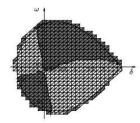
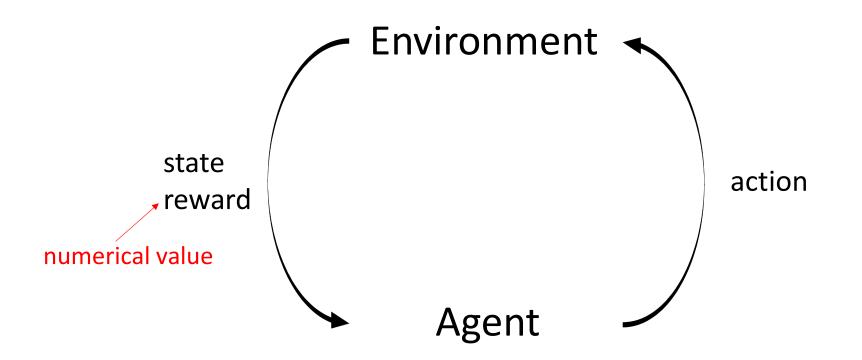
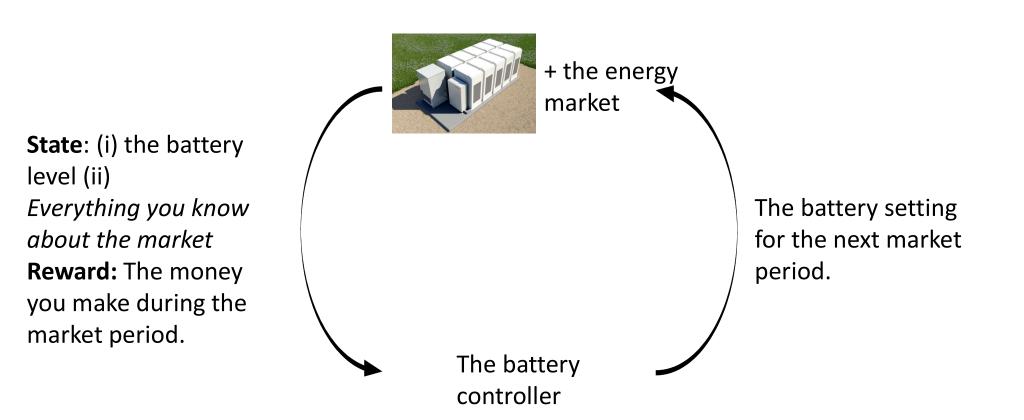
Reinforcement learning, energy systems and deep neural nets



Prof. Damien ERNST





electric power system control/decision				(Automatic) generation		elig. traces Q-learning	Daneshfar and Bevrani (2010)
Problem	Type of control	RL method	Reference(s)	control)		$R(\lambda)$	Ahamed et al. (2002) Yu et al. (2012b)
Electricity market simulation	Market decision	Q-learning	Harp et al. (2000) Rahimiyan et al. (2010) Nanduri and Das (2007)	Economic dispatch	Normal	Q-learning	Jasmin et al. (2011) Yu et al. (2016)
			Lincoln et al. (2012) Kim et al. (2016) Krause et al. (2006)	Wide-area control	Emergency	TD Q-learning	Yousefian et al. (2016) Yan et al. (2016) Hadidi and Jeyasurya (2013)
Transient angle	Emergency	Q-learning	Ernst et al. (2004) Glavic (2005)	Households control	Normal	Q-learning	
instability		Fitted Q	Glavic et al. (2005a) Glavic et al. (2005b) Li and Wu (1999) Ernst et al. (2009)	Wind generation control	Normal	Q-learning $Q(\lambda)$	Wei et al. (2015) Tang et al. (2015) Yu et al. (2012a)
		iteration Policy search	Mohagheghi et al. (2006)	Demand control	Normal	Fitted Q iteration	Ruelens et al. (2016) Vandael et al. (2015)
angle	Emergency	Q-learning	Ernst et al. (2004) Wang et al. (2014)	System restoration	Restorative	Q-learning	Ye et al. (2011)
instability			Glavic et al. (2005a) Ademoye and Feliachi (2012) Karimi et al. (2009)	Congestion management	Emergency	Q-learning	Zarabbian et al. (2016)
Voltage control	Normal	Q-learning	Xu et al. (2012) Vlachogiannis et al. (2004)	Microgrids control	Normal	Q-learning Policy search	Khorramabady et al. (2015) Li et al. (2012) Venayagamorthy et al. (2016)

AGC

Normal $Q(\lambda)$ with

Yu et al. (2011)

Table 1. Summary of RL considerations for

Table taken from: "Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives". M. Glavic, R. Fonteneau and D. Ernst. Proceedings of the 20th IFAC World Congress.

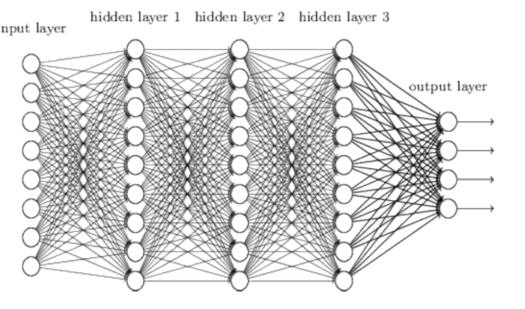
Learning:

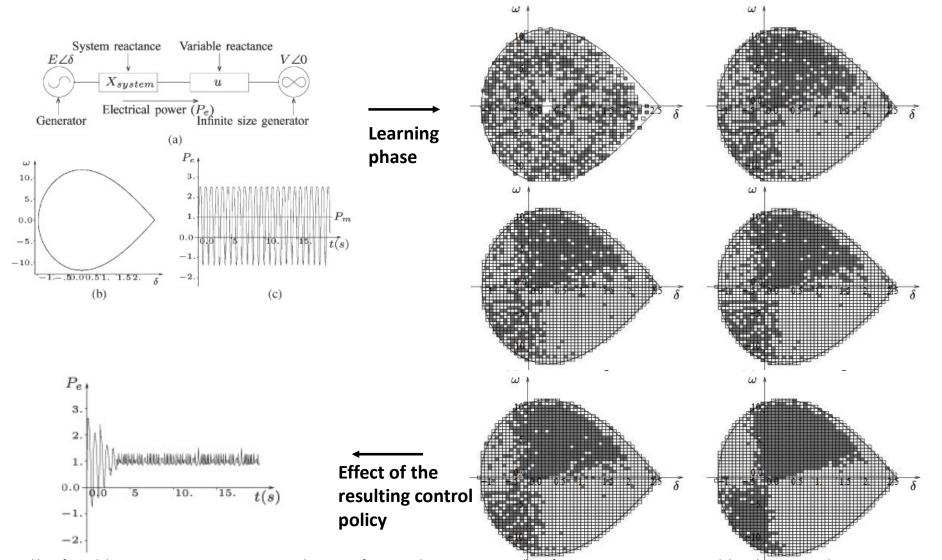
Input : x_t, u_t, r_t and x_{t+1} $\delta \leftarrow (r_t + \gamma \max_{u \in U(x_{t+1})} Q(x_{t+1}, u)) - Q(x_t, u_t)$ $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \delta$

Exploration/exploitation: Not always take the action that is believed to be optimal to allow exploration.

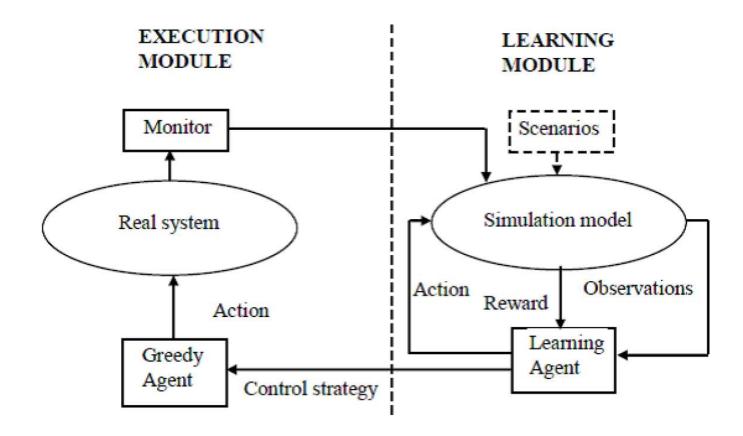
Generalization: Generalize the experience gained in some states to other states.

			Wall	+1
	Wall		Wall	
	Wall			
	Wall			
			-1	-1
Start		-1	-1	+1





First control law for stabilizing power systems every computed using reinforcement learning. More at: "Reinforcement Learning Versus Model Predictive Control: A Comparison on a Power System Problem". D. Ernst, M. Glavic, F.Capitanescu, and L. Wehenkel. IEEE Transactions on Systems, Man, An Cybernetics—PART B: Cybernetics, Vol. 39, No. 2, April 2009.



Reinforcement learning for trading in the intraday market

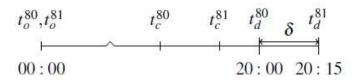


Figure 1: Trading time-line for products Q-80 and Q-81

Table 1: Order Book for Q-80 and time-slot 20:00-20:15

i	Туре	v [MW]	<i>p</i> [€/MWh]	
4	"Sell"	6.25	36.3	
2	"Sell"	2.35	34.5	← ask
1	"Buy"	3.15	33.8	\leftarrow bid
3	"Buy"	1.125	29.3	
5	"Buy"	2.5	15.9	

- Complex problem:Adversarial environment
- Highly dimensional Partially observable
- ٠

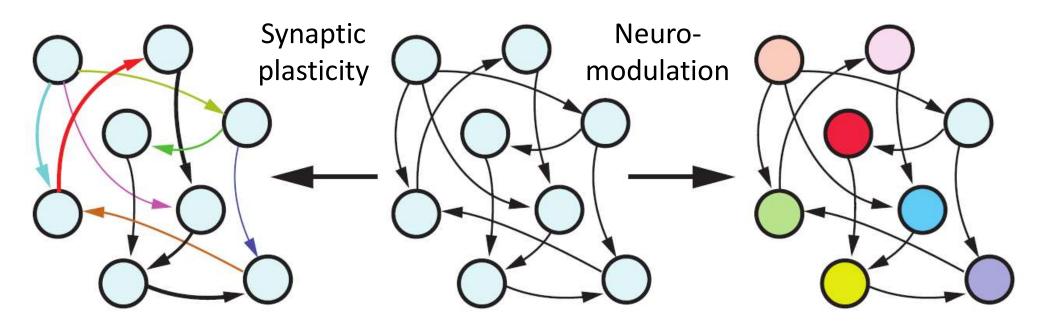
Best results obtained with optimisation of strategies based on past data together with supervised learning to learn from the optimised strategies (imitative-learning type of approach)

More: "Intra-day Bidding Strategies for Storage Devices Using Deep Reinforcement". I. Boukas, D. Ernst, A. Papavasiliou, and B. Cornélusse. Proceedings of the 2018 15th International Conference on the European Energy Market (EEM).

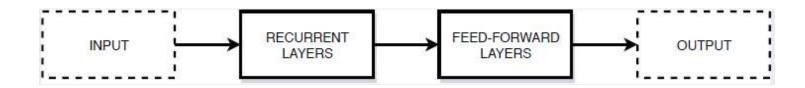
"A critical present objective is to develop deep RL methods that that can adapt rapidly to new tasks."

Deepmind, "Learning to reinforcement learn." (2016).

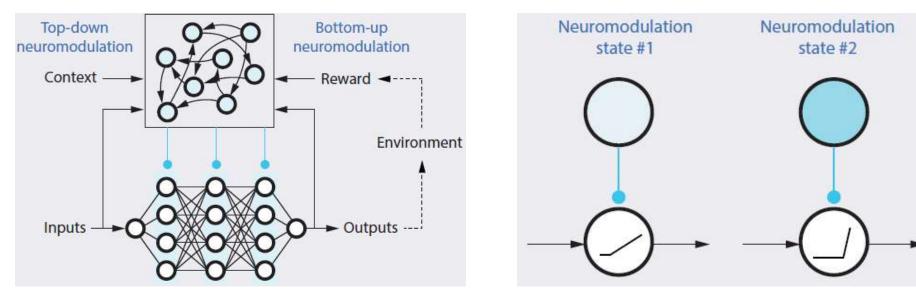
Walking: a meta-RL problem solved through synaptic plasticity and neuro-modulation



Classical architecture for solving meta-RL problems:



Our new architecture:

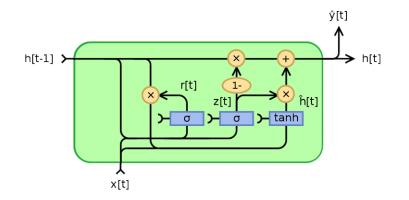


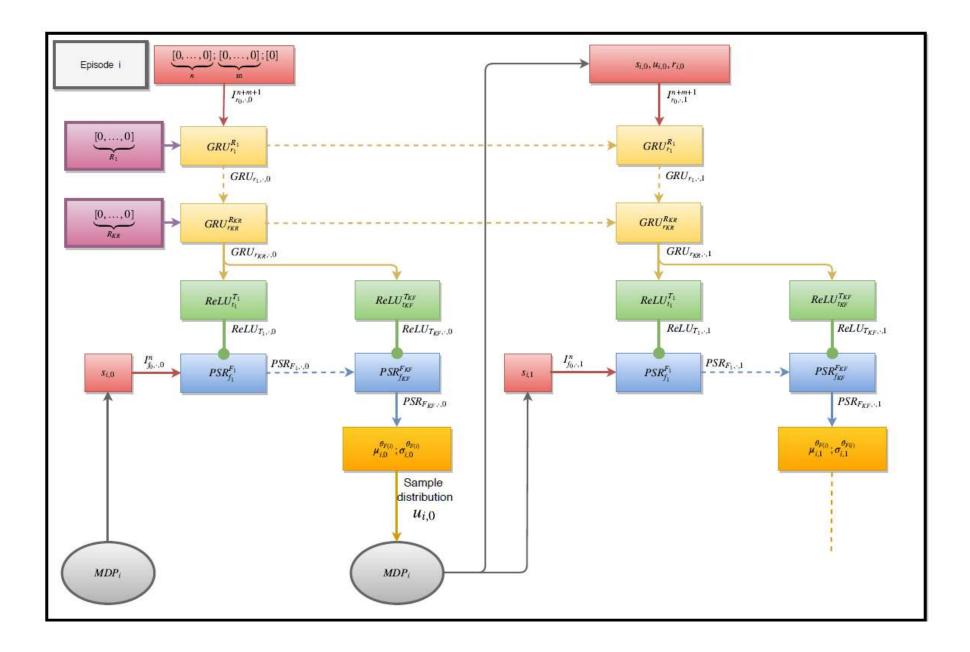
Rectified Linear Unit: ReLU(x) = max(0, x)

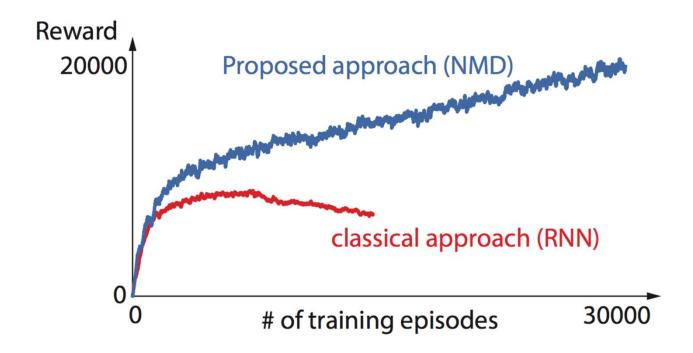
Saturated Relu: sReLU(x) = min(max(-1, x), 1)

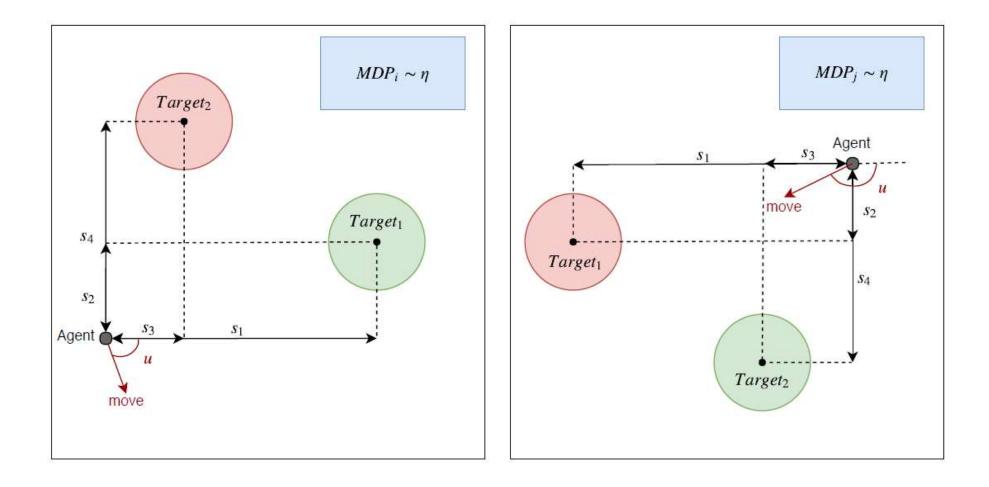
Parametrized sRelu: PSR(x) = sReLU(m * x + a)

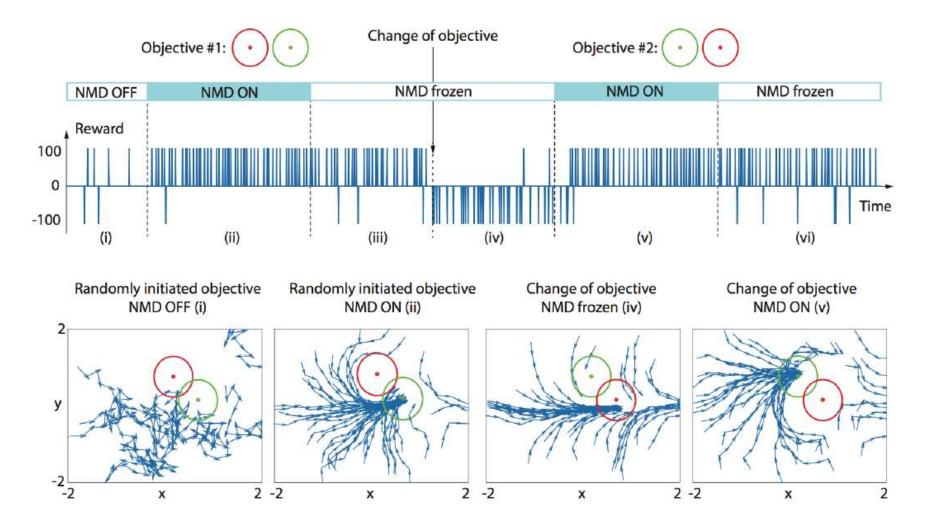
Gated Recurrent Unit: GRU











More: "Introducing neuromodulation in deep neural networks to learn adaptive behaviours". N. Vecoven, D. Ernst, A. Wehenkel and G. Drion. Download at: <u>https://arxiv.org/abs/1812.09113</u>