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Abstract

Solid tumors are rich ecosystems of numerous different
cell types whose interactions lead to immune escape and
resistance to immunotherapy in virtually all patients with
metastatic cancer. Here, we have developed a 3D model of
human solid tumor tissue that includes tumor cells, fibro-
blasts, and myeloid and lymphoid immune cells and can
represent over a million cells over clinically relevant time-
frames. This model accurately reproduced key features of the
tissue architecture of human colorectal cancer and could be
informed by individual patient data, yielding in silico tumor
explants. Stratification of growth kinetics of these explants
corresponded to significantly different overall survival in a
cohort of patients with metastatic colorectal cancer. We used

the model to simulate the effect of chemotherapy, immu-
notherapies, and cell migration inhibitors alone and in
combination. We classified tumors according to tumor and
host characteristics, showing that optimal treatment strate-
gies markedly differed between these classes. This platform
can complement other patient-specific ex vivo models and
can be used for high-throughput screening of combinatorial
immunotherapies.

Significance: This patient-informed in silico tumor growth
model allows testing of different cancer treatment strategies
and immunotherapies on a cell/tissue level in a clinically
relevant scenario. Cancer Res; 78(17); 5155–63. �2018 AACR.

Introduction
Gastrointestinal solid tumors such as colorectal cancer account

for a significant burden ofmorbidity andmortality. Despitemany
efforts, microsatellite-stable colorectal cancer, the most common
type of this disease, is resistant to all approved immunotherapy
approaches (1). Amain reason for this is the immunosuppressive
effect of the tumor microenvironment (TME), with abundant
stroma, many protumor macrophages and few tumor-infiltrating
lymphocytes. Together with tumor cells, these cells form a com-

plex ecosystem with emergent properties that lead to immune
escape and immunotherapy resistance.

Cancer immunotherapy alone or in combination can, in prin-
ciple, overcome these immunosuppressive adaptations, with
combinational treatment being currently regarded as the most
promising approach (2). However, given the large number of
approved and candidate drugs, it is not feasible to compare all
immunotherapy agents in a clinical setting. Rather, various exper-
imental ex vivo models are used to study combination treatment
effects on tumors, among them classical cell culture models,
tumor organoids (3), and patient-derived xenografts (PDX;
refs. 4–6).

Most of thesemodels suffer from limited scalability and do not
fully recapitulate the complex cellular interactions in the TME. In
principle, computer-based (in silico) models of tumor growth can
address these shortcomings as they canbe designed to incorporate
various cellular interactions, can be arbitrarily scaled, and can be
informed by individual patient data, constituting in silico patient-
derived tumor explants (7). However, until now, no such model
has been available. Previous 3D spatial models of human solid
tumors have reflected some aspects of realistic phenotypes. How-
ever, these models have not explicitly included lymphocytes,
stroma, and macrophages (8, 9), which are key players in colo-
rectal cancer (10), or have incorporated some parts of the micro-
environmentwithout clinical validation and in a computationally
expensive way (11). To our knowledge, there is currently no
computational model of tumor growth that encompasses all
relevant aspects of the TME and, at the same time, runs fast
enough to be fitted to clinicopathologic data on a per-patient
basis in thousands ofmodel runs, which is a requirement for drug
screening and other clinically relevant applications.
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In the present study, we designed a computationally efficient,
three-dimensional agent-based in silicomodel of human colorec-
tal cancer. This model includes tumor cells, lymphocytes, macro-
phages, fibrotic stroma, and necrosis, can grow large tumors of
>106 cells in a few minutes on standard computer hardware. The
model can be fitted to individual patient data and can be used for
high-throughput screening of combination immunotherapies. To
our knowledge, this is the first personalized in silico model of
colorectal cancer with potential direct applicability in the clinic.

Materials and Methods
Ethics statement

All experiments were conducted in accordance with the Dec-
laration of Helsinki, the International Ethical Guidelines for
Biomedical Research Involving Human Subjects (CIOMS), the
Belmont Report, and the US Common Rule. We used archival
formalin-fixed paraffin-embedded material of human colorectal
cancer liver metastases. All tissue samples were provided by the
tissue bank of the National Center for Tumor Diseases (NCT,
Heidelberg, Germany) in accordance with the regulations of the
tissue bank and the approval of the ethics committee of Heidel-
berg University (S-207/2005, renewed on December 20, 2017,
tissue bank decision number 2152, granted toN.Halama and J.N.
Kather). We obtained written informed consent from all patients
as part of the NCT biobank standard operating procedures. Also,
correctness of the original pathology report was validated as part
of the NCT biobank protocol. No cell culture experiments were
performed as part of this study.

Digital pathology tissue analysis
CD8þ cell fraction and CD68þ cell fraction were quantified in

immunostained serial sections of colorectal cancer liver metasta-
sis tissue. QuPath version 0.1.2 (12, 13) was used to detect and
classify cells in a representative, manually defined region of
interest (ROI) of 1 mm width from the tumor–liver interface
toward the tumor core, excluding artifacts and necrotic areas.
Stroma–tumor ratio was also determined in ROIs drawn with
similar criteria and areas of desmoplastic stroma were manually
delineated by histomorphologic aspect in hematoxylin-stained
sections using the wand tool by a trained observer. All analyses
were conducted in a blinded fashion. All measurements are given
as mean � standard deviation unless otherwise noted.

Model design and implementation
We developed an on-grid, three-dimensional (3D) stem-cell–

driven (14) agent-based model (Fig. 1A). As a blueprint for a
complex agent-based model of the human colorectal cancer
microenvironment, we used a well-characterized model from our
recent study (15). That previousmodel containedonly tumor cells,
active and exhausted lymphocytes, stroma, and necrosis. In the
present study, we added na€�vemacrophages and protumormacro-
phages to the model, markedly increasing the model's complexity
(Fig. 1B). Our assumptions of these populations in the model are
the following: nonpolarized (na€�ve) macrophages are just bystan-
ders and do not exert relevant effects on lymphocyte function, but
canpolarize andbecomeprotumormacrophages. These protumor
macrophages locally inhibit lymphocyte action as we have previ-
ously shown experimentally (10). Lymphocyte inhibition via
protumor macrophages was attained via the concept of adjuvan-
ticity (see below). Macrophage polarization probability was
deduced from Koelzer and colleagues (16). With T lymphocytes

andmacrophages in different functional states, thismodel includ-
ed key players that orchestrate the TME (10). Furthermore, we
added the notion of adjuvanticity and antigenicity, which are both
prerequisites for tumor cell killing by lymphocytes (17).

Regarding antigenicity, we considered that tumor cells have a
fixed probability of acquiring an immunogenic mutation during
cell division. As long as the number of immunogenicmutations in
a given tumor cell is below a certain threshold, lymphocytes
cannot attack that tumor cell. The number of mutations is inher-
ited by daughter cells and, consequently, macroscopic tumors in
our simulation are a heterogeneous mixture of tumor cell clones
with different antigenicity. This notion is in accordance with
previous models and experimental observation of tumor cell
clonality in human tumors (18–20).

Besides antigenicity, we assumed that lymphocyte attacks on
tumor cells also require signals from the microenvironment. We
implemented this as an "adjuvanticity map," which stored the
"adjuvanticity level" for each location on the lattice. In real
tumors, there is a multitude of these signals. For the purposes of
this model and in accordance with the literature, we refer to the
sum of these signals as "adjuvanticity" (1, 17). To keep the model
as simple as possible as well as biologically grounded, we
assumed only one positive signal and one negative signal. We
assumed that dying tumor cells would release small amounts of
immunostimulatory molecules such as danger-associated molec-
ular patterns that accumulate locally and increase local adjuvan-
ticity. Conversely, protumor macrophages would release small
amounts of inhibitory molecules that would locally decrease
adjuvanticity. Although a multitude of factors might contribute
to adjuvanticity in biological systems, we considered these two
main factors in themodel, as they have been empirically shown to
be of utmost importance in metastatic colorectal cancer (1).
Lastly, we expanded the model from 2D to 3D, increasing the
number of cells that can be simulated by two orders of magnitude
to approximately 106 cells. More details on the model design and
implementation are available in the Supplementary Methods.

Figure 1C–F shows four examples of tumors that were simu-
lated with the modeling platform, all of which are on a clinically
relevant scale of several millimeters. Tumors in Fig. 1E and F
contained approximately 106 cells, but computation timewas still
below 10 minutes (below 1 minute in case of parallel processing
with 24 cores). All experiments were done inMatlab R2017b. The
core of the simulation platform was developed in Cþþ using
Eigen template library for linear algebra and SuiteSparse, which is
a suite of sparse matrix algorithms and was interfaced with the
Matlab program via MEX. Along with the core model, we imple-
mented several types of visualization that allow for real-time
monitoring of all crucial features of the model during tumor
simulation (Supplementary Fig. S1A–S1E).

Code availability
All source codes are freely available under an open source

license (DOI 10.5281/zenodo.1248806), allowing the simula-
tions to be reproduced, applied to other datasets, and extended to
other clinical scenarios and other tumor types, including primary
tumors. Details on the parametrization are provided in Supple-
mentaryMethods and shown in Supplementary Fig. S2A and S2B.

Parameter fitting
We performed three rounds of model fitting using particle

swarm optimization (PSO, details are given in Supplementary
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Methods). All model parameters are listed in Supplementary
Table S1.

Fitting to population-based data.We fitted the model to five target
variables. First, from our own quantitative histologic data sets
(N ¼ 14 colorectal cancer liver metastases stained with H&E,
anti-CD8, and anti-CD68 as described before; ref. 10), we
derived three target variables (Supplementary Table S2): (i)
lymphocyte–tumor ratio (0.0332 � 0.0411), (ii) macrophage–
tumor ratio (0.0978 � 0.0825), (iii) stroma–tumor ratio
(0.2263 � 0.1562). Furthermore, we used (iv) exhausted lym-
phocyte fraction (0.366 � 0.157) derived from (21) and (v)
tumor stem cell fraction (0.25) approximated from (22),
assuming as standard deviation of 0.2. The loss function was
defined as the root mean square error of these components
normalized to their respective standard deviation. Using PSO, it
was possible to fit the model to this loss function with a loss of
<0.2 in repeated runs, indicating a very good fit. Thus, we
conclude that the model can be successfully fit to real-world
observations.

Patient-specific fitting. In total, 24 colorectal adenocarcinoma
liver metastases with overall survival data (9-year follow-up;
Supplementary Table S3) were provided by the NCT biobank
as described before (23). We used PSO to fit the model to
a loss function containing macrophage/lymphocyte/stroma-to-
tumor ratio, assuming a standard deviation of 25% for these
measurement values (Supplementary Fig. S3; Supplementary
Table S4). After obtaining a six-dimensional parameter vector
for each patient by PSO, we used these parameter sets to simulate
macroscopic tumors. We then assessed the tumor growth rate g¼
(T60 � T45)/T45, with Tn being the tumor cell number at day n
(Supplementary Table S5). Patients were then stratified in two
groups according to this relative tumor growth (growth speed,
splitting at the median) and overall survival (OS) statistics
were assessed using R software (R-project.org) using the packages
"survminer" and "survival"; "survdiff" was used to calculate a
P value with the log-rank test.

Fitting to different scenarios of adjuvanticity and antigenicity. We
varied the fraction of tumor cells in low-antigenicity and

Figure 1.

An agent-based model of the
colorectal cancer microenvironment.
A, We implemented an on-grid, 3D
agent-based model with Moore
neighborhood. B, The agent-based
model contains three types of players,
tumor cells, lymphocytes, and
macrophages, each of whom has a set
of properties (bright gray circles) and
abilities (dark gray circles). Also, two
environmental features are modeled,
fibrotic (desmoplastic) stroma and
necrosis. Macrophages inhibit
lymphocyte function in their vicinity
(as shown in ref. 10); lymphocytes
migrate toward tumor cells and can
attack them (as shown in ref. 15). High
tumor cell density induces necrosis and
lymphocytes seed fibrotic stroma.
C–F, Simulation of four tumors on a
millimeter scale, comprising up to
106 cells. NEC, necrosis; STRO,
desmoplastic stroma; TUnorm, normal
tumor cell; TUstem, tumor stem cell;
LYMact, active lymphocyte; LYMexh,
exhausted lymphocyte; MPnaive, na€�ve
macrophage; MPpro, protumor
macrophage.
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low-adjuvanticity conditions with three levels (high, mid, and
low) as shown in Supplementary Table S6, yielding nine combi-
nations.Weused these conditions in a loss function andusedPSO
to fit the six free parameters to these conditions. Thereby, we
obtained nine sets of six parameters, each of which could be used
to simulate tumors with defined adjuvanticity and antigenicity
conditions. We assumed that these nine phenotypes constitute a
wide spectrum of situations that can arise in a solid tumor, which
is consistent with previous frameworks of evolutionary-ecological
properties of tumors (24).

In silico treatment strategy testing
We simulated the effects of a range of different treatments

(details in Supplementary Methods): Chemotherapy (CH)
increases the death rate of tumor cells upon proliferation, lym-
phocyte boost (LB) increases the lymphocyte influx into the
domain, anti–Programmed Death 1 treatment (PD) un-exhausts
exhausted T lymphocytes and increases the exhaustion tolerance
of T lymphocytes as described by Chen and Mellman (25);
furthermore, we implemented macrophage repolarization (RE)
as described by Halama and colleagues (10), macrophage deple-
tion (MD), stroma permeabilization (SP), and tumor cell migra-
tion inhibition (MI) as discussed by Waclaw and colleagues (9).
Simulated treatments could be applied in any dose between 0%
and 100% and in any combination (except MD that was per-
formed only once). If not otherwise noted, low, medium, and
high treatment intensities correspond to 25%, 50%, and 75%,
respectively.

Data visualization and statistics
Tumor growth after treatment compared with tumor growth

without treatment is visualized in box plots. In each box plot, the
central mark indicates the median, the bottom and top edges of
the box show the 25th and 75th percentiles. The whiskers extend
to the most extreme nonoutlier data points. Outliers are plotted
separately as a "þ."

Results
Themodel reproduces cellular composition and architecture of
human cancer

During model fitting, we observed that loss function values <1
were easily achieved after few algorithm iterations. As the loss
function contained realistic measurements for cellular composi-
tion and cellular functional state (see Supplementary Methods),
this finding confirmed that themodel is able to represent features
of human cancer. To test further whether the model also repro-
duces key aspects of the spatial tissue architecture, we compared
the simulated millimeter scale tumors to actual millimeter scale
histologic images of human colorectal cancer. Colorectal cancer
liver metastases, like most human solid tumors, are not—as
previous models assumed (9)—homogenous spheres of cells.
Instead, they are characterized by tumor islands and protrusions
separated by desmoplastic stroma ridges (Fig. 2A and B), which
were also present in our model (Fig. 2C). Similarly, desmoplastic
(Fig. 2A) and pushing (Fig. 2B) growth patterns (26) were
observed in the simulations (Fig. 2C).

Themodel predictsOSof humanpatientswith colorectal cancer
To further validate whether the model has a meaningful con-

nection to actual clinical events, we used patient-specific fitting
in an independent validation cohort of N ¼ 24 patients who

had undergone surgical resection of colorectal cancer liver metas-
tases. Based on histologic measurements, we created a parameter
vector for each patient and, after patient-specific parameter fitting,
assessed in silico growth dynamics of the respective simulated
tumors. Tumors that showed a faster growth in silico (in 12
technical replicates) defined a patient subgroup with shorter OS
as compared with slow-growing in silico explants (P <
0.050, Fig. 2D). To our knowledge, this is the first spatial mech-
anistic model of human cancer with such prognostic power.

Treatment simulation in heterogeneous tumors
Having established that simulated tumors share key char-

acteristics with actual human tumors, we designed an in silico
array for treatment testing. Treatment with simulated agents
started after 40 days of unperturbed initial growth phase and
response was assessed after another 20 more days of simulation
(Fig. 3A). As actual tumors are very heterogeneous in terms of
tumor and host characteristics (24), we used a range of different
tumors for this experiment. In particular, whether tumor cells
can be attacked by effector lymphocytes depends on tumor cell
characteristics, summarized as antigenicity, and host character-
istics, summarized as adjuvanticity (Fig. 3B; refs. 1, 17, 24). We
used the modeling platform to find parameter vectors that
define tumors with high, medium (mid), and low antigenicity
and adjuvanticity, respectively (Fig. 3C). In accordance with
prior knowledge, we used a range of different simulated treat-
ments (Fig. 3D). These treatments reshaped tumor phenotypes
in diverse ways (Fig. 3E). We assessed treatment responses for
three different dose levels (25%, 50%, and 75% of maximum
dose, Fig. 3F). Simulated chemotherapy showed a roughly
linear dose–response relationship across all treated tumors
(Fig. 3D, CH) and control treatment did not change tumor
growth in all tumors (Fig. 3D, CTRL). MI had a small but linear
effect across all tumors (Fig. 3D, MI). Interestingly, lympho-
cyte-targeted treatments (LB and lymphocyte reinvigoration by
anti-PD1, PD) showed a wide range of responses, ranging from
a detrimental effect (hyperprogression) to pronounced
responses. Combining chemotherapy (CH) with a LB showed
the best median treatment response.

Immunotherapy response depends on tumor and host
characteristics

To elucidate these heterogeneous response patterns, we ana-
lyzed all tumor–host phenotypes separately (Fig. 4A–I). As
expected from empirical evidence (27), low and medium antige-
nicity tumors tended to have a poor response to immunotherapy
(no response to LB in Fig. 4A, C, and F). Interestingly, a strong
nonlinear effect was present as medium adjuvanticity tumors
showed some response to LB even in low and medium antige-
nicity settings (Fig. 4B and E). Also, in these cases, adding anti-
PD1 to chemotherapy increased treatment response (Fig. 4B and
E). Inmediumantigenicity cases, therewas an incremental benefit
of adding LB to chemotherapy (CH), although LB alone had only
a limited effect (Fig. 4D and E). High antigenicity tumors had the
best response to immunotherapy by LB, which was consistently
improved by adding anti-PD1 (PD) treatment. Also, this result is
in accordance with the literature, as anti-PD1 treatment is widely
used to improve action of other immunotherapy approaches (2).
All above-mentioned changes were statistically significant after
correction for multiple testing (Supplementary Fig. S4A). In our
simulation, macrophage-targeted therapy (repolarization agent
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RE or MD) consistently showed a small additive effect in any
tumor–host setting (Supplementary Fig. S4B).

Clinically, it has been previously observed that immunother-
apy may in some cases cause tumor hyperprogression, although
the exact mechanisms for this effect are unknown (28). Hyper-
progressive disease is a speed-up of tumor growth after immu-
notherapy (28) as opposed to pseudoprogression, which is a type
of treatment response with a paradoxical increase in the total
tumor volume due to lymphocyte influx. In our model, we count
the number of viable tumor cells as opposed to the tumor volume,
so we will not observe pseudoprogression. However, we did
observe cases of hyperprogression when reinvigorating exhausted
T lymphocytes by simulated anti-PD1 treatment (PD), especially
in medium antigenicity/medium adjuvanticity settings and in
high antigenicity settings (Fig. 4E, H, and I). As described in
our previous study (15), we observed a tumor hyperprogression
upon treatment with an SP agent (Supplementary Fig. S4C).
Interestingly, this effect only occurred in high antigenicity tumors
(Supplementary Fig. S4C).

Targeting small-scale cellmigrationprovides additive benefit to
other treatments

Inhibiting small-scale migration of tumor cells has been put
forward as a therapeutic strategy previously (9), but its relation-
ship to other treatment approaches is unclear. We saw that in our

model system, inhibiting tumor cell migration (adding "MI"
agent to the system) had no meaningful additive effect to LB in
a high antigenicity setting (Fig. 4G-F). However, MI sensitized
tumors to LB immunotherapy in two of three medium antige-
nicity settings (Fig. 4D and F). Inmost cancer phenotypes, MI had
an additive effect to chemotherapy (CH).

Discussion
Previous in vitro and in vivo models of human solid tumors

Several different approaches for high-throughput drug screen-
ing for human solid tumors have been proposed. Thirty years ago,
drug screening in cell lines was already used (29) and, over time,
modeling systems have gained complexity. Nowadays, in vitro
systems such as tumor organoids and in vivo systems such as PDX
models are widely used for preclinical purposes. These models
reflect crucial parts of actual human tumors such as genomic
makeup and sensitivity to drugs targeting signaling pathways in
tumor cells (3, 4, 30).However, there are twomajor shortcomings
of thesemodels that our in silicomodel could address. First, in vitro
and in vivo systems require technical expertise and long hands-on
time. Although laboratory automation can help to increase scal-
ability, these models are expensive, not infinitely scalable. This is
one of the reasons that currently preclude drug-sensitivity testing
in actual clinical settings. Second, prognosis and drug sensitivity

Figure 2.

Histopathologic and clinical validation
of the model. A, Histologic image of a
desmoplastic-type colorectal cancer
liver metastasis, showing tumor
protrusions and stromal ridges. B,
Pushing-type colorectal cancer
liver metastasis, showing tumor
protrusions.C, Simulated tumor with a
realistic phenotype (loss <1)
reflecting these architectural features
that were not explicitly built into the
model. D, OS in a cohort of 24 human
patients with colorectal cancer after
resection of liver metastases stratified
by rapid or slow growth of
personalized in silico tumor explants
(stratification at the median). Rapid
growth in silico defines a subgroup
with significantly worse survival
(P ¼ 0.047 in log-rank test, which is
<0.050). All scale bars are 1 mm.
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of all solid tumors and particularly colorectal cancer are largely
determined by the host immune system. Lymphocytes and
macrophages are most imminently interwoven with clinical out-
come of colorectal cancer (1). It is not trivial to include these cell
types in existing in vitro and in vivo models. Our in silico model
aims to fill this gap.

A spatial computational model to complement other ex vivo
models in colorectal cancer

We use a spatial agent-based approach to model tumor cells,
fibrotic stroma, lymphocytes, and macrophages in human met-
astatic colorectal cancer. In this model, the basic level of abstrac-
tion is an individual cell. Thus, all processes on a molecular level

are not explicitly taken into account, but only indirectly influence
the model as it is based on biological measurements. Although
this is a massive simplification and precludes testing of molecu-
larly targeted drugs on a subcellular level, our model accurately
recapitulates the emergent behavior on a cellular and tissue level.
We assume that although chemotherapy or immunotherapies
such as checkpoint inhibitors act onamolecular level, they change
cellular behavior and can therefore be investigated using our
simulation platform. As our model is specifically adapted to
human metastatic colorectal cancer, it includes lymphocytes and
macrophages as the two major immune cell types that shape
prognosis in this disease (1). In other tumor entities, regulatory
T cells (Treg) and myeloid derived suppressor cells also play a

Figure 3.

High-throughput combination immunotherapy drug screening in heterogeneous tumors. A, Treatment assessment assay. Simulated treatment is given after
40 days and response is assessed after 60 days. B, The model incorporates antigenicity by which tumor cells accumulate mutations and can eventually be
attacked by lymphocytes. Also, adjuvanticity is modeled, which is decreased by macrophages, thereby protecting tumor cells in their surroundings from
being attacked. C, Nine phenotypes of tumors are modeled, ranging from low to high antigenicity and adjuvanticity. D-F, Types of treatment used in this
experiment (D), heterogeneous morphologies of tumor arise after treatment (E), and change of tumor cell number 20 days after treatment as a proxy for treatment
response for nine different treatment combinations in three dose levels each (25%, 50%, and 75% of maximum dose; F). Treatment responses (low/high
adjuvanticity/antigenicity) are mixed.
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major role (31).We release the source codeof ourmodel, ensuring
that it can easily be adapted to other clinical settings and other
tumor entities beyond colorectal cancer liver metastases.

In silico modeling for screening of immunotherapy
combination strategies

Previous studies have demonstrated that nonspatial (32, 33)
and spatial (9, 14, 15, 34–36)mechanisticmodels of human solid
tumors are very useful tools and complement classical laboratory
models for cancer research. However, to our knowledge, there is
currently no mechanistic spatial model of solid tumor tissue that
can predict prognosis and can be used to screen new combination

treatment strategies. We show for a clinically highly relevant
scenario that our spatial model represents key aspects of tumor
morphology, can stratify patients and predict prognosis, and can
be used to test treatment strategies in different tumor–host
settings.

We investigate various combinations of simulated treatments:
Chemotherapy (CH) induces tumor cell death upon prolifera-
tion; LB increases the lymphocyte influx into the domain; lym-
phocyte reinvigoration (PD) turns exhausted lymphocytes into
active lymphocytes and prevents their exhaustion andMI reduces
the migration probability of tumor cells. In vivo studies have
shown that the effect of checkpoint inhibitors such as anti-PD1

Figure 4.

Prediction of optimal immunotherapy combination depends on tumor and host characteristics. Nine different tumor phenotypes with low/mid/high antigenicity
(anti) and low/mid/high adjuvanticity (adju) were simulated and treated with nine different treatments in three different dose levels (25%, 50%, and 75%).
These treatments are identical to Fig. 3F but show distinct effects on different tumor phenotypes. Simulated treatments are LB (e.g., by adoptive cell therapy,
vaccination, or successful checkpoint blockade), PD (lymphocyte reinvigoration, e.g., by anti-PD1), MI, CH (chemotherapy), and CTRL (control, no treatment). Each
experiment included 10 independent repetitions (this figure contains results from 2,700 full model runs). The best treatment in each tumor–host phenotype
environment is highlighted in gray and labeled. A–F, In low-to-mid antigenicity conditions, CH þ MI or CH þ PD are optimal. G–I, In high antigenicity conditions,
LB þ PD and CH þ PD have the best effect, while PD alone leads to hyperprogression.
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reinvigorate exhausted lymphocytes (25) but they also profound-
ly change the tumor microenvironment and increase T-lympho-
cyte numbers in the tumor (37). Beyond anti-PD1, LB also
encompasses effects of adoptive T-cell therapy, vaccination, and
anti-CTLA4 therapy, all of which aim to increase the number of
activated T cells in the tumor microenvironment. In contrast to
other preclinical model systems, our computer-based simulation
can actually analyze un-exhaustion (PD) and lymphocyte increase
(LB) independently of each other. Interestingly, we observe that
un-exhaustion alone (PD, as put forward previously; ref. 25) does
not result in tumor regression in any tumor phenotype (Fig. 4A–
I). However, combining un-exhaustion with increased lympho-
cyte influx does have a synergistic effect in a high antigenicity
setting (Fig. 4G–I). This is consistent with experimental findings
showing that responders to anti-PD1 therapy experience a pro-
nounced increase in lymphocyte numbers in their tumors (37).
Thus, our model recapitulates key aspects of experimental find-
ings on how the tumor microenvironment shapes immunother-
apy response, while allowingmuchmore control about the actual
processes than other in vitro or in vivo model platforms.

Personalized recommendations for combination
immunotherapy in colorectal cancer

We show that optimal responses in different tumor phenotypes
are achieved by different combination therapies. These tumor
phenotypes differed in terms of antigenicity and adjuvanticity,
two major evolutionary-ecological determinants of tumor–
immune interactions (1, 17, 24). To date, this concept has not
yet been tested in the clinic. However, our results suggest that by
using already established biomarkers such asmutational load as a
proxy for antigenicity and macrophage abundance (and possibly
other immunosuppressive factors such as stromal abundance,
TGF-beta levels (38) or macrophage abundance and polarization
status) as a proxy for adjuvanticity, personalized treatment recom-
mendations could be made. Our model can be calibrated in a
patient-specific way by using immunohistochemical data. Thus, it
can be easily incorporated into clinical trials for prospective
validation.
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