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INTRODUCTION

Compliance minimization with density dependent loads (self-weight, 
centrifugal forces) is quite usual in practice.

Literature generally suggests to treat this problem as a simple 

extension of the dead load problem.

Only a little number of successful academic and industrial applications 

are published.

To our knowledge, only 1 paper devoted specifically to the problem: 

Turtletaub & Washabaugh, Int. J. of Solids and Structures, vol. 36, 

(1999) , pp 4587-4608.

Our experience: standard procedure does not work in the self-weight 

load case !



PROBLEM FORMULATION

Compliance minimization with self-weight loading

Power law model (SIMP)

Sensitivity analysis

Sigmund’s filter to circumvent the checkerboard and mesh dependency 
problems (Mech Struct. & Mach. , 25 (4), 493-524, 1997)

Mathematical programming approach to solve the optimization 
problem.
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FAILURE OF THE STANDARD APPROACH

• Min Compliance

• Volume fraction < 80%

• p = 2 (SIMP)

• Filter

• Minimum density = 0.2

• CONLIN solver 

(Conlin approximation + dual solver)
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FAILURE OF THE STANDARD APPROACH
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NON MONOTONOUS CHARACTER OF COMPLIANCE

The structural behavior of the compliance is non 
monotonous in terms of some density variables!
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STRUCTURAL APPROXIMATIONS

CONLIN (Fleury & Braibant, 1986) GCMMA (Svanberg, 1995)
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OPTIMIZATION SOLUTION USING GCMMA

USING A NON MONOTONOUS APPROXIMATION: GCMMA

But this is still with a solution with minimum density of 0.2 !
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THE OPTIMIZATION PROBLEM SOLUTION

For volume 
fraction > 32.5% 
optimum is 

unconstrained 

In agreement with conclusions
of Turtletaub & Washabaugh, 
Int. J. of Solids and
Structures, vol. 36, (1999) , 

pp 4587-4608
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CONVERGENCE PROBLEM FOR LOW DENSITY 
VARIABLES

• Min Compliance

• Volume fraction < 80%

• p = 2 (SIMP)

• Filter

• Minimum density = 0.01

• GCMMA solver
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CONVERGENCE PROBLEM FOR LOW DENSITY 
VARIABLES
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CONVERGENCE PROBLEM FOR LOW DENSITY 
VARIABLES

EXPLANATION

Problem similar to
natural frequency 
problems !
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MODIFICATION OF POWER LAW

see N. Pedersen (2000) “Maximization of eigenvalues using topology optimization” Struc. 
Multidisc. Optim. 20, 2-11
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GCMMA + MODIFIED OF POWER LAW

Power law modified accordingly to N. Pedersen (2000) “Maximization of 
eigenvalues using topology optimization” Struc. Multidisc. Optim. 20, 2-11
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GCMMA + MODIFIED OF POWER LAW

SIMP with p=3

Power law modified accordingly to N. Pedersen (2000) “Maximization 
of eigenvalues using topology optimization” Struc. Multidisc. Optim. 
20, 2-11
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NUMERICAL APPLICATION 2

• Volume fraction < 100%

• p = 3 (SIMP)

• Min Compliance

• Filter

• minimum density = 0.01
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NUMERICAL APPLICATION 2



CONCLUSION AND ON-GOING WORK

NUMERICAL SOLUTION PROBLEM
– Compliance can be non-monotonous with density dependent loads
– Use non-monotonous approximations e.g. GCMMA
– Increase solution performance with GBMMA approximations 

(Bruyneel, Duysinx, and Fleury, 2001)
high quality approximations using the information at previous 
design points (value + gradient)
mixed scheme with monotonous and non-monotonous 
expansions + an automatic selection strategy

LOW DENSITY PROBLEM
– Modifcation of power low model
– Further investigation of the problem in the light of ε-relaxation
– Convergence properties

INDUSTRIAL APPLICATIONS
– Mirror stiffening, design of rotating machine parts…


