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Summary

Remote sensing of planetary and cometary atmosphere is one of the most important source of

data and knowledge of the gas layers surrounding the celestial objects of our solar system,

including our own planet. Most of the instruments used up to now and that will be used in a near

future study the emission of radiations directly produced by the atmosphere. Under optically thin

conditions, this observation method provides the local volume emission rate (VER) originating

from the atmosphere, integrated along the full line of sight (l.o.s.) of the instrument. Under a

spherical or cylindrical symmetry assumption, the l.o.s. integration of the VER takes the form of

the Abel transform of the vertical VER profile. The simplest analytical functions representing VER

profiles in real planetary and cometary atmosphere include an exponential function of the altitude

(or radial distance), giving the isothermal profile for a planet and the Haser model for a coma. The

Abel transform of these functions can be computed analytically using combinations of special

functions. Retrieving the vertical (radial) profile of the VER does however require to invert the

observed Abel transform to account for possible departures from these idealized analytical

expressions, so that indefinite integrals defined from the Abel integral (which we will call

indefinite Abel transforms) are needed (or numerical integrations need to be performed).

In this study, we present a new method to produce a workable series development allowing

accurate computation of the indefinite Abel transforms that appear in the study of optically thin

emissions of planetary and cometary atmospheres. Indeed, taking the Taylor series development of

the exponential function to reduce the problem to a series of indefinite Abel transforms of

polynomial functions (which can be carried analytically) does not work. It leads to the

computation of the difference of large, nearly equal numbers, which cannot be done accurately.

Our method rather relies on an appropriate series development of the Jacobian of the Abel

transform. We show that the computation can be done reliably up to near machine precision, and

that accuracy control can be enforced for tailored applications. Possible applications are

considered, that include the study of comas and of the upper atmosphere of Mars and the Earth.
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Atmosphere remote sensing: Abel transform

Remote sensing instruments used to study the emissions of the atmosphere of celestial

objects (planets and comets) produce observations that integrate the atmosphere volume

emission rate (VER) along the instrument line of sight (l.o.s.), in the optically thin case. When

the VER can be assumed to have a spherical symmetry, this l.o.s. integration is called the Abel

transform of the VER.

Function f(r) represents the VER and F(r0) its Abel transform as a function of the tangent

radius of the l.o.s. . The VER profile can have several functional expressions. In planetary

atmosphere, it is often represented by an exponential profile (5) or by a Chapman profile (6). In

cometary atmospheres, the gas is expanding from the nucleus and the density profile follow a

Haser model with different expressions for chemically inert (2), parent species (3) (that can be

dissociated by EUV, for example) and daughter species (4), that result from the dissociation of

the parent molecules and can be photochemically destroyed as well. These models all share an

exponential dependency, at least on their top side. The expansion of the coma also bears a 1/r2

dependence as a result of mass conservation, and the photochemical life time of species translate

to a characteristic length.
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Abel transform of function f(r) along a line of sight 

with a tangent point located at the radial distance r0:
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Retrieving the volume emission rate based on the knowledge of its Abel transform is, in

principle, feasible using the analytical inversion formula:

Applying this formula to real observation is however difficult because the derivative of the

observation can be dominated by the noise, the profile needs to be known up to high altitude, and

a sufficiently high sampling is needed to reliably carry the integration. One generally resorts to

least squares fitting methods to overcome these drawbacks.

Inverse Abel transform using least squares 

fitting

The general idea of numerical Abel transform inversion is to represent the volume emission rate

(VER) using locally defined functions, such as a set of line segments (i.e. a piecewise linear

function) of which the Abel transform can be computed, and determine the parameters of each

piece by fitting the Abel transform of the piecewise-defined vertical profile on the observation,

so that the volume emission rate profile is immediately known.

The first method that comes to mind is to represent the VER with line segments. This choice

clearly illustrates the principle of the method: a piecewise linear function can be represented by

the linear combination of triangular functions tk(r) defined on overlapping intervals. The Abel

transform Tk(r0) of each triangle tk(r) can be computed, and a linear combination of the Tk’s can

be fitted over the observed F(r0) denoting 𝜒Ω 𝑟 the function that is 1 for r  Ω, and 0 otherwise:
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Computing the Abel transform of individual triangular

elements requires the computation of indefinite integrals

constructed from the Abel transform. This can be done

when the elements only contain powers of r. The 1/r2

dependence of the Haser model was used previously to

modify the tk’s and better represent cometary

atmospheres using the following expressions:
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Once the Abel transform of the triangular elements is know, the inverse Abel transform

problem reduces to a linear system solving the least squares fitting of the data, generally with a

Tikhonov regularization weighted by a parameter . We apply a regularization matrix that

computes the second derivative of the fitted ak’s, as if they were a function of the radial distance:

this penalizes noisy variations.
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Including the explicit 1/r2 dependence in the analysis of cometary emissions revealed very

efficient and allowed to retrieve the emission rate profile of comets departing from the expression

of equation 2.

Adapting the method to atmospheres such as the Haser model for chemically active species

(eq. 3 and 4) and to atmospheric profiles (eq. 5 and 6) requires to multiply either the tk’s or the

uk’s by a decreasing exponential function, and to compute the same integrals as (7) and (8). No

analytical expression is known for these ones, and taking the Taylor series development of the

exponential function before integrating produces alternating series with differences of nearly

equal large numbers, not suitable for numerical applications. We use another series development

to avoid that problem: we compute the series development of
1

𝑦2−1
about its limit at infinity.

(7)

(8)

Abel transform of exponential profiles
Computing the full Abel transform (eq. 1) of functions such as the density profiles of equations

2, 3, 4 can be done analytically and produce results expressed using special functions. We define
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That corresponds to the integrals needed 

for planetary and cometary atmospheres, 

depending on the sign of n.

The complete Abel transform corresponds to x=1, and for n>0, it is found that
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All the integrals that appear in the series development giving Jn(x,q) can be computed using 

incomplete gamma functions and exponential integral functions:

When n < 0, the full Abel transform of the Haser model can be computed using:
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Struve-L.
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For cometary atmospheres, n is negative and the above expressions simplify somewhat 

redefining the integrals to keep n>0:

Accuracy control can be achieved approximating the factorials with the Stirling formula and 

introducing the Lambert W(z) function defined as the reciprocal function of  w ew. The general 

term of series (11) and (12) becomes smaller than accuracy 𝑎 when 
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These expressions give large values for kmax, especially for integration ranges approaching the 

tangent point r0. (When the integration starts at r0, full Abel transform expressions must be used). 

When accuracy control is not an issue, numerical integration methods can be preferred, avoiding 

the singularity near the tangent point using an integration by parts. This idea can also be used 

when analytical expressions are not available, such as for the Chapman profile (6): 

(For series 11)

(For series 12)
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Taylor series of h(z) about z=0

Conclusions:
• Explicitly including the functional dependence of atmospheric profiles in inverse Abel transform 

retrieval can improve the quality of the inversion, both for planetary and cometary atmospheres.

• Analytical expressions can be derived for all the elements involved in inverse Abel transform least 

squares methods including an exponential dependency and expressed as a series with explicit 

accuracy control.

• When accuracy control is not crucial or when computation time is an issue, numerical integration can 

also be used instead of  the analytical series.

• Inversion of real data from planetary and cometary atmospheres can be improved by the explicit 

inclusion of the theoretical expression of the density profile in the inverse Abel transform method, 

but it must be used with care when the real profile is expected to depart from the assumed one and 

when the exponential dependency produces a curvature that biases the fitting process.

Tests and applications
We conducted several tests aimed at assessing the properties of the inversion methods applied to

artificially simulated signals, including a noise:
Inverse Abel transform retrieval of a noisy

exponential profile using linear triangular

elements (i.e. no explicit exponential

dependency) and Tikhonov regularization. The

discrepancy at low altitude is due to the

regularization that tends to minimize the second

derivative (proportional to the signal). It can be

cured by reducing parameter c in eq. (9), the

benefit of the regularization is then lost as well.

Inverse Abel transform retrieval of a noisy

exponential profile using triangles multiplied

by an exponential, with regularization. The

scale height of the profile is also retrieved by

the fitting method. The local quantity (~volume

emission rate) is retrieved with minor

uncertainties at all altitudes
(a): L.o.s. integration of f as a function of tangent altitude with a noise (dotted lines) and fitted profile (dashed lines and diamonds,

shades for ±1- range: light for the “data”, dark for the retrieval). (b): Emission rate retrieved by inverse Abel transform of the

simulated observation of panel (a) (dashes, diamonds and shades for the ±1- range)

Best χ2 as a function of the scale height

assumed for the exponential function

used in the inverse Abel transform fitting

of the profile shown above, with and

without a noise added to the simulated

“observation”. The retrieved scale height

matches the exact one within 10%, better

than the applied noise level.

Without noise.

With noise.

Retrieval of the O(1S) →O(3P) emission

rate at 297.2 nm of planet Mars, based on

MAVEN-IUVS observations (Gkouvelis

et al., 2018) obtained in April and May

2017, for 0° < Lat < 10°, SZA=25±3.1°.

The modelling of the emission (shown

below) has similar peak altitudes and

ratio between both peaks, despite the

different absolute values.

Using tk(r) Using tk(r) exp(-r/H)

Better retrieval quality 

when including the 

exponential.

103P/ Hartley 2

A1/ Siding Spring

Test of a cometary atmosphere

Departure due to 

excessive regularization

Inversion of  pseudo-data 

simulated using a Haser

model for daughter 

species. The emission 

rate is reliably retrieved 

Application to 

observations of comets 

103P/ Hartley 2 and A1/ 

Siding Spring obtained 

by the TRAPPIST 

telescope. The Hartley 2 

flux is reliably retrieved 

using both the tk/r
2

(green) and the 

tk/r
2*exp triangular 

elements (red). The A1/ 

Siding Spring produced 

an outburst an departs 

from the classical Haser
model. The fitted flux departs from the observation when the exponential 

dependence is included. This is due to an excessive regularization 

(parameter c=1 is too large) as the second derivatives represented by the 

regularization matrix becomes intrinsically large.
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