

ESO 362-G18: black hole spin and the size of the X-ray emitting region

Beatriz Agís González

Centro de Astrobiología (INTA-CSIC), Madrid, Spain

G. Miniutti, E. Kara, A. C. Fabian, M. Sanfrutos, G. Risalitti, S. Bianchi, N. L. Strotjohann, R. D Saxton and M. L. Parker

THE X-RAY UNIVERSE 2014, 16th June 2014

INTRODUCTION

I.I-Avaliable observations and our monitoring campaign

X-RAY DATA

2.1- Soft excess and Disc-Reflection Componet

- 2.2- Disc-Refection Component: Relativistic Parameters
- 2.3- Soft Time Lag
- 2.4- Joint Analysis

• UV DATA

3.1-Absorber from the clumpy torus or from the BLR???

X-RAY & UV DATA 4.1- X-Ray Emitting Region Size

CONCLUSIONS

• I. INTRODUCTION

AVALIABLE OBSERVATIONS & OUR MONITORING CAMPAIGN

• 2. X-RAY DATA

SOFT EXCESS & X-RAY DISC REFLECTION COMPONENT

DISC REFLECTION COMPONENT

WARM ABSORBER with fixed N_H

....but XXM2 is not still well reproduced....

NEUTRAL ABSORBER:

Suzaku \rightarrow UNABSORBED $C_f \leq 0.1$ XMM2 \rightarrow ABSORBED $N_H \sim 10^{22} \text{ cm}^{-2}$ $C_f \approx 0.4$

disc-reflection component V black body

• 2. X-RAY DATA

• X-RAY DISC REFLECTION COMPONENT: relativistic parameters

• 2. X-RAY DATA

• JOINT ANALYSIS: Results

VARIABILITY due to the COLD ABSORBER

Disc reflection component detected in all observations

	A MARK AND A		and the second second	and the second second second		The second of					
Variable components											
Obs.	Cold	absorber	Warm a	absorber	Contin	uum	Disc-r	effection			
	$N_{ m H}^{ m (cold)}$	$C_{ m f}^{ m (cold)}$	$N_{ m H}^{ m (ion)}$	log ξ	Г	$L_{2-10}^{(m nuc)}$	$\xi^{\rm (ref)}$	$L_{2-10}^{(\mathrm{ref})}$			
Swift XMM 1 Suzaku XMM 2	$\begin{array}{c} 0.5 \pm 0.4 \\ 35 \pm 8 \\ \leqslant 3 \\ 1.3 \pm 0.2 \end{array}$	0.5 ± 0.3 ≥ 0.94 ≤ 0.1 0.42 ± 0.04	9.15 ± 0.04 " "	$\begin{array}{c} 2.0^{(\rm XMM2)} \\ 2.0^{(\rm XMM2)} \\ 2.4 \pm 0.2 \\ 2.0 \pm 0.3 \end{array}$	2.0 ± 0.4 1.90 ± 0.09 2.12 ± 0.03 1.80 ± 0.04	$\begin{array}{c} 2.0 \pm 0.3 \\ 2.3 \pm 0.2 \\ 8.35 \pm 0.08 \\ 1.95 \pm 0.06 \end{array}$	$ \begin{array}{c} \leqslant 25 \\ \leqslant 32 \\ 16 \pm 12 \\ \leqslant 8 \end{array} $	≤ 2.0 $0.9^{+0.5}_{-0.7}$ 1.9 ± 0.2 0.9 ± 0.1			
$\chi^2/dof = 0$	3075/2928										
Chandra 1 Chandra 2 Chandra 3 Chandra 4 Chandra 5	0.8±0.2 "	$\begin{array}{c} 0.6 \pm 0.1 \\ 0.4 \pm 0.1 \\ 0.5 \pm 0.2 \\ 0.48 \pm 0.06 \\ 0.4 \pm 0.1 \end{array}$	0.20 ± 0.08 " " "	$\begin{array}{c} 2.0 \pm 1.1 \\ 1.9 \pm 0.6 \\ 2.5 \pm 1.3 \\ 2.5 \pm 0.4 \\ 2.1 \pm 0.4 \end{array}$	$\begin{array}{c} 1.7 \pm 0.2 \\ 1.8 \pm 0.2 \\ 1.8 \pm 0.3 \\ 2.1 \pm 0.1 \\ 2.0 \pm 0.1 \end{array}$	$\begin{array}{c} 2.3 \pm 0.2 \\ 3.1 \pm 0.1 \\ 1.2 \pm 0.4 \\ 4.9 \pm 0.1 \\ 3.4 \pm 0.1 \end{array}$	$ \leqslant 26 \\ \leqslant 25 \\ \leqslant 35 \\ 7 \pm 6 \\ \leqslant 19 $	$\begin{array}{c} 0.7 \pm 0.5 \\ 0.9 \pm 0.4 \\ \leqslant 1.6 \\ 1.3 \pm 0.3 \\ 1.1 \pm 0.2 \end{array}$			
21206 -	10/8/1019										

Swift

 $N_{H} \sim 5 \times 10^{21} \text{ cm}^{-2}$

C_f ~0.5

63 days

XMM1

 $N_{\rm H} \sim 3-4 \times 10^{23} \ {\rm cm^{-2}}$

C_f ≥0.94

• 3. UV DATA

• ABSORBER FROM THE CLUMPY TORUS OR FROM BLR?

 $BLR \rightarrow within R_{dust} (dust-free)$ $CLUMPY TORUS \rightarrow outer R_{dust} (dust content)$ ABSORBER from the

DUSTY CLUMPY TORUS \longleftrightarrow UV Variability

Filter	Swift ^a (unabsorbed)	XMM 1 ^b (absorbed)	XMM 2 ^b (unabsorbed)
UVW2	13.5 ± 0.6	7.9 ± 0.4	_
UVM2	12.2 ± 0.4	8.5 ± 0.4	12.4 ± 0.5
UVW1	11.8 ± 0.7	10.6 ± 0.5	9.9 ± 0.5
U	10.0 ± 0.5	10.7 ± 0.5	8.8 ± 0.4

Ε

XMM1 (X-ray absorbed) UVW2 Flux 40% absorbed UVM2 Flux 30% absorbed

ABSORBER from the DUSTY CLUMPY TORUS

+ high inclination (i = $53^{\circ} \pm 5^{\circ}$)

• 4. X-RAY AND UV DATA

SIZEAY EMITTING REGION

Fully covered X-ray emitting $\rightarrow D_X \leq D_C$ region during XMM1

$$D_X = \Delta T v_c$$

Swift and XMM1 observations are 63 days apart $\rightarrow \Delta T \leq 63 \ days$

 $\begin{array}{c} \mathbf{v_c} \leq \mathbf{v_{Kep}} \text{ at the } \mathbf{R_{dust}} \longrightarrow v_c \leq 1180 \ km \ s \\ \left\{ \begin{array}{c} \mathbf{R_{dust}} \sim \mathbf{0.4L_{Bol,45}} = \mathbf{0.14 \ pc \ Nenkova \ et \ al.(2008)} \\ \mathbf{L_{Bol}} = \mathbf{1.3} \cdot \mathbf{10^{44} erg \ s^{-1}} \end{array} \right\} \end{array}$

 $D_X \le 96 \ r_g \ M_{best}/M_{BH}$

 $n_c \le 6.7 \times 10^8 \ cm^{-3}$

for BLR $n_c \ge 10^9 \text{ cm}^{-3}$

ABSORBER from the DUSTY CLUMPY TORUS

• 5. CONCLUSIONS

- THE DETECTION OF A SOFT TIME LAG
- ABOSORBER FROM THE CLUMPY TORUS supported by: < -</p>

High Inclination*
UV data

• BOTH X-RAY CONTINUUM AND SOFT EXCESS ORIGINATE IN A COMPACT REGION WITHIN ~50 r_{g}

Ba

• FUTURE WORK

Seyfert 2 (30/01/2003)

Seyfert 1 (18/09/2004)

ABSORBER from the

e DUSTY CLUMPY TORUS

• JOINT ANALYSIS: Scattered components

Extended Photoionized Gas

SOFT SCATTERED COMPONENT:

Soft Power Law only absorbed by Galactic Column Density

Absorption due to a clumpy structure HARD SCATTERED COMPONENT: phenomenological model used by Minutti et. al (2013)

ABSORBED POWER LAW: -Same Γ and normalization

as the nuclear continuum
Free column Density
Multiplied by a factor(0-1)

