low content of HRP (6.25% v/v; Table 6-6). Similar conclusions to HRP can be 
formulated for HWP adulteration. Indeed, HWP spiked milk samples were better 
classified using ATR-MIR spectroscopy with a sensitivity of 75.56% for validation 
by sampling date (Table 6-4) and 93.33% for the entire dataset (Table 6-6). The 
observed specificity of the sampling date validation set was equal to 95.16%. 
Compared to NIR, ATR-MIR also allowed a better classification for a low content of 
HWP (6.25% v/v). A previous SDS-PAGE study conducted by our team (Yang et al., 
2019) showed that the HRP and HWP used in the current study contained small 
peptides (less than 11 kD for HRP and 11-17 kD for HWP). Smaller peptides fractions 
indicate a higher degree of hydrolysis of protein components, this may explain the 
higher absorbance HRP exhibited in the water absorption associated region in NIR 
and ATR-MIR. Small peptides with high solubility may also explain the better 
performance of ATR-MIR classification for these two adulterants.     

ATR-MIR spectroscopy also allowed a better classification compared to NIR for 
urea-adulterated samples, with higher sensitivity (63.01% vs. 55.40% in Table 6-4, 
86.36% vs. 77.24% in Table 6-6). The best performance was observed for samples 
adulterated with urea contents equal to at least 12.5% v/v (2 g/L). In other study, when 
combined with SIMCA, ATR-MIR successfully separated urea < 900 ppm 
(approximately 0.9 g/L), and urea > 900 ppm, with a classification efficiency of 80.0-
97.8% (Jha et al., 2015). Coupled with improved support vector machine (SVM) and 
K nearest neighbors (KNN), SNV pre-treated NIR spectra would classify samples 
with urea with validation correct ratios of 86.5-95.3% (Zhang et al., 2014). 

Water-spiked milk samples were better classified using NIR than using ATR-MIR 
(with sensitivities of 80.95% vs. 73.33% in Table 6-4, and of 93.18% vs. 68.89% in 
Table 6-6). The ATR-MIR results obtained in this study were lower compared to those 
obtained by Botelho et al. (2015). From PLS-DA models combined with ATR-MIR, 
they were able to detect the presence of adulterated water (0.05-1 g/L) in milk, with 
sensitivity of 93.8% and specificity of 88.5% for validation (Botelho et al., 2015). 
Samples adulterated with water (150 g/L) were not efficiently differentiated from 
unadulterated samples by Gondim et al. (2017) due to low specificity (56.7%) by 
using a SIMCA model with ATR-MIR spectra processed using multiplicative scatter 
correction (MSC). 

In this study, PLS-DA models allowed a better discrimination of whey-spiked milk 
samples using NIR spectral data than the same samples using ATR-MIR data (with 
sensitivities of 55.55% vs. 30.48% in Table 6-4, and of 84.44% vs. 70.45% in Table 
6-6). Discriminant PLS using NIR (original, MSC, or MSC + second derivative 
processing) recognised milk samples adulterated with whey (2.15-48.4% g/v, around 
21.5-484 g/L) and water (1-97% v/v, around 10-970 g/L), with correct classification 
of 88.8-100% in validation (Kasemsumran et al., 2007).     

4.3. Quantification of adulterant level 
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Table 6-7: Prediction of the adulterant level in milk from ATR-MIR and NIR 

spectroscopy. 

Notes: RMSE = root mean square error; R2 = coefficient of determination; SD = standard 

deviation; ncomp = number of components; N = number of samples; 1D = first derivative of 

gap 5; 2D = second derivative of gap 5; SNV = standard normal variate. 

 

  

    Calibration 
Cross-

validation 
Validation 

 Pre-
treatment 

 ncomp R²c RMSE R²cv RMSE R²p RMSEP 

A
T

R
-M

IR
 

None 
Mean 6 0.60 8.17 0.45 9.52 0.44 9.98 

SD 1 0.03 0.26 0.02 0.06 0.06 0.73 

1D 
Mean 2 0.49 9.20 0.37 10.33 0.33 11.00 

SD 1 0.13 1.25 0.04 0.38 0.06 0.66 

1D + 
SVN 

Mean 3 0.61 8.12 0.34 10.60 0.36 10.45 

SD 0 0.04 0.40 0.06 0.42 0.09 0.78 

2D 
Mean 2 0.49 9.22 0.37 10.33 0.34 10.97 

SD 0 0.03 0.25 0.05 0.35 0.02 0.47 

2D + 
SNV 

Mean 2 0.53 8.83 0.32 10.69 0.26 11.27 

SD 1 0.12 1.23 0.09 0.40 0.07 0.63 

N
IR

 
 

None 
Mean 5 0.39 10.49 0.32 10.47 0.26 11.65 

SD 1 0.02 0.04 0.01 0.02 0.04 0.30 

1D 
Mean 14 0.45 10.10 0.70 6.09 0.29 14.29 

SD 9 0.07 0.61 0.38 4.13 0.04 2.78 

1D + 
SVN 

Mean 5 0.38 10.45 0.34 10.35 0.25 11.81 

SD 1 0.04 0.26 0.04 0.22 0.06 0.66 

2D 
Mean 2 0.45 10.38 0.30 10.65 0.25 11.12 

SD 0 0.04 0.25 0.02 0.14 0.06 0.35 

2D + 
SNV 

Mean 3 0.39 10.62 0.35 10.25 0.21 12.05 

SD 1 0.03 0.12 0.06 0.47 0.02 0.50 
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Table 6-8: Prediction of the adulterant level in milk per adulterant type from ATR-MIR 
and NIR spectroscopy.  

Notes: HRP = hydrolysed rice protein; HWP = hydrolysed wheat protein; RMSE = root 

mean square error; R2 = coefficient of determination; SD = standard deviation; 

ncomp = number of components; N = number of samples; 
 

More factors were likely to be included in the final models using NIR than those 
using ATR-MIR (Tables 6-7 and 6-8), which may suggest that the overlapped 
overtone and combination bands in NIR spectra need more dimensional analysis to 
extract effective information. Globally similar prediction performances were observed 
with NIR and ATR-MIR, although some differences appears (Table 6-8). The global 
content of protein adulterant (i.e., without water-adulterated samples) was better 

    Calibration Cross-validation Validation 

   ncom
p 

N R²c RMSEC R²cv RMSEcv N R²p RMSEP 

A
T

R
-M

IR
 

Without 
water 

Mean 8 125 0.94 2.66 0.88 3.85 62 0.87 4.10 

SD 0 0 0.01 0.27 0.05 0.69 0 0.05 0.85 

HRP 
Mean 7 30 0.99 1.09 0.97 2.33 15 0.97 2.55 

SD 1 0 0.01 0.61 0.01 0.40 0 0.01 0.57 

HWP 
Mean 10 30 1.00 0.34 0.93 2.30 15 0.95 3.80 

SD 3 0 0.00 0.52 0.04 0.09 0 0.03 2.30 

Urea 
Mean 9 29 1.00 0.07 0.97 0.46 15 0.98 0.41 

SD 2 1 0.00 0.07 0.01 0.06 1 0.01 0.10 

Water 
Mean 6 30 0.65 8.68 0.69 14.78 15 0.33 15.91 

SD 3 0 0.30 6.12 0.05 1.88 0 0.16 3.23 

Whey 
Mean 8 30 0.97 1.51 0.74 5.64 14 0.40 9.10 

SD 2 1 0.02 0.92 0.18 1.89 1 0.28 1.85 

F
ir

st
 d

er
iv

at
iv

e 
N

IR
 

Without 
water 

Mean 15 119 0.99 0.66 0.99 0.93 57 0.97 1.95 

SD 7 5 0.01 0.75 0.02 0.48 5 0.02 0.23 

HRP  
Mean 11 25 1.00 0.05 0.99 0.67 11 1.00 1.47 

SD 1 3 0.00 0.02 0.00 0.00 3 0.00 0.15 

HWP 
Mean 11 29 0.98 0.89 0.99 1.33 13 0.88 3.70 

SD 8 2 0.04 1.47 0.02 1.19 2 0.07 1.17 

Urea 
Mean 15 30 1.00 0.00 0.99 0.17 14 0.97 0.49 

SD 2 1 0.00 0.00 0.01 0.07 1 0.03 0.30 

Water 
Mean 13 30 1.00 0.52 0.82 7.25 14 0.41 21.19 

SD 4 1 0.00 0.45 0.06 1.20 1 0.19 9.76 

Whey 
Mean 7 30 1.00 0.37 1.00 0.81 15 0.97 2.10 

SD 2 0 0.00 0.16 0.00 0.07 0 0.02 0.23 
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predicted using NIR than ATR-MIR (validation R²p = 0.97 vs. 0.87 with a RMSEP of 
1.95 vs. 4.11 g/L), but the main difference appeared for the prediction of whey levels 
in spiked milk. Validation R² for the whey level was equal to 0.40 for ATR-MIR and 
0.97 for NIR, with a validation RMSE of 9.10 and 2.10 g/L, respectively. In other 
studies, combined with PLS regression, well performed quantifications of whey level 
in adulterated samples using ATR-MIR (validation R2 = 0.96-0.98, SEP = 1.18-
2.33 g/L) (Santos et al., 2013a, Santos et al., 2013b) and NIR (validation R2 = 0.999, 
RMSE = 0.244-0.802) (Kasemsumran et al., 2007) have been reported. 

For NIR, a slightly better prediction of HRP levels (validation R2p = 1.00, RMSEP 
= 1.47 g/L) was obtained for HWP levels (R2p = 0.88, SEP = 3.70 g/L). Similar 
performances of ATR-MIR prediction for HRP (R2p = 0.97, RMSEP = 2.55 g/L) and 
HWP (R2p = 0.95, RMSEP = 3.80 g/L) levels in adulterated samples were obtained 
by PLS regression models. Prediction accuracy of plant protein level in this study is 
better than the prediction (R2p = 0.98, RMSEP = 43.6 g/L) for soy milk levels in cow-
buffalo milk found using multi-linear regressions with ATR-MIR spectra (Jaiswal et 
al., 2015). 

Both spectroscopies showed excellent performance in predicting urea levels in 
adulterated milk, and this is close to the accuracy of ATR-MIR prediction of urea 
levels using spectra data for dried sample film with a PLS regression model 
(validation R2 = 0.98, SEP = 0.23-0.30 g/L) (Santos et al., 2013a, Santos et al., 2013b), 
and better than ATR-MIR prediction (validation R2 = 0.88, RMSE = 0.24 g/L) of urea 
levels in fluid milk using PLS regression models (Jha et al., 2015) in previous reports.  

In our study, ATR-MIR and NIR quantified water levels in samples with poor 
accuracy (validation R² around 0.40, Table 8). However, another published paper has 
demonstrated the ability of NIR to predict on water adulteration (1.00-97.00% v/v, 
around 10-970 g/L) in milk, with validation R2 of 0.992-0.997 and RMSE of 2.159-
3.702 (Kasemsumran et al., 2007). Finally, both spectroscopies in this study showed 
their favorable performance (validation R2p = 0.87-0.98, SEP = 1.95-4.10 g/L) for 
total protein adulterants levels prediction in samples. 

Consequently, some differences in terms of quantitative or qualitative performances 
appeared in comparison to previously published papers. A potential explanation could 
be the use of individual cow milks as control milk. In the other studies, the control 
milks used are often pooled commercial (Santos et al., 2013b) or raw milks (Jaiswal 
et al., 2015), which leads a decrease in natural protein variability. The increase of 
natural protein as used in this study can interact in some infrared regions with the 
adulteration-based proteins, suggesting a lower ability to detect low adulterated 
samples. 

5. Conclusions 

This study explores the potential of ATR-MIR and NIR spectroscopy to detect 
adulteration of milk with protein or nitrogen-rich compounds, especially with 
hydrolysed plant protein. The classification model could not differentiate adulterated 
samples from control milk, probably due to the large variability in cow milk 
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composition. Meanwhile, an obvious effect of dilution on classification performance 
was observed. Low diluted samples (dilution percentage ≥ 12.5%) with HRP, HWP, 
and urea were classified by both spectroscopies. Compared with MIR, NIR spectra 
provided a more accurate quantification of HRP and whey, while MIR prediction of 
HWP and urea levels was better than NIR prediction. Moreover, both spectroscopies 
showed their good properties (validation R2 = 0.87-0.98, RMSE = 2.04-4.11 g/L) on 
the prediction of protein adulterants. However, a large variability of performance 
results was observed between training and validation sets suggesting the need to 
increase the number of individual cow milk samples used. 
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Previous chapters have depicted the detection of foreign protein, especially 
(hydrolyzed) plant protein in milk protein adulteration using two-dimensional 
electrophoresis, high performance liquid chromatography tandem mass spectrum, 
mid- and near- infrared spectroscopy. This chapter presented these methodologies in 
detail, discussed the procedure of these methods, compared different methods based 
on their advantages and limitations, and provided suggestions about the potential 
improvements in future studies. 
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1. Comparison of detection methods  

In order to guarantee milk quality, series of methodologies are used to detect foreign 
protein in dairy products. Classical routine analytical tests for protein measurements, 
such as Kjedahl and Dumas, are non-specific and do not distinguish foreign nitrogen 
from milk protein nitrogen (Moore et al., 2010). This represents a risk factor for the 
incidence of economic motivate adulteration (Everstine et al., 2013). To reduce the 
reliance on detection of total protein nitrogen, the United States Pharmacopeia 
Convention (USP) has encouraged the development of methodologies to detect 
economic motivate adulteration (Moore et al., 2010). Due to the uncertainty of the 
presence of adulterant in milk, untargeted detection would be preferable in practice 
(Lu et al., 2017); and combined with chemometrics, they allow to differentiate 
adulterated food against control food (Esslinger et al., 2014). In this thesis, two-
dimensional electrophoresis (2- DE), high performance liquid chromatography 
(HPLC) tandem mass spectroscopy (MS/MS), and near- and mid- infrared (NIR/MIR) 
spectroscopy were used to identify foreign protein or nitrogen compounds spiked in 
milk. Details for these methodologies were listed in Table 7-1.  

Table 7-1: Comparison of methodology used in this thesis 

 

Items 2-DE HPLC-MS/MS NIR/MIR 

Instrument 

The PROTEAN® 
i12TM first-dimension 
isoelectric focusing 
(IEF) system, Large 
format PROTEAN® II 
xi cells, GS800 
calibrated densitometer, 
from BIO-RAD 

Nano- HPLC coupled 
with Q Exactive HF 
Mass Spectrometry, 
from Thermo Scientific 

MPA FT-NIR 
spectrometer/ 
Tensor 27 FT-MIR 
spectrometer, from 
Bruker Optics 

Price of 
instrument 
(RMB, Yuan) 

350 000 3 000 000 230 000/450 000 

Procedures of 
each 
methodology 

Fat removal → protein 
concentration test → 
isoelectric focusing → 
reduction and 
alkylation →  SDS-
PAGE → staining → 
destaining → gel 
scanning → data 
analysis 

Centrifugation → lysis 
→ centrifugation → 
protein concentration 
test → reduction and 
alkylation → trypsin 
digestion → desalting 
and drying → HPLC 
separation → tandem 
MS detection → data 
analysis 

(Fat removal in 
Chapter 5) → 
spectral acquisition 
→ data export → 
data analysis 

    
Samples 
preparation 

2 steps before 
isoelectric focusing 

7 steps before HPLC 
separation 

Little or no 
separation 

Manual steps 
7 steps before data 
analysis 

7 steps before HPLC 
separation 

Steps before 
spectral acquisition 
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(Table 7-1 continued) 

 

1.1. 2-DE 

Electrophoresis is a powerful method for protein separation. Polyacrylamide gel 
electrophoresis (PAGE) and its modification are useful to identify and detect the 
protein adulteration (Moore et al., 2010). For example, 2-DE separates protein fraction 
with high resolution according to isoelectric point and molecular weight. In Chapter 
2, the identified protein fractions (above 35 kDa) have higher molecular weight than 
dominant milk protein (casein and whey protein, below 35 kDa), while these marked 
proteins shared the same isoelectric points region (pH 4.9-6.2) with milk protein. 
Therefore, 2-DE could separate those foreign proteins from milk protein based on 
their molecular weight, and the results were easy to identify the remarkable 
adulterants protein. However, the application of this electrophoresis is limited due to 
the use of special regent and its time-consuming and labour-intensive procedure for 
sample analysis. As presented in Table 7-1, some used regents (for instance, 

Items 2-DE HPLC-MS/MS NIR/MIR 

Toxic regent 
involved in 
operation 

Urea, acrylamide, 
thiourea, CHAPS, 
DTT, SDS, 
iodoacetamide 

Urea, DTT, 
iodoacetamide, 
acetonitrile, formic 
acid 

Chloroform for fat 
removal (Chapter 5) 
or none (Chapter 6) 

Data analysis 
Protein spots 
matching 

Raw files 
processing, data 
transformation and 
normalization, PCA 

Data transformation 
and normalization, 
removing of 
outliers, PCA, 
dataset splitting, 
PLS-DA, PLS 
regression, 
prediction of 
samples in 
validation set 

Special software 
used 

PDQuest 
Maxquant, 
Unscrambler 

R software 

Duration of 
measurements 

At least 2 days 2 hours 2-4 min 

Coefficient of 
variation (CV, %) 

3.2-55.7% for 
optical intensities of 
protein spots, with 
median value of 
12.7%. 

Median CV values 
of remarkable 
peptides intensities 
ranged from 0.684 to 
1.392% 

Prediction on milk 
composition varied, 
CV for prediction of 
fat, protein, protein, 
lactose, and total 
solids, were 24.93, 
3.58, 1.29, and 7.00, 
respectively. 

Detection limit (%, 
percentages of 
foreign protein in 
total protein) 

4% 0.5-2% 8% 
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dithiothreitol, iodoacetamide) were toxic and particular for molecular biology 
experiment, not common for routine milk laboratory. The whole procedure running 
(sample preparation and electrophoresis) costed at least 48 hours, and there is not an 
automatic equipment for this method currently. Technicians have to carry on 
isoelectric electrophoresis and SDS-PAGE separately and successively. The 
consecutive manual operation steps accumulated manual measurement error in the 
final results. So, high variation of optical intensities of remarkable protein points (CV 
ranged 3.2-55.7%) was observed in Chapter 2 and really influenced the 
discriminability of this method, which resulted in poor reproducibility of this method. 
In addition, the detection limits of this method on adulterated plant protein (4%, in 
Chapter 2) or milk protein (1%; (Yang et al., 2014) were higher than immunological 
assays (0.5%; Table 1-2). However, the low detection limit and the poor 
reproducibility of 2-DE observed in this thesis could be likely improved by the 
application of two-dimensional differential in-gel electrophoresis (2D-DIGE) and 
cyanine dyes (Issaq and Veenstra, 2008) in further study. 

1.2. HPLC-MS/MS 

Compared with electrophoresis, LC-MS is more often used in component 
identification and adulteration detection in food commodities (Lohumi et al., 2015). 
HPLC completes the separation of compounds according to three primary 
characteristics: polarity, electric charge, and molecular size (Danezis et al., 2016). Due 
to the complexity of samples and high demand of foodstuff analysis, high resolution 
LC, such as HPLC-MS/MS, was employed to identify food authentication.   

Compared with 2-DE, HPLC-MS/MS had a more complicated sample preparation, 
including lysis, reduction and alkylation, trypsin digestion, as presented in Table 7-1, 
and also involved expensive (trypsin) and toxic regents (DTT and iodoacetamide). 
This process is a little labor-intensive, there are 7 steps to complete by technicians 
before sample boarding, and these toxic regents are not so friendly to healthy of 
operators and environment. Whereas, unlike 2-DE, automated sampling and 
measurements of HPLC-MS/MS released technicians from operation, and this 
automated operation minimized the influence of manual operation on the final results, 
therefore, good reproducibility was observed on measurements of HPLC, with CV of 
remarkable peptides intensities ranged 0.68-1.39%. The well-developed procedure of 
HPLC-MS/MS ask operators not only to know sample preparation well, but also to 
set instrument parameters and process the results using special software. A qualified 
operator needs too much training about methodology, instrument, and software before 
real operation. The whole HPLC-MS/MS running for one sample measurement last 2 
hours, and this maybe a little long for continuous samples detection. In recent studies, 
fingerprints of flow injection mass spectrometry (FIMS) with chemometrics allowed 
the detection of soybean, pea, and whey protein in milk at the level of 0.5%. The 
prediction accuracy of super vector model for adulterated and unadulterated samples 
were 92.86 and 86.75% respectively. More important, FIMS could complete the 
analysis of per sample within 1 min, without trypsin hydrolysis and chromatographic 
separation (Du et al., 2018). 
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1.3. Infrared spectroscopy 

Due to their time-consuming and labour-intensive characteristic, 2-DE and HPLC-
MS/MS do not allow the analysis of a large number of samples as asked for a routine 
monitoring of the protein adulteration in milk. Therefore, there is a necessity to 
develop a rapid and cheap method to detect protein adulteration in milk. The MIR 
spectrometry is largely used in milk laboratories for the routine prediction of the main 
milk components such as fat, protein, lactose and urea. Although NIR is less largely 
used by milk laboratories compared to MIR, this technic can be interesting to detect 
protein adulteration with relatively low water absorption (Rodriguez-Saona and 
Allendorf, 2011). Both MIR and NIR were used to detect foreign protein adulterated 
in raw milk in Chapter 6 of this thesis. 

As presented in Table 7-1, with little or without sample preparation, MIR or NIR 
cost only 2-4 min for one sample running, less than 2-DE and HPLC-MS/MS, and 
almost no regent involved in measurements, so friendly to technicians and 
environment. Most of work for this methodology concentrated on data analysis, such 
as data transformation, model development, and model validation. Corresponding 
chemometrics may be difficult for some routine users. Another potential limitation for 
IR is low sensibility to low concentration of adulterants, as presented in Character 6. 
Some instrument and sample factors affected model performance are discussed as 
followed. 

Different measurement modes affect the performance of IR method. NIR used in 
Chapter 6 was in transmission mode and sensitive to quality changes (Lohumi et al., 
2015). Different measurement modes, such as ATR, diffuse reflectance, high 
throughput transmission (HTT), and transmission cell, are available for MIR 
spectroscopy, and ATR-MIR used in Chapter 5 and 6, is the most widely used methods 
for food authenticity and adulteration (Lohumi et al., 2015). In addition, development 
and application of ATR is expected to reduce intense water absorption for MIR (Ellis 
et al., 2012). 

Sample composition variation is a crucial factor for the efficiency of spectroscopy 
model. First, major spectral difference between adulterated samples are related with 
adulterant types and protein contents, such as absorption of adulterants corresponding 
to protein contents of samples, as well as additional peaks of samples with urea in 
Figure 6-1. Second, the non-targeted compounds (such as fat and water) in samples 
were also associated with model performance. In Chapter 5, skimmed samples were 
prepared, and ATR-MIR combined with PLS-DA would discriminate almost all 
adulterated samples according to adulterants types (Table 5-2), detection limit for HSP 
and HWP were 1.875 g/L (Table 5-3); however, there was only one mixed commercial 
milk as control sample, which means the effect of fat absorption and sample variation 
on spectral data were not considered in this part. When 9 raw milks were designed as 
control milks (Chapter 6), this methodology was unable to separate adulterated 
samples from authentic milk. Variance of raw milk composition (CV ranged from 1.29% 
for lactose to 24.93% for fat) was likely the main reason for the poor performance 
observed for the classification model on HWP and HRP on 3.13% in Table 6-6. 
Sample inhomogeneity, particle size, and preferential adsorption of fat would 
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contribute to a lower accuracy of ATR-MIR (Karoui et al., 2006). MIR spectroscopy 
achieved a better prediction on fat for homogenized samples (R2 > 0.92) than for raw 
milks (R2 < 0.70) (Aernouts et al., 2011).  

Model optimization and validation are also important for the development of 
spectroscopic methods. In Chapter 6, raw ATR-MIR and first derivative NIR data have 
shown their better performance than other data transformation. Cross-validation after 
dataset splitting were often applied in other report (Santos et al., 2013) on 
spectroscopic methods, and only parameters for one model were presented. In order 
to observe the effect of raw milk variation on model performance, a second validation 
in terms of sampling date was brought into Chapter 6. In contrast, absence of external 
validation in Chapter 5 provided not generalized results. 

1.4. Comparison of test methods 

Table 7-2: Advantages and limitations of test methods 

 

In a previous literature review on the technology of food authentication, Danezis et 
al. (2016) found that, the most extensive application of molecular techniques, such as 
2-DE, was on determination of species and botanical origin, while LC and IR 
spectroscopy mainly on geographic traceability and adulteration. MS has become a 
frontline detection method on food adulteration with high sensitivity, selectivity, and 
throughput, especially coupled with LC (Danezis et al., 2016). Based on details about 
the methodologies presented in Table 7-1, advantages and limitations for each method 
are listed in Table 7-2. 

Duration of sample running and sample treatment: As non-invasive detection 
methodology, IR spectroscopy is able to complete one sample scanning in a few 
seconds or minutes, without little or no sample preparation. Therefore, IR 
spectroscopy is more suitable for online or at line process control (Kamal and Karoui, 
2015). In contrast, as laboratory methodology, LC separate sample compounds based 
on chemical characteristics after sample preparation, which would cost hours. For 
protein electrophoresis applied in Chapter 2, the whole procedure running cost 2-3 
days, and there are preparation steps to extract protein before electrophoresis. 

Methods Advantages Limitations 

2-DE 
High resolution, easy data 
processing 

Toxic regent, time-consuming, labour-
intensive, varied optical intensities, 
manual steps 

HPLC-
MS/MS 

High accuracy, precision, and 
stability, low detection limit, 
considered as official methods 

Expensive instrument, skilled operators, 
special software to process data, toxic 
regent, sample preparation 

MIR/NIR 

Rapid, non-invasive, little 
sample preparation, rich 
information, no pollution, 
easy to operate 

Non-targeted component interference, 
low accuracy, low sensibility, spectral 
technology (mode), model validation 
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Accuracy, stability, and detection limit: As physico-chemical methods, LC 
methods are often considered as reference ones. HPLC often showed excellent 
performance on adulterant quantification in milk, as reported by (Krusa et al., 2000). 
In Chapter 3, low median CV (0.68-1.39%) of remarkable peptides intensities showed 
good reproducibility of this method.  And low amounts (0.5%) of soy protein and 
HWP in total protein would be detected. 2-DE had a large CV variation (3.2-55.7%) 
of optical intensities for protein spots. And this method is only available on detection 
above 4% plant protein in total protein. Moreover, electrophoresis fingerprint is more 
qualitative than quantitative analysis technology, different from spectrum and 
chromatographic fingerprint (Zhang et al., 2011). In Chapter 6, IR methods failed to 
recognize adulteration below 6.25%. Spectrum variability between samples caused by 
milk composition difference may cover the real spectral difference induced by 
adulterants. In classification model, samples with HWP and HRP were classified 
correctly at dilution percentage above 6.25% in validation on sampling date, which 
means the calculated detection limit for ATR-MIR in Chapter 6 was about 8% of 
hydrolysed plant protein in total protein.  

Data processing: This step is simple for electrophoresis. In Chapter 2, major 
differences of protein spots on gel were visible by naked eye. Recognition of some 
faint points may need help from special software. For chromatographic technology, 
matching of profile peaks, calculation of areas, data extraction, and further statistical 
analysis must be completed by expert on professional software with computers, like 
MaxQuant and Unscrambler used in Chapter 3.  Spectral data analysis is complex for 
spectroscopy technology. Model validation is involved in chemometric approach, and 
these really rely on the chosen spectral technique and analysis methods, as well as 
proficient personnel (Lohumi et al., 2015). As mentioned in Chapter 5 and 6, 
processed spectral data by scatter correction or derivation, combined with PLS 
discrimination analysis and regression, classification model on adulterants types and 
quantification model on adulterants levels were developed respectively.  

Cost and labour-consuming: As shown in Table 7-1, the most expensive 
instrument must be liquid chromatograph, then optical spectrometer and 
electrophoresis apparatus. And regents used LC and electrophoresis are also not cheap. 
In the view of labor-consuming, several manual steps involved in electrophoresis are 
not so friendly to technicians, especially for continuous measurements. For 
chromatogram, sample preparation before boarding need manual operation. With little 
or without sample treatments before measurements, procedure of IR is the simplest in 
the discussed three technologies.  

2. Economic gain of adulterated samples in Chapter 6 

To ensure a high quality of milk, the contents of protein and fat are taken into 
account by the dairy sector to fix the milk price, as showed in the formula (1; this 
formula is based on milk price fixed for a Belgian farm on October 2018). Therefore, 
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to increase their profitability, the temptation is high for some dairy farmers to elevate 
milk protein content by adulteration as much as possible.  

Price = (Fat% × 318.62 + Protein% × 591.72)/100 ………. (1) 

 
 Figure 7-1: Price of samples in Chapter 6. Red dotted line indicated the price of control 

milk 

 

For example, based on the contents of fat and protein predicted by NIR for the 
adulterated samples used in Chapter 6, unit prices for adulterated milk are presented 
in Figure 7-1. Compared with control milks (29.73 euro/100 L), higher prices were 
observed on samples adulterated with HRP, HWP, and whey, ranged 31.35-44.88, 
31.52-43.26, and 31.27-43.06 euro/100 L, while similar prices for samples with urea 
(30.59-28.89 euro/100 L) or water (30.02-28.51 euro/100 L). As showed previously 
in Table 6-1, the addition of urea in milk did not raise the protein contents predicted 
by MPA, and protein contents for sample adulterated with water decreased. Therefore, 
there is no profit to spike the milk with urea and water based on the tested levels. In 
contrast, the protein contents of samples with HRP, HWP, and whey increased as 
adulterants level increased. As a result, prices of samples (similar fat contents) with 
HRP, HWP, and whey also increased with adulterants levels. Therefore, it is possible 
for samples with HRP, HWP, and whey to gain profit, of course, with low adulterants 
cost, whereas, addition of urea and water were proved to be useless to raise MPA 
prediction in this study. Nevertheless, developed ATR-MIR in Chapter 6 could 
identify samples with HRP above 5 g/L and HWP above 3.75 g/L, and NIR could 
recognize samples with whey above 7.5 g/L. 
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3. Combined methodologies for adulteration control 

As mentioned above, LC and IR are often used to detect food adulteration. LC is 
powerful and robust, but not so favourable facing fast work flow and large number of 
samples. In contrast, rapid IR test is more and more popular on massive products 
monitoring, especially with the development of handheld and potable equipment. 
Combined with chemometrics, spectroscopy technique is suitable for samples 
screening. However, as secondary analytical methods, spectroscopies require accurate 
chemical and physical analyses as reference methods (Lohumi et al., 2015). Therefore, 
solid chemical methods based on LC should back up spectroscopy technologies. 
Suspicious samples from spectroscopy test should be submitted to confirmatory test 
in laboratory using LC. In addition, with the database contained spectroscopy data and 
reference values, not only the prediction of unknow samples using spectroscopy is 
realized, but the common equations across adulteration database in different 
instruments is possible after standardization of these instruments, as reported by 
Grelet et al. (2015). 

4. Conclusions and Perspectives 

This thesis tested and compared some methodologies on the detection of foreign 
protein added in bovine milk, especially (hydrolysed) plant protein. As a common 
proteomic technology, 2-DE has been proved to be an effective method to identify 
foreign protein in fluid milk by separation, with a detection limit of 4% of plant protein 
in total protein. Unfortunately, many manual steps are involved in this methodology. 
SDS-PAGE failed to detect the hydrolysed plant protein in fluid milk (i.e., no apparent 
protein lines in gels), but it turned out that high speed centrifugation (20 000 g× 60 
min) reduce the cover effect of milk protein on minor foreign protein. Combined with 
PCA, peptides fingerprint revealed by HPLC-MS/MS differentiated control milk from 
adulterated samples, with a detection limit ranged from 0.5 to 2% of plant protein in 
total protein. However, identification of separated peptides using MS disabled to 
detect rice protein in samples with HRP. Coupled with PLS-DA, ATR-MIR spectra of 
skimmed samples could separate samples according to adulterants types (HRP, HSP, 
HWP, and whey) in cross-validation, with specificity of 87.5 - 100% and sensitivity 
of 80-100%. And well performed prediction on adulterants levels were also realized 
in cross- validation (R2 = 0.95, RMSE = 2.25 g/L of full cross-validation). Moreover, 
combined with non-protein nitrogen (NPN) content in normal milk and predicted 
estimated NPN difference of adulterated samples from control milk, is was possible 
to classify samples adulterated with HRP, HSP, or HWP ≥ 3.8 g/L as adulterated 
samples. When variability of raw milk composition and external validation were 
considered, the classification model (PLS-DA) was not so successful to separate 
control milk form samples adulterated with HWP, HRP, whey, urea, and water, 
however, ATR-MIR showed better discriminability on HRP and HWP above 6.25%, 
while NIR showed its special discriminability on whey above 12.5%. And both ATR-
MIR and NIR recognized urea adulteration in milk above 12.5%. Succeeding PLS 
regression model suggested better ATR-MIR and NIR prediction on HRP, HWP, and 
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urea, as well as foreign adulterants (without water) level in samples (validation R2 of 
0.87-0.99), and NIR presented better prediction on whey level in samples (validation 
R2 = 0.97).   

Based on the results in this thesis, the following points are recommended to improve 
the detection of foreign protein in milk adulteration: 

1) As the potential methods recommended by official department, simplicity of 
procedures for LC or molecular method should be considered, for time- and 
labor- consuming, and too many manual steps involved. 

2) Detection on hydrolyzed plant protein in milk should be developed. High 
hydrolysis degree of adulterants disturbs the identification using MS. A 
reliable method targeted on the characteristic and compounds of hydrolyzed 
plant protein may improve its detection. 

3) As the most prospective methods, the effect of sample matrix on IR should be 
explored, although this method needs little sample preparation. In addition, 
simple and rapid removal of untargeted compounds before spectra acquisition 
may improve the efficiency of spectroscopy analysis. 
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In this chapter, full text of “Research advances in milk production and detection by 
infrared spectroscopy” is presented. The infrared spectroscopy methodology is 
extensively applied to each link in the chain of milk production, from genetic selection 
of dairy cows to the assessment of milk quality. Many milk composition contents have 
been predicted by infrared spectroscopy, including fat, protein, lactose, and mineral 
elements. Infrared spectroscopy was also used to evaluate milk coagulation properties. 
Detection of adulterants in milk using spectroscopy methods has attracted great 
attention from many researchers. Genetic evaluation of spectral data was reported by 
recent studies, and a dietary effect on milk spectra was also observed. Moreover, milk 
spectra were found to be related to the energy status of dairy cows.   

From Yang, J., N. Zheng, Y. Yang, Y. Zhang, and S. Li. 2016. Research 
advances in milk production and detection by infrared spectroscopy. 
Transactions of the Chinese Society of Agricultural Engineering, 32(17): 1-11 
(in Chinese). 
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Abstract  

Infrared spectroscopy (IR) can be used to determine the components in complexes. 
Instruments based on the Fourier transform have improved the accuracy and speed of 
IR analysis. This methodology is extensively applied to each aspect of milk 
production. Fat and protein contents in milk vary for different dairy farms, and many 
factors affecting milk quality contribute to the final acquisition price of raw milk. The 
determination of milk composition using IR provides a quick and comprehensive 
evaluation of milk quality. Unknown and undeclared adulterants in milk are a serious 
threat to consumers’ health. Qualitative and quantitative analysis models provide a 
convenient method for detecting milk adulteration, resulting from spectrum variations 
due to these adulterants. Milk traits related to cows’ health and robustness are very 
important for dairy farm management. Diagnosis of ketoacidosis and body energy 
status using IR instruments is helpful for selective breeding in dairy farms. This paper 
reviews the recent literature to evaluate the general trends in infrared spectroscopy 
applications for milk production. On the basis of introducing data processing and 
model building, this paper presents a review of the overseas and domestic literature 
on the evaluation of milk composition and milk coagulation properties using IR, 
especially for milk protein fractions and fatty acid composition. We compared the 
model performance for optical spectroscopy from different reports. The effect of the 
reference methods, sample size, and the units of model parameters were discussed in 
particular. Moreover, IR methods were found to be efficient for phenotype assessment 
and genetic selection based on these models. The variances in absorption on IR caused 
by adulterants not only indicated the appearance of milk adulteration, but also 
revealed the difference between cow milk and soy milk. Milk spectra were proven to 
be heritable in specified wavelengths, while other bands varied with different 
environmental factors. Many reports confirmed the correlation between cows’ feed 
and milk optical characteristics. Although non-negligible random error and data 
variability existed in sampling, IR reflected the energy status of dairy cows with 
moderate accuracy. Mid-IR has been also studied as a potential tool to predict several 
milk traits related to cow health concerns, such as ketone bodies, which were closely 
related to cow fertility and milk production. IR was also used to predict methane 
emissions from cow digestive tracts. Emphasising the advantages of infrared 
spectroscopy analysis, we list potential challenges that exist in instrument setting, data 
collection, and model building. The objective of this paper is to highlight the 
application of infrared spectroscopy for milk traits, related to milk composition, 
quality, and dairy farm management. Considering the overall trends, we propose some 
future directions for research using this methodology in milk production, including 
prediction of trace nutrients, uniformity of reference methods and units, possibility of 
spectrum assessment, and diagnosis of disorders and fertility. With the future 
developments in these areas infrared methods would be more popular for milk 
composition determination, quality control, and dairy farm management, with high 
accuracy, efficiency, and convenience. 
Key words: infrared spectroscopy, milk traits, adulteration, dairy farm management  
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1. Introduction 

Compared with the time-consuming and labour-intensive laboratory reference 
methods, spectroscopy methods are becoming more popular for their rapid non-
destructive testing. Infrared spectra (IR) are produced by the absorption change of 
infrared radiation interacting with molecular groups. According to the wavelength 
region, the spectra can be classified into near-infrared (NIR, 14 000-4 000 cm-1), mid-
infrared (MIR, 4 000-400 cm-1), and far-infrared (FIR, 400-50 cm-1). NIR and MIR 
are often used to detect, characterise, and quantify chemical components. NIR is the 
result of overtone and combination bands associated with the fundamental vibrations 
of hydrogen-containing functional groups. The band signal is relatively weak and 
suitable for direct analysis of highly-absorbed or strongly-scattered samples without 
pretreatment (Arbuckle et al., 1996; Rodriguez-Saona and Allendorf, 2011). MIR is 
the absorption band that is caused by the fundamental vibration of specific functional 
groups and can be used to identify the structure of organic components. The 
fingerprint area contains various structural information such as fats and proteins, and 
the ratio of band intensity to functional group concentration can be used for 
quantitative analysis (Paré and Bélanger, 1997; Rodriguez-Saona and Allendorf, 
2011). Fourier transform (FT) devices improve the analysis speed and accuracy of 
spectroscopic techniques by resolving overlapping spectral bands, reducing 
bandwidth, and increasing peak height (Markovich and Pidgeon, 1991). Attenuated 
total reflectance (ATR) technology improves the accuracy of FTIR data, because 
multiple reflectance in samples increases the spectral response when compared with 
single-reflection crystals (Rodriguez-Saona and Allendorf, 2011). 

NIR is widely used for the quantification of components in liquid milk and milk 
powder (Wu et al., 2008; Aernouts et al., 2011a; Inácio et al., 2011; Huang et al., 
2014), identification of adulterants (Borin et al., 2006; Balabin and Smirnov, 2011; 
Huang et al., 2015), quality inspection (Al-Qadiri et al., 2008; Kong et al., 2013; 
Yazdanpanah and Langrish, 2013), and can be used for real-time on-line monitoring 
of raw milk production (Lyndgaard et al., 2012; Melfsen et al., 2012a; Santos et al., 
2013b). MIR can not only accurately determine the milk composition, but also predict 
the milk fatty acids (FAs), protein components, and milk agglutination properties (De 
Marchi et al., 2014), and can be used to evaluate the genetic parameters of production 
traits (Bastin et al., 2012; Dagnachew et al., 2013b; Leclercq et al., 2013; Gustavsson 
et al., 2014). Negative energy balance, reproductive disorders, and ketosis seriously 
affect the performance of dairy cows and are the key to farm management. IR 
combined with feed intake, fatty acid (FA) composition and body ketone levels can 
provide reference information for the cow's body status and improve the efficiency of 
dairy management (Bastin et al., 2012; McParland et al., 2015). Through algorithm 
optimisation, spectral data standardisation between different instruments could be 
achieved. It has been proposed that a large spectral database based on networks across 
regions could be established to improve farm management (Grelet et al., 2015). This 
article focuses on the literature on IR applications for dairy production traits, quality 
inspection, and farm management in recent years, and provides some directions for 
future studies using IR. 
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2. Data processing and model establishment 

Spectra are affected by many factors, such as the complexity and specificity of the 
absorption spectrum of chemical bonds, sample particle scattering and molecular 
interactions, variance in environmental conditions, differences in equipment 
performance, and so on. Band selection and data preprocessing are required to reduce 
the differences in data collection and improve model reliability (Zou et al., 2010; De 
Marchi et al., 2014). Common band selection methods include manual selection, 
multiple linear regression (MLR), successive projection algorithm (SPA), 
uninformative variable elimination (UVE), artificial neural networks (ANN), and 
genetic algorithms (GA). Data preprocessing methods mainly include scattering 
correction and its derivatives (Zou et al., 2010). 

Cross-validation for the whole data set would overestimate the predictive power of 
an IR model, therefore a small additional test set is necessary for external validation. 
The number of samples in the calibration set should account for 50% or 75% of the 
total data (Bittante et al., 2014). Qualitative models classify samples according to 
absorption peaks based on pattern recognition methods such as correlation, distance, 
and discriminant analysis (Roggo et al., 2007). Commonly used evaluation parameters 
include the false positive rate, false negative rate, sensitivity, specificity, etc. (de Roos 
et al., 2007; Botelho et al., 2015). The quantitative model is based on the regression 
model derived from the relationship between spectral data and dependent variables in 
the calibration set and predicts the dependent variable using spectral data in the 
validation set. The root-mean-square error of prediction (RMSEP), calculated from 
the predicted value and the measured value, or the standard error of prediction (SEP) 
and determination coefficient (R2) are used to evaluate the model performance (Zou 
et al., 2010). The ratio-performance deviation (RPD), range error ratio (RER), relative 
prediction error (RPE), and concordance correlation coefficient (CCC) are also 
important evaluation parameters (De Marchi et al., 2014). The qualitative analysis 
methods include the Mahalanobis distance, partial least squares discriminant analysis 
(PLS-DA), soft independent modelling of class analogy (SIMCA), and principal 
component analysis (PCA), etc., while the quantitative model commonly uses partial 
least square regression (PLSR), support vector machine (SVM), and ANN 
(Rodriguez-Saona and Allendorf, 2011; Domingo et al., 2014). 

3. Milk composition detection 

NIR predictions for milk composition are influenced by the spectral region, sample 
thickness, and measurement modes. The best accuracy for a NIR model was obtained 
with long wavelength bands (1 100 to 2 400 nm), 1 mm sample thickness, and the first 
derivative data transformation. For short wavelengths from 700 to 1 100 nm, the best 
accuracy for fat was obtained with a 10 mm sample, and for total protein with a 1 mm 
sample thickness. Lactose prediction was less affected by the sample thickness and 
spectral region (Tsenkova et al., 1999). NIR in reflectance mode resulted in accurate 
prediction of fat and crude protein in milk (R2 > 0.95) and poor lactose prediction 
(R2 < 0.75). In contrast, the transmittance spectra can achieve more accurate 
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predictions for these items, and the corresponding R2 of prediction were 0.99, 0.93, 
and 0.88 (Aernouts et al., 2011a). Moreover, some studies have shown that NIR (851-
1 649 nm) in diffusion reflectance has a similar or better prediction for fat, protein, 
and lactose in milk, compared with transmittance or transflectance mode (Melfsen et 
al., 2012b). NIR in diffusion reflectance not only accurately predicted fat, protein, and 
lactose in milk (R2 = 0.99, 0.98, and 0.92, respectively, SEP = 0.09, 0.05, and 0.06), 
but also achieved a good prediction for urea and somatic cell counts (logarithmic 
transformation), R2 of prediction was 0.82 and 0.85, and SEP was 19.3 mg/L and 0.18, 
respectively (Melfsen et al., 2012a). The presence of too many somatic cells in milk 
affected the NIR prediction for milk composition, so sorting of raw milk by somatic 
cell counts is necessary before dataset partition (Tsenkova et al., 2001). The prediction 
parameters for the main components in milk using NIR models from different studies 
are shown in Table 8-1, and NIR in diffuse reflectance is widely used. The good 
prediction performance of the NIR model makes it possible to assess fresh milk 
quality in real time, provide farmers with milk composition information and dairy 
cows’ physiological status, and thereby to improve the efficiency of milk production 
(Kawasaki et al., 2008). 

 
Table 8-1: Model performance of near-infrared spectroscopy for major milk components 

Spectral mode Fat Protein Lactose References 

R2 RMSEP R2 RMSEP R2 RMSEP 

Diffuse 
reflectance 

0.977 0.154 0.960 0.134 - - Wang et al. 
(2015) 

Transmittance 0.998 0.001 0.998 0.001 - - Zhao et al. 
(2014) 

Fourier 
transform 

0.995 0.136 0.975 0.195 - - Zhang 
(2010) 

Transflectance 0.903 0.225 0.959 0.048 0.902 0.044 Yang et al. 
(2013) 

Diffuse 
reflectance 

0.998 0.09 0.98 0.05 0.92 0.06 Melfsen et 
al. (2012a) 

Diffuse 
reflectance 

0.95 0.25 0.83 0.26 0.72 0.15 Kawasaki 
et al. 

(2008) 
Diffuse 
reflectance 
(Transmittance 
for lactose） 

0.997 0.047 0.959 0.099 0.883 0.115 Aernouts et 
al. (2011a) 

 
Pretreatment of milk samples, such as the addition of preservatives and 

homogenisation, would influence the MIR prediction. The addition of 0.02% 
potassium dichromate had little influence on the results of the MIR detection, whereas 
bromo-n-propylene glycol (0.02%) preserved milk had higher protein readings (a 
positive bias of about 0.01%) than potassium dichromate preserved or unpreserved 
milks. During cold preservation, uncorrected MIR readings for milk increased with 
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the storage time, the growth rate was higher for raw milk than for pasteurised milk, 
and the stability of the instrument zero was lower for raw milk than for pasteurised 
milk (Barbano et al., 2010). The prediction results for ATR on milk composition are 
better than those of high-throughput transmission spectra. Homogenisation was 
crucial to obtain a good fat prediction, but had little effect on the prediction of other 
components (Aernouts et al., 2011b). IR can predict not only the milk composition, 
but these spectroscopies can also detect the protein fraction, FA composition, and 
other trace substances in milk. 

3.1. Protein 

Determination of milk proteins related to the characteristic absorption of amide I 
and II bands at 1 700 to 1 500 cm-1, and phosphate groups bound to casein at 1 100 to 
1 060 cm-1, other milk components (fat and lactose), and protein particles would affect 
the prediction of the PLS model for milk proteins (Etzion et al., 2004). A suitable 
region selection algorithm, SIMPLe-to-use Interactive Self-modeling Mixture 
Analysis, combined with IR can quantitatively predict the secondary structure of the 
polypeptide chain, and the correlation coefficient of cross-validation between the 
predicted and measured values of the α-helix and β-sheet was 0.86-0.98 (Bogomolov 
and Hachey, 2007). MIR may not be ideal for predicting individual milk protein 
composition with high accuracy. The R2 of cross-validation (R2cv) of MIR prediction 
of casein (CN), αs1CN, αs2CN, βCN, κCN, and γCN (g/L milk) in milk were 0.77, 
0.66, 0.49, 0.53, 0.63, and 0.60, respectively, while the R2cv for whey protein, alpha 
lactalbumin, and beta lactoglobulin (g/L milk) were 0.61, 0.31, and 0.64, respectively 
(Bonfatti et al., 2011). Other studies have similar predictions of whey protein and its 
fractions (alpha lactalbumin, and beta lactoglobulin), and poor prediction of total and 
individual caseins, using raw MIR spectra (De Marchi et al., 2009a; Rutten et al., 
2011a), whereas there are some reports that predict the total CN with validation 
R2 > 0.90 (Luginbuhl, 2002). The difference between these models may be associated 
to the reference methods for protein determination used in these studies (De Marchi 
et al., 2014). The MIR prediction for milk protein composition can be used to estimate 
breeding values and improve protein composition on a genetic level (Rutten et al., 
2011a). FTIR combined with PLS can distinguish the milk produced by goats with 
two weak haploids from others, thereby selection of goats with high casein expression 
or screening for milk samples with high casein content is possible (Berget et al., 2010). 
FTIR prediction of β-LG genotypes showed a repeatability of 0.85, and it can improve 
the percentage of correctly predicted β-LG genotypes, in combination with pedigree 
information and derived genotypes (Rutten et al., 2011b).  

3.2. Fatty Acids Composition 

There are two absorption bands for milk fat in the MIR region, fat A at 5.73 μm and 
fat B at 3.48 μm, which involved the stretch of C=O and C–H, respectively (Biggs 
and McKenna, 1989). Fat B MIR predictions increased and fat A MIR prediction 
decreased relative to reference chemistry with increasing FA chain length. When MIR 
fat prediction of fat B was corrected according to unsaturation variation between 
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samples, fat B had a positive correlation with the FA chain length (correlation 
coefficient was 0.42-0.89); when the corrected ratio of fat B for unsaturation was 
45:55, fat A gave the best fit between MIR prediction and the reference (Kaylegian et 
al., 2009). Oleic acid and linoleic acid presented different spectra in the MIR region. 
Oleic acid has two characteristic peaks at 1 119 and 1 091 cm-1, while the 
characteristic peaks of linoleic acid appear at 1 048, 1102, and 1 121 cm-1 (Yang, 
2011). The IR prediction of milk FAs in different studies are shown in Tables 8-2, 
8- 3, and 8-4. Among unsaturated FAs, a better prediction accuracy for c9C18:1 is 
observed; meanwhile, the prediction accuracy for saturated FAs and monounsaturated 
FAs is greater than that of polyunsaturated FAs, which may be in line with individual 
and grouped FA concentration in milk (Soyeurt et al., 2006; Rutten et al., 2009; De 
Marchi et al., 2011). There are two ways of expressing FAs in milk, namely the 
concentration of FAs in milk (g/L milk or g/kg milk) and the FA content in fat 
(g/kg total FAs). The accuracy of MIR predictions expressed as the FA concentration 
are better than those of models expressed as FA content (Soyeurt et al., 2006; 
De Marchi et al., 2014), which is similar to the NIR prediction for liquid milk 
(Coppa et al., 2014). However, the comparison of prediction accuracy between MIR 
and NIR for FAs in oven-dried milk varied with FAs and expression. When expressed 
as g/kg of milk, the accuracy of NIR prediction was worse than MIR for almost all 
FAs. When expressed as g/100 g total FAs, MIR and NIR shared a similar prediction 
accuracy for the group of even-chain saturated FA, odd-chain FA, unsaturated FA, 
conjugated linoleic acid, n-3 FA, and c9C18:1/C16 ratio; while monounsaturated FA, 
n-6/n-3 ratio, polyunsaturated FA (PUFA), and n-6 FA were better predicted by NIR 
(Coppa et al., 2014). High levels of FAs in milk, such as even-chain FAs, could 
achieve good MIR prediction fitting with measured values, no matter the expression 
of FAs (Soyeurt et al., 2006). Compared with predictions for liquid milk, NIR 
quantification of milk FA was more accurate or similar for oven-dried milk 
(Coppa et al., 2010; Coppa et al., 2014), but the reliability decreased for thawed liquid 
milk (Coppa et al., 2014). MIR prediction was also used to estimate heritability and 
correlation of FAs in goat milk (Maroteau et al., 2014). Strong relationships between 
the sample size of calibration and validation R2, as well as strong genetic correlations 
were observed. As the calibration number increased, the variation range of the 
validation R2 and the genetic correlation coefficient gradually narrowed. When there 
were 1 000 samples in calibration, the genetic correlation changed within a range of 
0.1 (Rutten et al., 2010). 
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Table 8-2: Model prediction of infrared spectroscopy for milk fatty acids (saturated fatty acid) 

Sample 
size 

Unit C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C15:0 C16:0 C17:0 C18:0 References 

267 
g/L of 

cow milk 
- - 

0.74 
(0.07) 

0.73 
(0.19) 

0.75 
(0.25) 

0.77 
(0.6) 

0.63 
(0.07) 

0.70 
(1.59) 

0.56 
(0.03) 

0.65 
(0.75) 

De Marchi et 
al. (2011) 1 

600 
g/L of 

cow milk 
0.51 

(0.08) 
0.52 

(0.04) 
0.59 

(0.02) 
0.64 

(0.04) 
0.74 

(0.02) 
0.82 

(0.05) 
0.40 

(0.01) 
0.82 

(0.17) 
- 

0.69 
(0.13) Soyeurt et 

al. (2006) 2 
600 

g/kg of 
milk fat 

0.39 
(1.60) 

0.41 
(0.98) 

0.46 
(0.50) 

0.53 
(0.90) 

0.64 
(0.53) 

0.67 
(1.14) 

0.53 
(0.2) 

0.50 
(3.5) 

- 
0.09 

(2.77) 

517 
g/L of 

cow milk 
0.94 

(0.01) 
0.97 

(0.00) 
0.97 

(0.00) 
0.96 

(0.01) 
0.96 

(0.01) 
0.97 

(0.02) 
- 

0.95 
(0.08) 

0.89 
(0.00) 

0.90 
(0.05) 

Soyeurt et 
al. (2011) 2 

3 660 
g/L of 

cow milk 
0.91 

(0.10) 
0.96 

(0.20) 
0.94 

(0.50) 
0.92 

(0.10) 
0.85 

(0.30) 
0.94 
(0.3) 

- 
0.94 

(0.10) 
- 

0.82 
(0.70) Rutten et al. 

(2009) 3 
3 660 

g/kg of 
milk fat 

0.55 
(0.00) 

0.73 
(0.30) 

0.73 
(0.60) 

0.75 
(0.20) 

0.68 
(0.30) 

0.73 
(0.3) 

- 
0.71 

(0.00) 
- 

0.51(1.
20) 

238-241a 
g/L of 

cow milk 
0.93 

(0.006) 
0.96 

(0.003) 
0.96 

(0.002) 
0.95 

(0.007) 
0.95 

(0.008) 
0.94 

(0.024) 
- 

0.94 
(0.066) 

- 
0.84 

(0.041) 

Ferrand-
Calmels et 
al. (2014) 4 

98-104b 
g/L of 

cow milk 
0.61 

(0.01) 
0.86 

(0.004) 
0.89 

(0.003) 
0.85 

(0.011) 
0.82 

(0.018) 
0.84 

(0.03) 
- 

0.82 
(0.111) 

- 
0.49 

(0.054) 

135-140 
g/L of 
sheep 
milk 

0.93 
(0.01) 

0.97 
(0.005) 

0.96 
(0.008) 

0.93 
(0.041) 

0.97 
(0.019) 

0.96 
(0.045) 

- 
0.94 

(0.091) 
- 

0.83 
(0.061) 

215-229 
g/L of 

goat milk 
0.96 

(0.004) 
0.95 

(0.004) 
0.97 

(0.004) 
0.98 

(0.013) 
0.92 

(0.013) 
0.93 

(0.023) 
- 

0.96 
(0.042) 

- 
0.86 

(0.034) 

 

 



8. Appendix: Research advances in milk production and detection by infrared spectroscopy 

136 

 

Table 8-2 continued 

Sample 
size 

Unit C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C15:0 C16:0 C17:0 C18:0 References 

154 
g/L of 

cow milk 
0.87 

(0.009) 
0.97 

(0.003) 
0.97 

(0.002) 
0.95 

(0.008) 
0.95 

(0.011) 
0.83 

(0.040) 
0,67 

(0.005) 
0.91 

(0.087) 
0.74 

(0.002) 
0.75 

(0.048) 
Ferrand et 
al. (2011) 2 

1 167-
1 187 

g/L of 
cow milk 

0.93 
(0.008) 

0.96 
(0.005) 

0.96 
(0.003) 

0.96 
(0.008) 

0.95 
(0.01) 

0.95 
(0.028) 

- 
0.97 

(0.068) 
0.89 

(0.003) 
0.90 

(0.045) 

Maurice-
Van 

Eijndhoven 
et al. (2013) 

2 

279-344 
g/kg of 
total FA 

0.66 
(0.42) 

0.88 
(0.21) 

0.90 
(0.13) 

0.91 
(0.34) 

0.89 
(0.41) 

0.88 
(1.07) 

0.53 
(0.14) 

0.91 
(2.20) 

0.65 
(0.08) 

0.80 
(1.31) 

Coppa et al. 
(2010) 5 

Notes: Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross-

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5) 

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from MilkoScan FT6000, b) data from Bentley FTS  
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Table 8-3: Model prediction of infrared spectroscopy for milk fatty acids (unsaturated fatty acids and fatty acid groups) 

Sample 
size 

Unit c9C14:1 c9C16:1 c9C18:1 c11C18:1 
c9c12C1

8:2 
C18:3n-3 

c9t11C18
:2 

References 

267 
g/L of 

cow milk 
0.68 

(0.08) 
0.60 

(0.11) 
0.73 

(1.13) 
0.59 

(0.04) 
- 

0.51 
(0.04) 

0.58 
(0.04) 

De Marchi 
et al. 

(2011)1 

600 
g/L of 

cow milk 
0.07 

(0.01) 
0.65 

(0.02) 
- - 

0.62 
(0.02) 

0.14 
(0.01) 

0.07 
(0.02) (Soyeurt et 

al., 2006) 2 
600 

g/kg of 
milk fat 

0.23 
(0.28) 

0.37 
(0.37) 

- - 
0.11 

(0.44) 
0.20 

(0.20) 
0.34 

(0.37) 

517 
g/L of 

cow milk 
0.68 

(0.01) 
0.71 

(0.01) 
0.97 

(0.05) 
- 

0.74 
(0.01) 

0.71 
(0.01) 

0.74 
(0.01) 

Soyeurt et 
al. (2011) 2 

3 660 
g/L of 

cow milk 
- - 

0.92 
(0.30) 

0.27 
(0.10) 

0.36 
(0.90) 

0.45 
(3.30) 

0.58 
(1.00) Rutten et al. 

(2009) 3 
3 660 

g/kg of 
milk fat 

- - 
0.84 

(0.50) 
0.22 

(0.40) 
0.28 

(0.60) 
0.38 

(2.80) 
0.56 

(1.10) 

238-241a 
g/L of 

cow milk 
- - 

0.96 
(0.039) 

- 
0.77 

(0.006) 
0.85 

(0.004) 
0.82 

(0.003) 

Ferrand-
Calmels et 
al. (2014) 4 

98-104b 
g/L of 

cow milk 
- - 

0.86 
(0.063) 

- 
0.75 

(0.006) 
0.81 

(0.003) 
0.64 

(0.003) 

135-140 
g/L of 

cow milk 
- - 

0.97 
(0.057) 

- 
0.49 

(0.012) 
0.74 

(0.007) 
0.91 

(0.011) 

215-229 
g/L of 

cow milk 
- - 

0.95 
(0.037) 

- 
0.89 

(0.007) 
0.79 

(0.003) 
0.71 

(0.003) 
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Table 8-3 continued 

Sample 
size 

Unit c9C14:1 c9C16:1 c9C18:1 c11C18:1 
c9c12C1

8:2 
C18:3n-3 

c9t11C18
:2 

References 

154 
g/L of 

cow milk 
- - - - 

0.76 
(0.006) 

0.85 
(0.003) 

0.66 
(0.004) 

Ferrand et 
al. (2011) 2 

1 167-
1 187 

g/L of 
cow milk 

0.78 
(0.007) 

0.78 
(0.011) 

- - - - - 

Maurice-
Van 

Eijndhoven 
et al. (2013) 

3 

279-344 
g/kg of 
total FA 

0.57 
(0.22) 

0.44 
(0.25) 

0.93 
(1.77) 

0.29 
(0.13) 

0.34 
(0.28) 

0.48 
(0.16) 

0.73 
(0.87) 

Coppa et al. 
(2010) 5 

Notes: Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross-

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5) 

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from MilkoScan FT6000, b) data from Bentley FTS  
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Table 8-4: Model prediction of infrared spectroscopy for milk fatty acids (fatty acid groups) 

Sample 
size 

Unit SCFA MCFA LCFA SFA MUFA PUFA UFA 
References 

267 
g/L of 

cow milk 
- 

0.73 
(2.66) 

0.76 
(1.94) 

0.72 
(2.97) 

0.74 
(1.39) 

0.64 
(0.22) 

0.71 
(1.57) 

De Marchi et al. 
(2011)1 

600 
g/L of 

cow milk 
- - - 

0.94 
(0.20) 

0.85 
(0.22) 

0.39 
(0.04) 

0.66 
(0.34) Soyeurt et al. (2006) 

2 
600 

g/kg of 
milk fat 

- - - 
0.63 

(3.75) 
0.52 

(4.10) 
0.10 

(0.74) 
0.63 

(3.75) 

517 
g/L of 

cow milk 
0.98 

(0.02) 
0.98 

(0.09) 
0.98 

(0.09) 
1.00 

(0.05) 
0.99 

(0.04) 
0.85 

(0.02) 
0.99 

(0.04) 
Soyeurt et al. (2011) 

2 

3 660 
g/L of 

cow milk 
0.95 

(0.00) 
0.97 

(0.00) 
- - - - - 

Rutten et al. (2009) 3 
3 660 

g/kg of 
milk fat 

0.82 
(0.30) 

0.77 
(0.10) 

- - - - - 

238-241a 
g/L of 

cow milk 
- - - 

1.00 
(0.035) 

0.97 
(0.037) 

0.76 
(0.01) 

0.98 
(0.038) 

Ferrand-Calmels et 
al. (2014) 4 

98-104b 
g/L of 

cow milk 
- - - 

0.96 
(0.09) 

0.89 
(0.068) 

0.60 
(0.01) 

0.83 
(0.10) 

135-140 
g/L of 

cow milk 
- - - 

1.00 
(0.049) 

0.99 
(0.044) 

0.96 
(0.015) 

0.99 
(0.048) 

215-229 
g/L of 

cow milk 
- - - 

0.99 
(0.043) 

0.96 
(0.037) 

0.92 
(0.01) 

0.97 
(0.039) 
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Table 8-4 continued 

Sample 
size 

Unit SCFA MCFA LCFA SFA MUFA PUFA UFA References 

154 
g/L of 

cow milk 
- - - 

0.99 
(0.045) 

0.97 
(0.044) 

0.62 
(0.010) 

- 
Ferrand et al. (2011) 

2 

1167-
1 187 

g/L of 
cow milk 

0.96 
(0.02) 

0.98 
(0.086) 

- 
1.00 

(0.051) 
- - - 

Maurice-Van 
Eijndhoven et al. 

(2013) 3 

279-344 
g/kg of 
total FA 

- - - 
0.97 

(1.94) 
0.97 

(1.81) 
0.85 

(0.87) 
0.97 

(2.23) 
Coppa et al. (2010) 5 

Notes: Parameters of models in this table are as follows: 1) correlation coefficient of cross-validation (RMSE), 2) determination coefficient of cross-

validation (SE), 3) determination coefficient of validation (bias/mean×100), 4) determination coefficient of validation (residual error), 5) 

determination coefficient of validation (prediction error); 1, 2, 3, 4 used the mid-infrared spectroscopy model; 5 used the near-infrared spectroscopy 

model, spectra scanned for oven dried milk 

a) data from milkoscan FT6000, b) data from Bentley FTS 

SCFA: short chain fatty acids; MCFA: medium chain fatty acids; LCFA: long chain fatty acids; SFA: saturated fatty acid; MUFA: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UFA: unsaturated fatty acids. 
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3.3. Other components 

MIR can be used to predict cheese production. Favourable predictions were 
observed for the yield of total solid cheese and fresh cheese, with R2cv of 0.95 and 
0.83, respectively, and promising results were obtained for the recovered protein, total 
solids, and energy (R2cv were 0.81, 0.86, and 0.76, respectively) (Ferragina et al., 
2013). Visible and short wavelength NIR diffuse reflectance spectroscopy (600-
1 000 nm) can be used to monitor spoilage of pasteurised skimmed milk by predicting 
the bacterial counts and pH of milk (R2cv = 0.99 and 0.99, SEP = 0.34 cfu/mL and 
0.031, respectively) (Al-Qadiri et al., 2008). FT-MIR can also accurately determine 
the titration acidity of milk, with R2cv of 0.96, RMSE of the cross validation set of 
0.72°T, and the RPD of 5.1 (Calamari et al., 2016). The pretreated NIR spectra 
combined multivariate regression model could predict the IgG level in colostrum, 
where the R2 of the calibration set and cross validation set were 0.95 and 0.94, 
respectively (Rivero et al., 2012). The potential for MIR prediction of lactoferrin was 
also confirmed by studies, with R2 of cross validation and external validation of 0.71 
and 0.60 (Soyeurt et al., 2012), and there was a positive correlation between predicted 
lactoferrin and somatic cell scores, but a negative genetic correlation between 
predicted lactoferrin and milk yield was also observed (Soyeurt et al., 2007). When 
MIR combined with atomic absorption spectrometry was used to predict major 
mineral elements Ca, K, Mg, Na, and P in milk, only Ca, Na, and P showed the 
sufficient R2cv (0.80, 0.70, and 0.79) for potential application. Finally, potential 
application of Ca and P equations were confirmed, whose R2 of external validation 
were 0.97 and 0.88 (Soyeurt et al., 2009). Accurate MIR prediction for Ca and P was 
confirmed by other studies, and the contents of these elements were closely related to 
the agglutination traits of milk (Toffanin et al., 2015). FT-MIR can predict tetracycline 
levels in milk, validation R2 reached 0.85-0.89, the detection range was 4-2 000 μg/kg, 
and SEP was from 89 to 387 μg/kg (Sivakesava and Irudayaraj, 2002). 

4. Evaluation of cheese making performance 

As the demand for and production of cheese continues to increase, prediction of 
milk’s agglutination performance and corresponding processing index becomes 
crucial. The experimental NIR data could fit the model of the whole coagulation 
process and the models of three stages of milk agglutination: κCN hydrolysis, protein 
micelle polymerisation, and colloid formation, very well (R2 > 0.99) (Lyndgaard et al., 
2012). The genetic correlation between NIR prediction and measured rennet 
coagulation time (RCT) and coagulation block hardness (a30) after 30 minutes of 
chymosin addition, was 0.97 and 0.92, respectively (Cecchinato et al., 2013), while 
the parameters of corresponding MIR prediction ranged from 0.91-0.96 and 0.71-0.87, 
respectively (Cecchinato et al., 2009). The R2 and the standard error of cross validation 
(SECV) for MIR models of milk agglutination indicators in different studies are 
shown in Table 8-5. Different reference methods, i.e. computerised renneting meter 
(CRM) and Formagraph (FOR), had a limited impact on R2cv of the RCT prediction 
model (0.63, 0.64, and 0.61- 0.76), and a medium impact on R2 of the a30 prediction 
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model (0.36, 0.35, and 0.50- 0.70). Three regions of MIR, 1 600 to 900 cm−1, 3 040 
to 1 700 cm−1, and 4 000 to 3 470 cm−1, can be used to improve the predictions of milk 
coagulation properties, titratable acidity, and pH, respectively. An approximate 
prediction was achieved by MIR models for titration acidity (R2 = 0.66), while 
predictions of RCT and pH can only differentiate high and low values (R2 range 0.59-
0.62) (De Marchi et al., 2009b). At the same time, there is no specific MIR information 
to distinguish coagulating milk from non-coagulating milk (De Marchi et al., 2013). 
In the external validation, the proportions of variance explained by prediction models 
for pH, RCT, and heat coagulation time were 71%, 55%, and 46%, respectively; all 
regression models could not be used to analyse traits (regression coefficients less than 
1 and RPD less than 2), but the CCC in external validation ranged from 0.63 (heat 
coagulation time) to 0.84 (pH), which means the MIR predictions can be used as a 
screening tool (Visentin et al., 2015). Addition of bronopol to cow’s milk can improve 
the prediction of the MIR model. R2cv for RCT models were 0.73, 0.55, and 0.41, 
0.29 after freezing for 4 d and 8 d with and without preservatives, respectively (Dal 
Zotto et al., 2008). When MIR predictions were used to evaluate genetic parameters 
of the milk coagulation index, it was found that the heritability of predicted RCT (0.26) 
and clot coagulation time (k20) (0.31) analysis was close to measured milk coagulation 
properties in the literature, while the heritability of predicted a30 was higher than 
reported measured values (Chessa et al., 2014). The repeatability of the MIR 
prediction of RCT and a30 was 92.8% and 95.8%, which was close to that of the FOR-
reference method (98.6 and 95.8%), but the reproducibility was only 67.3% and 
71.9%, respectively (Penasa et al., 2015). In another study, CRM was used as the 
reference method, whose repeatability for MIR prediction of RCT and a30 under 
different preserving conditions was 95.7% and 77.3%, respectively, and the 
reproducibility was 93.5% and 64.6%, respectively (Dal Zotto et al., 2008). This 
shows that different reference methods also have great influence on the MIR 
prediction of milk coagulation properties. 

 
Table 8-5: Milk coagulation properties found by infrared spectroscopy in different 

references 

Sample 
size 

Test 
methods 

RCT a30 k20 
References 

R2 SECV R2 SECV R2 SECV 

1049 CRM 0.63 2.36 0.36 6.86 - - (De Marchi et 
al., 2009b) 

79 CRM 0.64 2.16 0.35 6.82 - - (Dal Zotto et 
al., 2008) 

147-319 FOR 0.76 7.05 0.70 7.68 0.72 3.54 (De Marchi et 
al., 2013) 

250 FOR 0.65 2.77 0.68 5.11 0.49 1.81 (Chessa et al., 
2014) 

378-450 FOR 0.61 5.64 0.50 11.32 0.59 0.39 (Visentin et 
al., 2015) 

Notes: RCT: rennet coagulation time; a30: curd firmness 30 min after rennet addition; k20: curd 

firming time; CRM: computerised renneting meter (Polo Trade, Monselice, Italy); FOR: 
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Formagraph (Foss Electric A/S, Hillerød, Denmark); SECV: standard error of cross validation. 

5. Milk quality inspection  

Combined with SIMCA, short-wave NIR can distinguish milk stored for 30 hours 
at different temperatures (6, 21, and 37°C) from control samples, with an accuracy of 
about 90% (Al-Qadiri et al., 2008). FT-NIR combined with principal component 
analysis can accurately recognise different brands of milk with an accuracy of 100% 
(Jin et al., 2016). And coupled with Fisher's multi-class linear discriminant analysis, 
FT-NIR can identify milk adulteration with plant cream, vegetable protein, and starch, 
and the correct rate was achieved in more than 94% of cases (Li and Ding, 2010). 
Compared with 1 704-1 400 cm-1 in the MIR region, 4 800-4 200 cm-1 in NIR was 
more sensitive to urea adulterated milk; for unknown samples, the prediction R2 
reached 0.999, and RMSEP was 0.219 g/L (Yang et al., 2012). Based on changes in 
fat and protein contents in milk within 52 hours, NIR could indicate changes in milk 
quality (Shi, 2014). Based on the prediction of pH and acidity of goat milk, NIR can 
also be used to evaluate the freshness of goat milk (Chu, 2012). Since phenolic 
compounds were stable during fermentation and manufacturing processing, it was 
possible to discriminate probiotic milk samples according to the type of extract added 
and to evaluate the ‘stability’ of the product using NIR spectra combined with 
multivariate analysis (Aliakbarian et al., 2015). The adulterant levels in milk affected 
the discrimination of the NIR models, and the combination of non-linear pattern 
recognition and NIR could be useful for the identification and authentication of raw 
cow milks (Zhang et al., 2014). Nevertheless, some results indicated that the MIR 
system was superior to the NIR system in monitoring milk adulteration for additives 
such as water, whey protein, synthetic milk, synthetic urea, urea, and hydrogen 
peroxide (Santos et al., 2013b). A comprehensive index Q was constructed using milk 
indexes detected by a FTIR analyser, total solid-fat, ice-lactose, and lactose 
parameters were mainly included, and the addition of butter (> 0.058 g/100 g), gelatin 
hydrolysate (> 0.020 g/100 g), ammonium chloride (> 0.395 g/100 g), melamine 
(> 0.310 g/100 g), urea (> 0.443 g/100 g), sucrose and maltodextrin (> 0.024 g/100 g), 
whey (> 0.072 g/100 g), and milk powder and water (> 0.500 g/100 g) to milk could 
be recognised (Liu et al., 2015). FTIR could quantitatively detect the spiked level of 
baking soda, sodium citrate, and lactalbumin in milk, with all calibration R2 above 
0.91 and the detection limits of 0.015%, 0.017%, and 3.9%, respectively (Cassoli et 
al., 2011). ATR-MIR combined with PLS-DA was able to detect the presence of water, 
starch, sodium citrate, formaldehyde, and sucrose in milk, and the detection range was 
0.5% to 10.0% (w/v) (Botelho et al., 2015). ATR-MIR also detected whey protein, 
hydrogen peroxide, synthetic urine, urea, and synthetic milk adulterated milk, and 
SEP was 2.33, 0.06, 0.41, 0.30, and 0.014 g/L, respectively, and the detection limits 
were 7.5, 0.019, 0.78, 0.78, and 0.1 g/L respectively (Santos et al., 2013a). Combined 
with PLS, single-beam ATR-FTIR can quickly predict melamine content in milk with 
the limits of detection and quantitation 2.5 and 15 mg/kg, respectively (Jawaid et al., 
2013). If the correct data processing and multivariate algorithm was applied in the 
developed model, the detection limit of melamine for IR prediction could be less than 
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1 mg/kg, and a non-linear relationship was found between melamine content and IR 
response (Balabin and Smirnov, 2011; Domingo et al., 2014). 

MIR was also sensitive to adulteration between different milks. The ratio of cow’s 
milk, goat’s milk, and sheep’s milk in their mixture could be quantitatively predicted 
by FTIR. The prediction R2 for a binary mixture was 0.91-0.98, RMSEP was 3.95-
8.03%; the prediction R2 for a ternary mixture was 0.92-0.97, RMSEP ranged from 
3.36% to 6.40% (Nicolaou et al., 2010). A main peak located at 1745 cm-1, related to 
the degree of sugar carboxyl methyl esterification, was observed on the FTIR 
comparison between goat’s and sheep’s milk, and corresponding hierarchical and 
discriminant analyses showed goat samples could be separated from sheep samples 
(Pappas et al., 2008). Differences between soy milk and cow-buffalo milk, as well as 
their mixture at different ratios were centred on the MIR region at 1 680 to 1 058 cm- 1. 
PCA indicated that the addition above 5% of soybean milk to milk showed a 
significant difference from control milk. Based on the absorption of 1 472 to 
1 241 cm-1, the multivariate linear regression analysis showed that validation R2 was 
0.92 and the SEP was 7.56 for soybean milk levels in the mixture (Jaiswal et al., 2015). 

6. Milk Spectral Genetic Characteristics and Dietary 
Effects 

The most individual waves in the 5 000-930 cm-1 region of FTIR transmittance 
spectrum for bovine milk was heritable, and transmittance of contiguous FTIR waves 
correlated with phenotypic variation more than with genetic variation; transmittances 
on short-wavelength infrared (SWIR)- mid-wavelength infrared (MWIR) (3 669-
3 052 cm-1) and MWIR2 (1 698-1 586 cm-1), which was related to the absorption of 
water in this area, were characterised by very high phenotypic and genetic variability 
in the transmittance within each wave, as well as low heritability estimates, while 
SWIR (5 000-3 673 cm-1), MWIR1 (3 048 - 1 701 cm-1) and MWIR- long-
wavelength infrared (LWIR, 1 582-930 cm-1) showed low phenotypic and genetic 
variability for individual waves, and heritability estimates of transmittance on the 
SWIR (5000-3 673 cm-1) region presented a rare cyclic pattern (Bittante and 
Cecchinato, 2013). The reduced dimension analysis of 1 060 data points in the milk 
spectrum showed that the spectrum can be expressed as 46 traits, among these 8 traits 
had a heritability larger than 0.1, 25 traits showed a permanent environmental variance 
greater than genetic variance, and 3 infrared regions exhibited moderate to high 
heritability (Soyeurt et al., 2010). The heritability of goat milk spectral variables 
varied from 0.018 to 0.408, the permanent environmental effect variance was 0.002 
to 0.184 for phenotypic spectral variation, and the spectral regions associated with the 
milk components (fat, lactose, and protein), 1 300-1 030, 1 600-1 500, 1 800-1 700, 
and 3 000-2 800 cm−1, showed high to moderate heritability; some spectral regions 
were greatly affected by herd test-day variation, which could be helpful for herd 
management (Dagnachew et al., 2013a). When compared with indirect measurement 
(the spectral prediction of milk components combined with the pedigree information 
to calculate the estimated breeding value), the direct measurement (genetic analyses 
of spectral variables) reduced the prediction error variance of fat, lactose, and protein 
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by 3.73, 4.07, and 7.04% respectively, and corresponding genetic gains were 2.99, 
2.98, and 4.85%, respectively. Therefore, the estimated breeding value of milk FTIR 
spectra was more accurate than the single-trait animal model analyses (indirect 
measurement) on phenotypes predicted separately from the spectra (Dagnachew et al., 
2013b). 

Compared with other factors, the difference between milk spectra is more affected 
by dairy cows’ diets. The type of diet had little effect on NIR prediction of milk fat, 
but the prediction accuracy of protein was significantly affected (Purnomoadi et al., 
1999). NIR could discriminate no-pasture samples from pasture milk, even when 
pasture occupied only 30% of the diet (5.4% cross validation error), and the stabilised 
error (2.5% error) was observed when pasture exceeded 70%, however this was not 
enough to reliably trace the geographic origin of milk production (Coppa et al., 2012). 
NIR combined with PLSR could separate ewe milk according to different feeding 
systems (grazing, box feeding) (Mouazen et al., 2009). A good discrimination 
between milk from ewes fed soybean meal and scotch bean meal could be obtained 
based on spectral differences in the 3 000-2 800 cm−1 and 1 500-900 cm−1 regions, but 
the spectra cannot distinguish milk from different lactation stages (Maâmouri et al., 
2008). In the external validation of the FTIR combined with the PLS-DA model, the 
sensitivity and specificity of classification of milk from cows with or without fresh 
pasture in their diet were 88% and 83%, respectively, and the classification accuracy 
for the organic and conventional samples was 80% and 94% respectively. Milk 
samples from grazing cows and barn-fed cows can only be accurately distinguished 
in the whole sample set (Capuano et al., 2014). MIR can distinguish milk from a hay-
pasture based system from those from a corn silage-forage based system, but it is not 
possible to distinguish milk between cow breeds and between grazing altitudes 
(Valenti et al., 2013). 

7. Energy intake, health status, and methane emission 
diagnosis in dairy cows 

Available MIR prediction for the energy status of dairy cows was realised in recent 
studies. The accuracy of MIR prediction for direct energy balance, body energy 
content, and the energy intake of dairy cows ranged from 0.47-0.69, 0.51-0.56, and 
0.76-0.80, respectively, but the large random error in the calculation using gap filled 
data directly affected the accuracy of MIR prediction (McParland et al., 2012). The 
accuracy of cross validation of MIR predictions for daily changes in body condition 
scores and body weight for cows were 0.77 and 0.70, respectively, and the heritability 
of two predictions were similar to the estimated heritability (0.07, 0.06, and 0.07, 0.08), 
which means that IR could be helpful for monitoring the energy intake and energy 
balance of dairy cows (McParland et al., 2015). The correlation between the measured 
residual feed intake and measured energy balance across lactation was 0.85, and the 
correlation between corresponding MIR predictions was 0.65. Therefore, when 
combined with the developed prediction equations, milk MIR spectra data collected 
from individual cows throughout lactation could predict energy intake and feed 
efficiency in dairy cows (McParland et al., 2014). 
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MIR is also an alternative tool to screen ketosis in cows. When the acetone in 
samples ranged from 0 to 2.8 mM, the obtained prediction R2 and RMSE were 0.81 
and 0.27 mM, respectively (Hansen, 1999). The characteristic absorption of acetone 
is located at 1 450-1 200 cm-1. When the threshold value of subclinical ketosis was 
0.4-1.0 mM, the sensitivity and specificity of the classification model (FTIR coupled 
with PLS) was 95-100% and 96-100%, respectively. When the assumed prevalence 
ranged from 10% to 30%, the positive predictive value and negative predictive value 
were ≥ 76% and ≥ 98%, respectively (Heuer et al., 2001). The correlation coefficients 
between MIR prediction and measured values of β-hydroxybutyric acid and acetone 
in milk were 0.85 and 0.79, respectively. If 0.15 mM acetone and 0.10 mM β-
hydroxybutyric acid in milk were set as the threshold for subclinical ketosis, high 
concentrations of acetone or beta-hydroxybutyric acid were detected with a sensitivity 
of 69-70%, a specificity of 95%, false positives of 25-27%, and false negatives of 6-
7% (de Roos et al., 2007). Moreover, FTIR prediction of β-hydroxybutyric acid and 
acetone could diagnose cows with hyperketonemia in early lactation with higher 
accuracy than fat/protein ratio, but the high proportion of false-positive tests for these 
indicators should be improved in future studies (van Knegsel et al., 2010). 

The measured CH4 emission at day 0 showed a good fit to the average daily MIR 
spectrum at day 1.5 (R2cv = 0.79), and corresponding R2 (0.87) of calibration was 
higher than that (0.76) obtained from FA profiles and CH4 emissions (Dehareng et al., 
2012). MIR spectra combined with lactation stage information can be used to simulate 
the variation in CH4 emissions from cows as the lactation changes (the residual value 
is smaller), where R2 and standard error of calibration equations were 0.75, and 63 g/d 
(Vanlierde et al., 2015). 

8. Research Prospects 

As a member of the spectroscopy family, IR has been significantly developed in 
recent decades. Compared with reference chemical methods, it has the following 
advantages: 
1) Fast non-destructive testing: It is suitable for real-time on-line monitoring of milk, 

and it can provide information on milk components and the physiological state of 
dairy cows. 

2) Detection in terms of population: The rapid analysis of spectroscopic techniques 
enables it to provide analysis of a large number of samples over a short period, so 
that producers can have production information on various farm aspects or dairy 
cow populations and make adjustments in time. In combination with genetic 
analysis, IR also can be used for trait screening at the population scale, which 
greatly facilitates breeding work. 

3) Simultaneous detection of multiple traits: The infrared spectrum can 
simultaneously reflect the information of more than one trait due to the infrared 
absorption response with overtone and harmonic vibrations of many chemical 
bonds. This is different from traditional chemical analysis which can only measure 
one trait at a time. 
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However, as a methodology, the application of IR prediction can be affected by 
many factors, such as the spectroscopy instruments used, database construction, and 
chemometric methods. The limitations are mainly reflected in the following aspects: 
1) Spectral analysis techniques and instrumentation: There are many overlaps in 

characteristic absorption regions for different chemical groups in the MIR 
fingerprint and NIR region. Although FT provides a means of deconvolution, the 
spectral complexity still needs to be overcome in the analysis. Variation of the 
light source under different environmental conditions will cause different degrees 
of spectral shift, so it is necessary to continuously calibrate the optical instrument. 
Aging of various parts of optical equipment in the instrument will decrease 
signal/noise ratio and affect the performance of the instrument.  

2) Database construction: The determination of reference values is critical to the 
reliability of the database. Sampling and reference methods are directly related to 
the accuracy of spectra prediction (McParland et al., 2012; De Marchi et al., 2014). 
Expression of results with different units may indirectly affect the spectra model 
(Soyeurt et al., 2006; Rutten et al., 2009). The database size is also directly related 
to the prediction accuracy of the model (Rutten et al., 2010). Compatibility 
between databases (Grelet et al., 2015) also greatly influences the application of 
IR methods and the comparison between models. 

3) The mathematics algorithm is embodied in three aspects: data pre-processing, 
region selection, and equation development. The suitable application for each 
spectral pretreatment should be seriously considered. The selection of responding 
wavenumbers or wavelengths based on known characteristic absorption regions 
of chemical components can largely avoid the interference of noise from other 
components, but for the development of new trait predictions corresponding 
characteristic regions have to be explored. There are many algorithms for 
establishing the relationship between spectral data and reference values. The 
equations obtained by the advanced algorithm are better than the general 
algorithm (Balabin and Smirnov, 2011), but the complexity of an advanced 
algorithm is not conducive to the promotion of this methodology. 

9. Conclusion 

The development of IR provides a quick and easy way to analyse milk components. 
Through a close combination with chemometrics, IR has been widely used in high-
throughput non-destructive testing of products. In the future IR for milk testing may 
be developed in the following aspects: 1) IR has the potential to predict mineral and 
active substances in milk, so combined with appropriate laboratory analysis methods 
and optimised chemometrics, prediction of micro-nutrients in milk could be realised, 
and further indications of milk quality changes are expected; 2) Different reference 
methods and expression units have a great impact on the IR prediction, which would 
hinder comparison between the prediction results from different laboratory IR models 
and the promotion of this method, it is therefore necessary to standardise the detection 
method and the expression unit; 3) The spectra can also be used to characterise milk, 
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as some regions are heritable and some change with the environment, which can be 
used for monitoring the environmental characteristics of dairy cattle feeding or diet 
features of dairy animals; 4) IR can also be analysed simultaneously with disease 
diagnosis and reproductive traits for dairy cows, to find potential spectral changes in 
the pathological state of cows and genital organ activity, providing indicators for rapid 
diagnosis of disease and early detection of reproductive disorders. All of these require 
the continuous improvement of the precision of spectroscopy instruments, 
optimisation of the corresponding mathematical algorithms, and improvement of the 
reference methods, with the aim of improving the stability and reliability of the 
spectral model. 
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Doctoral Trainings and Scientific 
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1. 
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1.1 RDCT0369-1 - Training session: Vibrational Spectroscopy and 
Chemometrics 

4 

1.2 5th international symposium on dairy cow nutrition and milk quality 3 
1.3 Training of proteomics and identification of unknown low weight 

molecular using mass spectrometry 
1 

1.4 The 2016 World Life Science Conference 3 
1.5 RDCT0273-1 - Advances on animal nutrition and feed science 1 
1.6 Detection technology exchange meeting on goat/sheep milk and milk 

product identification 
1 

1.7 PhD student's seminar 3 
1.8 Quality Control in Food Microbiology Laboratory 2 
1.9 4th international symposium on dairy cow nutrition and milk quality 2 

 Subtotal 20 

2. Transversal Training (minimum 10 credits) Credits 

2.1 Comprehensive examination of PhD student 3 
2.2 RDCT0274-1 - Literature learning 2 
2.3 Regulation training: expert interpretation of "Food Safety Law in Chinese 

2015" 
1 

2.4 RDCT0270-1 - Chinese Marxism and Contemporary 2 
2.5 RDCT0271-1 - English (PhD) 2 
2.6 RDCT0272-1 - Lectures on Agricultural Science and Technology 

Progress 
2 

 Subtotal 12 

3. Scientific Communications (minimum 25 credits) Credits 

3.1 Detection of plant protein in adulterated milk using nontargeted nano- 
high- performance liquid chromatography- tandem mass spectroscopy 
combined with principal component analysis 

8 

3.2 Detection of plant protection adulterated in fluid milk using two-
dimensional gel electrophoresis combined with mass spectrometry 

8 

3.3 Comparative milk fatty acid analysis of different dairy species 8 
3.4 Detection of plant protein in adulterated milk by SDS-PAGE and LC-MS-

experiment progress 
3 

3.5 The effect of Heat Treatment on Milk Components and Heat-Sensitive 
Indicator Variation 

8 

3.6 Research advances on infrared spectrum in milk production and 
determination 

8 

3.7 Detection of plant protein and fat adulteration in milk 3 

 Subtotal 46 

 In total 78 
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