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INTRODUCTION

m  Compliance minimization with density dependent loads (self-weight,
centrifugal forces) is quite usual in practice.

m Literature generally suggests to treat this problem as a simple
extension of the dead load problem.

m  Only a little number of successful academic and industrial applications
are published.

m To our knowledge, only 1 paper devoted specifically to the problem:
Turtletaub & Washabaugh, /nt. J. of Solids and Structures, vol. 36,
(1999) , pp 4587-4608.

m  Our experience: standard procedure does not work in the self-weight
load case !



PROBLEM FORMULATION

m  Compliance minimization with self-weight loading

inC=g"q with V. <V
minC=g'q w j;uee

m Power law model (SIMP)

<E>=pPE’ and <p>=pp’ p>1

m  Sensitivity analysis
oC T0g 10K
——=20 ——-q ——¢
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m  Sigmund’s filter to circumvent the checkerboard and mesh dependency
problems (Mech Struct. & Mach. , 25 (4), 493-524, 1997)

m  Mathematical programming approach to solve the optimization
problem.



FAILURE OF THE STANDARD APPROACH

* Min Compliance
e Volume fraction < 80%
e p=2(SIMP)
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FAILURE OF THE STANDARD APPROACH
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NON MONOTONOUS CHARACTER OF COMPLIANCE

The structural behavior of the compliance is non
monotonous in terms of some density variables!
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STRUCTURAL APPROXIMATIONS
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OPTIMIZATION SOLUTION USING GCMMA

AR e
m USING A NON MONOTONOUS APPROXIMATION: GCMMA
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But this is still with a solution with minimum density of 0.2 !



THE OPTIMIZATION PROBLEM SOLUTION
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of Turtletaub & Washabaugh,
Int. J. of Solids and

Structures, vol. 36, (1999) ,
pp 4587-4608
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CONVERGENCE PROBLEM FOR LOW DENSITY
VARIABLES

* Min Compliance
e Volume fraction < 80%
e p=2(SIMP)
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CONVERGENCE PROBLEM FOR LOW DENSITY

VARIABLES
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CONVERGENCE PROBLEM FOR LOW DENSITY
VARIABLES

AR e
m EXPLANATION
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MODIFICATION OF POWER LAW
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see N. Pedersen (2000) “Maximization of eigenvalues using topology optimization” Struc.

Multidisc. Optim. 20, 2-11



GCMMA + MODIFIED OF POWER LAW
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GCMMA + MODIFIED OF POWER LAW

= SIMP with p=3

3 Objective function Volume fraction (%) o Maximum variable change
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m Power law modified accordingly to N. Pedersen (2000) “Maximization

of eigenvalues using topology optimization” Struc. Multidisc. Optim.
20, 2-11



NUMERICAL APPLICATION 2

S ?
Volume fraction < 100% ;8>
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Filter
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NUMERICAL APPLICATION 2




CONCLUSION AND ON-GOING WORK

m NUMERICAL SOLUTION PROBLEM
— Compliance can be non-monotonous with density dependent loads
— Use non-monotonous approximations e.g. GCMMA

— Increase solution performance with GBMMA approximations
(Bruyneel, Duysinx, and Fleury, 2001)

= high quality approximations using the information at previous
design points (value + gradient)

= Mmixed scheme with monotonous and non-monotonous
expansions + an automatic selection strategy

m LOW DENSITY PROBLEM
— Modifcation of power low model
— Further investigation of the problem in the light of e-relaxation
— Convergence properties

m INDUSTRIAL APPLICATIONS
— Mirror stiffening, design of rotating machine parts...



