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Abstract 13 

Outcrops in the southeastern Democratic Republic of the Congo (DRC) are recognized as 14 

some of the largest copper–cobalt orebodies in the world. They support a unique vegetation 15 

with nearly 600 metallophytes that include rare and endemic species. Mineral exploitation has 16 

increased considerably in the region since the 1900s, affecting both environmental and public 17 

health. Phytostabilisation of polluted areas represents an opportunity to decrease the 18 

bioavailability of heavy metals in the highly polluted soils that result from ore extraction. 19 

Such a technique has been successfully implemented near Lubumbashi with the grass 20 

Microchloa altera. However, long-term maintenance requires a good understanding of 21 

interspecific relationships, such as competition and facilitation. This study tested the 22 

establishment success of four herbaceous species from the Katangan Copperbelt by assessing 23 

the potential role of M. altera as a nurse species. Two annual and two perennial species were 24 

sown in an experiment designed to study the influence of soil amendment and vegetation 25 

cover on seedling emergence, growth, and survival. These variables were monitored during 26 

the vegetation growing season as well as resprouting success for perennials. Microchloa 27 

altera showed a distinct effect on the emergence and survival of annual and perennial species 28 

and negatively affected the growth of individuals belonging to both groups of species. 29 

  30 



Introduction 31 

Copper outcrops are widespread around the world (Prasad 1989; Shallari et al. 1998; Gonnelli 32 

et al. 2001; Tembo et al. 2006; Ke et al. 2007; Lorestani et al. 2011; Saad et al. 2012; 33 

Battogtokh et al. 2013). The southeastern Democratic Republic of the Congo (DRC) hosts 34 

some of the largest copper (Cu) and cobalt (Co) orebodies in the world. They are scattered 35 

over an area more than 300 km long and 50 km wide named the Katangan Copperbelt 36 

(Duvigneaud and Denaeyer-De Smet 1963; Cailteux et al. 2005). The mineralized areas of the 37 

Roan Series are part of the Mines Series, which developed during the Quaternary Period 38 

(François 1973). Sediments partially covered the Cu-Co outcrops and led to the formation of 39 

“copper hills” characterised by soils naturally enriched with Cu and Co. From the top to the 40 

bottom of the hills, these soils show an increase in depth and a decrease in heavy metal 41 

concentrations (Duvigneaud and Denaeyer-De Smet 1963).  42 

The copper hills support a unique biodiversity with nearly 600 metallophytes occurring in 43 

plant communities determined by edaphic factors, including heavy metal concentrations (e.g. 44 

Cu and Co) and soil pH (Leteinturier 2002; Saad et al. 2012; Séleck et al. 2013; Malaisse et 45 

al. 2016). Two plant communities have been identified according to the heavy metal 46 

concentrations in soils: the steppic savannah, found at the base and on the lower slopes of the 47 

hills (less than 3,500 mg kg−1 and 50 mg kg−1 of EDTA-available Cu and Co), and the steppe, 48 

found on the upper parts of the slopes (from 3,500 mg kg−1 to 10,000 mg kg−1 and 50 mg kg−1 49 

to 1,000 mg kg−1 of EDTA-available Cu and Co) (Séleck et al., 2013). Among all recorded 50 



taxa, 56 have been identified as Cu endemics with 44 threatened with extinction (i.e., 51 

Vulnerable, VU; Endangered, EN; and Critical, CR) based on IUCN criteria (Faucon et al. 52 

2010). In situ and ex situ conservation strategies have already been implemented with a 53 

mining company, but such methods are focused on small to medium scale conservation areas 54 

(Semereab et al. 2009; Le Stradic et al. 2016).  55 

Mining operations contribute to the spread of heavy metals in the environment (Li et al. 2001; 56 

Järup 2003; Blacksmith Institute 2007; Narendrula et al. 2012; Sharma et al. 2014; Sherameti 57 

and Varma 2015). In southeastern DRC, industrial mining started in the early 1900s near 58 

Lubumbashi (then known as “Elisabethville”). Copper and Co were produced in several 59 

hydrometallurgical plants and smelters, which emitted zinc, arsenic, and cadmium as by-60 

products (Prasad 1989). These activities increased heavy metal concentrations in the 61 

environment, leading to unfavourable physicochemical soil conditions and limited vegetation 62 

establishment. In addition, mining activities act as an important source of ground and/or water 63 

pollution that puts the health of human populations at risk (Banza et al. 2009; Manda et al. 64 

2010; Shutcha et al. 2010; Cheyns et al. 2014).  65 

Phytostabilisation is a suitable technology to decrease the bioavailability of heavy metals in 66 

highly polluted soils (Berti and Cunningham 2000). While this method significantly reduces 67 

human and animal exposure to heavy metals (Zhang et al. 2010; Kacprzak et al. 2014; 68 

Shutcha et al. 2015), large scale experiments often lead to the establishment of monospecific 69 

communities. The criteria used for species selection (high biomass production, dense root 70 



systems, or large quantity of propagules) greatly restrict the choice to a limited number of 71 

specialists (Rizzi et al. 2004; Mench et al. 2006; O’Dell and Claassen 2006; Mendez and 72 

Maier 2008; Shutcha et al. 2010; Parra et al. 2014; Boisson et al. 2016a).  73 

Facilitation is a positive interaction in assembling ecological communities and is recognized 74 

as an important conditional factor for the success of phytoremediation strategies (Frérot et al. 75 

2006; Brooker et al. 2008; Parraga-Aguado et al. 2013; Wang et al. 2014). It occurs when a 76 

plant species, referred to as a nurse plant, facilitates the establishment of other species by 77 

locally changing biotic and/or abiotic conditions, such as light and nutrient availability 78 

(Brooker et al. 2008; Soliveres et al. 2010; Bonanomi et al. 2011; Beltrán et al. 2012). The 79 

identification of nurse plants is important to improve germination, growth, and survival of a 80 

diversity of plant species in heavy metal-polluted environments (Frérot et al. 2006; Padilla 81 

and Pugnaire 2006; Parraga-Aguado et al. 2013; Wang et al. 2014).  82 

While the conservation of threatened endemic or rare species can fail, their integration into 83 

projects as key players in phytostabilisation has become a new challenge officially recognized 84 

by the Global Strategy for Plant Conservation (Secretariat of the Convention on Biological 85 

Diversity 2014). Along with the growing awareness of biodiversity in post-mining restoration 86 

practices, threatened metallophytes from the southeastern DRC could be associated with 87 

rehabilitation or phytostabilisation strategies (Whiting et al. 2004; International Council on 88 

Mining and Minerals (ICMM) 2006; Baker et al. 2010; Faucon et al. 2010; Faucon et al. 89 

2011). Some tolerant grasses have been reported as suitable candidates for phytostabilisation 90 



programmes (Shutcha et al. 2010; Boisson et al. 2016a) and Microchloa altera has been 91 

successfully tested in situ near Lubumbashi (Shutcha et al. 2015). This species can provide a 92 

basis from which to conduct experiments to create a new dynamic of species colonization and 93 

diversification in phytostabilised areas. 94 

The present work aimed to test the potential role of M. altera as a nurse plant for the 95 

establishment of four species of high conservation value in the Katangan Copperbelt: 96 

Anisopappus davyi, Crotalaria cobalticola, C. peschiana, and Triumfetta welwitschii var. 97 

rogersii. 98 

Methods 99 

Plant material and seed collection 100 

The four studied taxa are found in the southeastern DRC in the Katangan Copperbelt 101 

(Leteinturier 2002; Faucon et al. 2010). Anisopappus davyi S. Moore (Asteraceae) is a 102 

pseudo-annual species occurring in natural Cu-rich steppes and in disturbed soils. It is not an 103 

endemic species but has been recognized as a hyperaccumulator, and indicator of Cu in soils 104 

(Faucon et al. 2010). The flowering period occurs between January and April and the fruiting 105 

time ranges from April to August. The species grows slowly and develops a fasciculated root 106 

system of up to 10 to 15 cm in depth at the adult stage. Crotalaria cobalticola P. A. Duvign. 107 

& Plancke (Fabaceae) is an annual species. It is present in Cu-Co outcrop steppes. This strict 108 

endemic is listed as Least Concern (LC) in the IUCN classification. Flowers appear in April-109 



May and fruits mature shortly afterwards, between May and June. It has a shallow root system 110 

of 10 cm depth at the adult stage. Crotalaria peschiana P. A. Duvign. & Timp. (Fabaceae) is 111 

a perennial. It is also a strictly endemic species proposed as Critically Endangered (CR) which 112 

is found in the steppic savannah of Cu-Co outcrops (i.e., the lower part of the outcrop) 113 

(Duvigneaud et al., 1959, Faucon et al., 2010). The main flowering event occurs at the end of 114 

the dry season in August–September, with seeds being produced shortly thereafter. A second, 115 

minor, flowering event can occur at the end of the growing season (April–May). Its rooting 116 

system includes xylopodia (tuberous roots). Triumfetta welwitschii var. rogersii (N. E. Br.) 117 

Brummitt & Seyani (Malvaceae) is a perennial suffrutex identified as a strictly endemic 118 

species of the Katangan Copperbelt. It has been classified as data deficient (proposed IUCN 119 

status: DD). This taxon is found in both the steppe and the steppic savannah of Cu-Co 120 

outcrops. Flowers appear after fires usually at the end of the dry season in September–121 

October. Fruits mature shortly after and co-occur with the flowers. It produces a deep and 122 

woody taproot up to 1 m in depth. 123 

The seeds of each taxon were sampled from three seed lots from the University of 124 

Lubumbashi (DRC) seedbank, except for C. peschiana for which only one population was 125 

selected as the species has been reported in too few sites to allow the collection of numerous 126 

seeds (Faucon et al. 2010). During seed collection, a minimum of 50 mature and well-127 

developed individuals were targeted to obtain numerous and genetically diverse mature seeds. 128 

Because the four species selected for this study are associated with different conservation 129 



strategies (i.e., long-term conservation for A. davyi and C. cobalticola and short term 130 

conservation for C. peschiana and T. welwitschii), their seeds were conserved in different 131 

conditions for use in propagation programs (Table 1). Anisopappus davyi and C. cobalticola 132 

were stored in ultra-dry conditions at 25 °C, while C. peschiana and T. welwitschii were 133 

stored at 5 °C. Seedlots for each species were established prior to the experiment by pooling 134 

the seeds from different seed samples. 135 

Study site  136 

The study was performed in Lubumbashi (southeastern DRC). The city of Lubumbashi is 137 

located at the extreme south of the Katangan Copperbelt at an altitude of around 1,200 m. 138 

This area has a subtropical climate with a rainy season extending from November to the end 139 

of March and a dry season from April to October.  140 

This study was based on a phytostabilisation experiment performed by Shutcha et al. (2010). 141 

Our work was performed in semi-controlled conditions in the experimental garden of the 142 

University of Lubumbashi (11°27’S, 27°28’E). The experiment consists of 24 1 m2 plots, the 143 

soil of which was artificially enriched with copper sulphate (around 1000 mg kg-1) in 2008 144 

(Shutcha et al. 2010). Three different types of soil amendment (lime, organic matter, or 145 

unamended) and two types of vegetation cover (with or without vegetation cover) were tested 146 

using a full factorial design. In the amended plots, 1 kg of limestone or 22.5 kg of organic 147 

matter was mixed into the first 15 cm of soil in 2008. To limit border effects, all plots with the 148 

same type of vegetation cover were spatially grouped. The vegetation cover consisted of 149 



individuals of M. altera (Rendle) Stapf (Poaceae) transplanted in 2009. This species, a 150 

caespitose perennial grass forming compact tufts, is frequently found on disturbed sites in the 151 

southeastern DRC where it is identified as the first coloniser of mineralized soils impacted by 152 

mining activities, and where it can form monospecific stands (Duvigneaud and Denaeyer-De 153 

Smet 1963; Shutcha et al. 2010). 154 

Experiment under controlled conditions 155 

Two distinct experiments were performed (Fig. 1). For both annuals (Year 1, Fig. 1) and 156 

perennials (Year 2, Fig. 1), 30 seeds of a single target species were sown in a 1 m2 plot. The 157 

seeds were sown at a depth of 1 cm and homogeneously distributed using a grid of six lines 158 

and five columns. A border with a minimum width of 10 cm was left on each side of the plots. 159 

Soils were slightly ploughed at the sowing location to create favourable germination 160 

conditions and avoid seed runoff. Two replications per species were performed. 161 

In the first year (Year 1), the annual species A. davyi and C. cobalticola were sown in 162 

February 2013. Emergence and survival rates were measured once a week until the last week 163 

of April 2013. The height of each individual and the number of leaves were measured at the 164 

end of the growing season between 15–18 April. In the second year (Year 2), the perennial 165 

species C. peschiana and T. welwitschii were sown in November 2013 and emergence and 166 

survival were monitored from February 2014 to March 2014. The height and number of 167 

leaves were measured from 15 to 18 April 2014 (Fig. 1). For the perennial species only, we 168 



measured the resprouting and the growth (number of leaves and height) at the end of the 169 

growing season, in April 2015 (Year 3). 170 

Experiment under in situ conditions 171 

The four test species were also sown in a polluted area located near Lubumbashi to simulate a 172 

practical case. For 40 years, the area has been contaminated by the deposition of metalliferous 173 

fallout coming from the Cu smelter (Gécamines) located 2 km west of our experimental site  174 

(Prasad 1989; Shutcha et al. 2015). This site has been populated despite elevated Cu, Co, and 175 

Al concentrations in the soil (Narendrula et al. 2012; Faucon et al. 2012; Shutcha et al. 2015). 176 

A phytostabilisation test was implemented in 2008 with four types of limestone amendments 177 

(control, 0.25, 0.5, or 1 kg m−2) crossed with three types of organic matter addition (control, 178 

4.5, or 22.5 kg m−2) (Shutcha et al. 2015). Each 1 m2 plot received 16 transplanted individuals 179 

of M. altera to establish a vegetation cover. Before the start of our experimentation, M. altera 180 

successfully colonized all the experimental plots, representing a total surface of 72 m2. In 181 

2014, Cu and Ca concentrations, pH, and organic matter content (Corg ‰) did not differ 182 

between treatments: 2,826 ± 2,230 mg kg−1 Cu (Mean ± SD), 1,18.1 ± 53.7 mg 100 g−1 Ca, 183 

13.7 ± 6.1 ‰ of organic C, and a pH KCl of 6.5 ± 0.7. The four species were sown using the 184 

same grid method as the one described earlier for the experiment performed under controlled 185 

conditions. In total, 720 seeds of each species were sown in 60 plots to assess their 186 

establishment. Seedling emergence and survival at the end of the first growing season, as well 187 

as resprouting were recorded after one dry season (March 2015).  188 



Soil analysis 189 

In 2013, soil samples were taken from two composite subsamples collected from the topsoil 190 

(15 cm). Prior to physicochemical analyses, soil samples were air-dried and 2 mm-sieved. The 191 

pH was measured in 1N KCl with a glass electrode in a 2:5 soil /solution ratio after 2h of 192 

equilibration time. Then, the total organic C and N contents were measured in soil samples 193 

after dry combustion: C and N were oxidized to CO2, NOx and N2 by heating the soil to at 194 

least 900°C in a flow of oxygen-containing gas. The amount of CO2 released was then 195 

measured by Gas Chromatography (GC) and the N content by means of thermal conductivity 196 

detection (Margesin and Schinner 2005). Finally, soil extractable concentrations of Cu and 197 

manganese (Mn) were measured using 0.5N CH3COONH4–EDTA (Lakanen and Erviö 1971). 198 

The soil/solution ratio was fixed to 1:5. For the extraction solution, the pH was buffered at 199 

4.65 (Kucak and Blanuša 1998; Faucon et al. 2009; Saad et al. 2012). The supernatant was 200 

filtered through an S&S 595 folded filter and analysed using a flame atomic absorption 201 

spectrometer (Varian 220), following the norm NF X 31-120.  202 

Data treatment 203 

Kruskal-Wallis rank sum tests followed by Bonferroni tests were performed to compare 204 

nutrient contents and metal concentrations in soil samples. The percentage of emergence was 205 

calculated as the ratio between the maximum of emergence (annual species) or the maximum 206 

number of individuals during February (perennial species) and the total number of seeds sown 207 

in the plots. The percentage of survival was the ratio between the number of seedlings 208 



occurring at the end of the growing season (April 2013 for annual species and April 2014 for 209 

perennial species) and the maximum number of emerging seedlings. These two parameters 210 

were calculated for each species and each plot. When normality and homoscedasticity were 211 

not met, raw data were transformed using an arcsin of square formula before fitting a two-way 212 

ANOVA model (vegetation cover × amendments). The height and number of leaves were 213 

compared with a linear mixed effects model (LME) using the 1 m2 plots as a grouping factor. 214 

We determined probability values (P) with a likelihood test, which consisted of model 215 

comparison. When the data did not meet the assumptions of homoscedasticity and normality, 216 

they were log or square-root transformed. For the two perennial species, the percentage of 217 

resprouting individuals was calculated as the ratio between the number of resprouts and the 218 

total number of individuals at the end the growing season (2014). For this analysis, treatments 219 

were combined and a LME model was fitted to the data. Means were structured by Tukey's 220 

range test (HSD) with an error rate of 5%. Analyses were carried out using the R software 221 

version 3.0.1 (R Development Core Team 2010). 222 

Results 223 

Experiment in controlled conditions: edaphic variables 224 

As expected, soil amendments did not induce differences in available Cu concentrations 225 

(1,034 ± 248 mg kg−1 Cu, X2 = 2.66, P = 0.26, Table 2) but led to distinct Ca concentrations in 226 

the soil (Table 2). Soils enriched with lime had greater Ca concentrations (34.2 ± 10.4 mg 227 

100g−1 Ca, X2 = 12.7, P < 0.01) than the ones enriched with organic matter (12.6 ± 4.9 mg 228 



100g−1 Ca) or unamended soils (17.2 ± 11.4 mg 100g−1 Ca). We found that pH was also 229 

greater in lime enriched soils (4.6 ± 0.2, X2 = 9.06, P < 0.05, Table 2). Finally, the organic 230 

matter and the total N content did not vary among soils. According to these edaphic element 231 

contents, two soil types can be distinguished: (1) soils amended with lime; and (2) soils 232 

amended with organic matter or unamended. However, to conform with the test of Shutcha et 233 

al. (2010, 2015), the three categories were kept in the following results. 234 

 235 

Experiment in controlled conditions: Emergence, survival and growth of annual species (Year 236 

1) 237 

Mean emergence rates for A. davyi and C. cobalticola during the first year (Year 1) were 238 

14.2% ± 5.6% and 34.2 ± 18.5 %, respectively. Our results showed that the presence of M. 239 

altera increased the number of emerging seedlings for both species (Table 3). The mean 240 

emergence rate of A. davyi in the presence of a vegetation cover was 16.1% ± 4.9%, as 241 

opposed to 5.0% ± 2.8% without cover (F = 19.0, P < 0.01). For C. cobalticola, the mean 242 

emergence rate was 49.4% ± 19.6% when M. altera was used as a nurse plant, which was 243 

significantly greater than the percentage without cover (28.8% ± 11.9%, F = 7.09, P < 0.05, 244 

Table 3). For both studied species, we did not find any significant effect of amendment 245 

additions on the emergence rate, nor significant interaction between amendment additions and 246 

vegetation cover. At the end of the growing season of Year 1, all individuals of A. davyi had 247 

died whereas C. cobalticola showed a greater survival rate in soil amended with lime (53.8% 248 



± 24.9%) in comparison with unamended soils (F = 4.71, P = 0.06, Table 4). Because of a low 249 

percentage of emergence and a high mortality rate at the end of the growing season, the 250 

growth of A. davyi was not compared with that of other species. For C. cobalticola, the 251 

vegetation cover had an impact on the height (F = 4.59, P < 0.05) and the number of leaves 252 

(F = 11.8, P < 0.01). On average, the seedlings were taller with more leaves in plots without 253 

cover (2.9 cm ± 1.1 cm; 3.6 ± 1.0 leaves) than in plots with vegetation cover (2.5 cm ± 0.7 254 

cm; 2.4 ± 0.8 leaves).  255 

Experiment in controlled conditions: Emergence, survival, and growth of perennial species 256 

(Year 2) 257 

The two perennial species, C. peschiana and T. welwitschii, had very low emergence rates 258 

during the second test (Year 2). The mean percentages were 20.5% ± 5.7% and 7.5% ± 1.8% 259 

for C. peschiana and T. welwitschii, respectively. The presence of vegetation cover 260 

marginally affected the percentage of emergence of C. peschiana (Table 3), which was 261 

slightly lower with cover (11.1% ± 8.3%) than without cover (26.7% ± 10.5%, F = 4.89, P = 262 

0.07). We did not find any significant effect of amendment additions on the emergence rate of 263 

these taxa, nor any significant interaction between amendment additions and vegetation cover. 264 

At the end of the growing season of Year 2, C. peschiana and T. welwitschii showed high 265 

survival rates of 82.1% ± 23.2% and 92.7% ± 25.1%, respectively (Table 4). A nearly 266 

significant effect of vegetation cover was observed for C. peschiana (F = 3.86, P = 0.09), 267 

with a greater percentage of survival in plots with vegetation cover (91.7% ± 20.4%, Table 4). 268 



For C. peschiana, the interaction between vegetation cover and amendment addition affected 269 

the seedling height (F = 3.66, P < 0.05). Analyses revealed that the individuals of C. 270 

peschiana were significantly taller in unamended plots without vegetation cover (4.4 cm ± 2.0 271 

cm) than in the plots amended with lime (2.3 cm ± 1.2 cm) or organic matter (1.7 cm ± 1.1 272 

cm) without vegetation cover. However, the vegetation cover had a significant effect on the 273 

number of leaves (L ratio = 5.47, P < 0.05). A greater number of leaves was observed in plots 274 

without vegetation cover (10 ± 7 leaves) than in plots with vegetation cover (7 ± 3 leaves). 275 

Finally, the height of T. welwitschii individuals was significantly greater in plots without 276 

vegetation cover than in plots with vegetation cover (F = 5.63, P < 0.05).  277 

 278 

Experiment in controlled conditions: Resprouting and growth after the dry season (Year 3) 279 

For C. peschiana, a greater mean percentage of resprouting (53.3% ± 21.0%) was achieved in 280 

plots amended with lime in comparison with plots amended with organic matter (8.3% ± 16.7 281 

%) or unamended plots (12.9% ± 17.7%, F = 15.5, P < 0.01). The percentage of resprouting 282 

for T. welwitschii was negatively affected by amendments (F = 5.79, P < 0.05), with greater 283 

values achieved in unamended plots (87.5% ± 25.0%) compared with plots amended with 284 

lime (10.0% ± 20.0%) or organic matter (25.0% ± 50.0%). For both species, we did not find 285 

any significant effect of vegetation cover on the percentage of resprouting. 286 



The only species to show individual growth variations according to soil and vegetation cover  287 

was C. peschiana. The height and number of leaves were significantly affected by the 288 

interaction between amendment addition and vegetation cover (height: L ratio = 9.99, P < 289 

0.05, number of leaves: L ratio = 19.1, P < 0.001). On average, the unamended plots without 290 

cover displayed more developed individuals (19.5 cm ± 6.2 cm, 14 ± 7 leaves) than the ones 291 

amended with lime but without vegetation cover (7.5 cm ± 5.1 cm, 7 ± 3 leaves).  292 

 293 

In situ experiment 294 

Under in situ conditions in February 2013 (Year 1), the emergence rates of C. cobalticola and 295 

A. davyi were 36.8% and 37.2%, respectively. These values were lower and higher, 296 

respectively, than the results found in the experiment performed under controlled conditions. 297 

At the end of the growing season of Year 1, the survival rates for A. davyi and C. cobalticola 298 

were 7.5% and 13.6%, respectively. In comparison with the experiment performed under 299 

controlled conditions, the survival rate of A. davyi was greater, while the survival rate of C. 300 

cobalticola was more than twice as low. For the perennial species, the emergence rates 301 

calculated in February 2014 (Year 2) were 11.7% and 11.5% for C. peschiana and T. 302 

welwitschii, respectively. These values are similar to the ones calculated for the experiment 303 

performed under controlled conditions. The survival rates of C. peschiana and T. welwitschii 304 

at the end of the first growing season were 21.4% and 64.3%, respectively. These values were 305 

both lower than the ones calculated for the experiment performed under controlled conditions. 306 



In March 2015, the percentage of resprouting was 11.1% (2 individuals) for C. peschiana, and 307 

68.5% for T. welwitschii (37 individuals).  308 

Discussion 309 

Our results showed that combining the phytostabilisation of polluted areas and the 310 

conservation of endemic plant species is complex but feasible in a tropical context as 311 

germination is the first, crucial step towards vegetation establishment. The results highlighted 312 

that the presence of M. altera had a greater positive effect on the emergence of the annual 313 

species compared with the emergence of perennial species. The germination rates of A. davyi 314 

and C. cobalticola were approximately twice as high under the vegetation cover. The nurse 315 

plant, M. altera, facilitated the establishment of annual species (Frérot et al. 2006; Brooker et 316 

al. 2008). This cover changed the above-ground microclimatic conditions, most likely 317 

reducing water runoff (Levine 2013), buffering extreme temperatures (Callaway and 318 

Callaway 2007), and increasing shading (Bader et al. 2007). This facilitation mechanism is 319 

the most commonly reported mechanism in tropical ecosystems, followed by an increase in 320 

soil fertility and associational refuges (Bonanomi et al. 2011). However, the higher 321 

germination rates of these species in Petri dishes (data not shown) suggest that these 322 

conditions were still not optimal. Microchloa altera can create a deep litter that significantly 323 

decreases the amount of light arriving at the soil surface compared with the natural conditions 324 

in the copper hills. These modifications were also observed for other grasses and are expected 325 

to limit the growth of other species (Callaway and Lawrence 1997; Donath et al. 2007; Ilunga 326 



wa Ilunga et al. 2015). The pattern was almost the opposite for the perennial species. Our 327 

observations did not support the results of a review of terrestrial ecosystems indicating that 328 

assistance was mainly provided to individuals of the same growth form (Bonanomi et al. 329 

2011).  330 

After their establishment, both annual and perennial species showed lower growth under the 331 

vegetation cover of M. altera, suggesting that competition was greater than facilitation. 332 

Considering that M. altera is a cespitose species forming dense tufts 60 cm high, the species 333 

could compete for light and resources when the first leaves appear. In natural communities, A. 334 

davyi and C. cobalticola are found mostly in steppe that is characterized by low and open 335 

vegetation (Ilunga wa Ilunga et al. 2015). Even if the annual species tend to present a greater 336 

growth rate than the perennials (Garnier 1992), the balance between competition and 337 

facilitation depends on several factors such as stress and resource gradients (Brooker et al. 338 

2008). The survival of species was either low or non-existent for A. davyi. Furthermore, the 339 

cover of M. altera did not affect the survival rate of the taxa used in this study, except for C. 340 

peschiana which showed greater survival rates when M. altera was present. However, no 341 

flowers were observed on the annual species, suggesting that seeds should be established just 342 

before the rainy season or that seedlings should be transplanted in the field to complete the 343 

life cycle. Translocation is an efficient technique but is more labour-intensive than seed 344 

dispersion (Mench et al. 2006) and does not seem to be a viable option for annual species. 345 



During Year 3, some individuals of C. peschiana in non-covered plots produced flowers (data 346 

not shown) in the field under controlled conditions.  347 

The soil amendment slightly affected the survival of the annual species C. cobalticola, the 348 

best results being achieved in soils amended with lime. The resprouting and the growth of the 349 

perennial species C. peschiana after one dry season (Year 3) seemed to be positively affected 350 

by Ca concentrations (data not shown). Calcium has a significant effect on plant physiology 351 

(Jones and Lunt 1967; Rengel 1992) and on heavy metal availability (Remon et al. 2005; 352 

Parra et al. 2014). Córdova et al. (2011) showed that the combination of lime and organic 353 

matter increased plant productivity in metalliferous soils. Even if Ca concentrations and pH 354 

still presented a difference with the original amendments to those in the study of Shutcha et al. 355 

(2010), the organic matter content had been stabilized in all treatments at an average of 14%. 356 

However, T. welwitschii showed better resprouting ability in unamended soils. This could be 357 

explained by the difference in Cu tolerance of both taxa. In comparison with C. peschiana, T. 358 

welwitschii occurs in soils with greater Cu concentrations. The survival percentage and 359 

resprouting of C. peschiana in the in situ experiment (max. 5,000 mg kg−1 Cu) was lower than 360 

in the experiment performed under controlled conditions (max. 1,300 mg kg−1 Cu). T. 361 

welwitschii had similar mean values between both sites.  362 

While M. altera presents advantages for phytostabilisation of polluted soils as it forms a dense 363 

vegetation cover (Shutcha et al. 2010; Shutcha et al. 2015), strong evidence exists about the 364 

positive effects of species associations with other life forms in polluted soils (Frérot et al. 365 



2006; Padilla and Pugnaire 2006). These interactions should take into consideration that 366 

plants have distinct species traits (Ilunga wa Ilunga et al. 2015). Boisson et al. (2017) 367 

highlighted that some Cu endemic species, such as C. cobalticola or T. welwitschii, have 368 

distinct shoot trait responses according to the Cu-concentration in cultivated soils. 369 

Considering that these trait responses were related to their natural niches along the Cu-370 

gradient on the hills, the selection of suitable candidates should take into account the Cu 371 

concentration of the polluted soils.  372 

The plant association should also be chosen with regard to the positive interactions between 373 

species, by associating different life forms, phenologies, vegetative heights, Cu-niche optima, 374 

or root systems. Grasses living on the copper hills have the capacity to enhance the soil 375 

coverage or rhizosphere interactions. Because of low abundance, low seed production, low 376 

seed germination in controlled conditions, and a niche optimum at the lowest Cu 377 

concentrations, some grasses, such as Tristachya bequaertii or Trachypogon spicatus, are not 378 

suitable in a phytostabilisation context. The grass Eragrostis racemosa, however, is a much 379 

better candidate (Boisson et al. 2016a). 380 

Mined bare soils are generally low in nutrients and organic matter (Bradshaw and Chadwick 381 

1980). Plants can change the soil properties to improve the performance of conspecifics and 382 

enhance the probability of the species to monopolize its local habitat. This process is called 383 

positive plant–soil feedback (Van der Putten et al. 2013). Adding species that are able to 384 

increase nutrient contents is essential to preserve long-term vegetation in these soils (Whiting 385 



et al. 2004; Gan et al. 2013). Primary successional stages are often characterized by the 386 

symbiosis between plants and N-fixing bacteria and are considered a positive plant–soil 387 

feedback (Van der Putten et al. 2013). The Fabaceae C. cobalticola and C. peschiana produce 388 

nodules and thus have the ability to fix nitrogen (N) from the air, thus increasing N 389 

availability for the plants. Even outside its natural habitat, C. cobalticola tolerates higher Cu 390 

concentrations than C. peschiana (Boisson et al. 2016b). While this association would be 391 

difficult in soils polluted by cadmium because N-fixation is inhibited (Furini 2012), Cu does 392 

not seem to reduce the nodule biomass in a Cu-tolerant Fabaceae (Gan et al. 2013). The 393 

creation of an ecological succession in a bare soil would create a heterogeneous environment, 394 

having small-scale spatial variability of soil parameters that represents opportunities for the 395 

successful recruitment and establishment of non-tolerant plant species (Mench et al. 2010). In 396 

the context of Cu-Co rich bare soils in the region of Lubumbashi, the choice of C. cobalticola, 397 

C. peschiana, T. welwitschii and several grasses identified by Boisson et al. (2016a) such as 398 

E. racemosa, Androprogon schirensis and Sporobolus congoensis could enhance the 399 

successional stage, thus promoting the recolonization of bare soils.  400 

Conclusion 401 

Facilitation and competition are key components to consider in the implementation of ex situ 402 

strategies promoting endemic plant species. This study highlighted that species living in the 403 

Cu-Co soils of the southeastern DRC present complex and dynamic interactions according to 404 

vegetation stages and the local conditions of the site. Although these results are interpreted for 405 



four species only, this practical and theoretical question needs to be developed for other 406 

metalliferous ecosystems or vegetation occurring on singular soils. 407 
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Table 1.  650 

Details of the four species used, including their conservation status, collection sites and seed 651 

conservation methods. Legend: LC = least concern, CR = critically endangered, DD = data 652 

deficient, R.H. = relative humidity in air. Strict endemic refers to species having all 653 

populations restricted to metalliferous soils (Faucon et al., 2010). 654 

 Conservation status IUCN 
status* 

Life form Root system 
type 

Fruiting time Collecting sites Number of 
individuals 
collected 

Conservation 
method 

Anisopappus 
davyi 

Hyperaccumulator
 

-
 

Pseudo-
annual 

Branched
 

April-August Fungurume IV 
Kabwelunono 
Kakalalwe 1 

70 R.H. < 5 % 
Ambient T°C 100 

60 

Crotalaria 
cobalticola 

Strict endemic
 

LC
 

Annual
 

Branched
 

May-June Goma 3 
Kakalalwe 
Kavifwafwaulu 1 

130 R.H. < 5 % 
Ambient T°C 50 

75 

Crotalaria 
peschiana 

Strict endemic
 

CR*
 

Perennial Tuberous
 

August-
September 
April-May 

Kazinyanga 75 Ambient R.H. 
T° 5°C 

Triumfetta 

welwitschii 

Strict endemic
 

DD*
 

Perennial Taproot
 

September-
October 

Fungurume VIII 
Kabwelunono 
Kavifwafwaulu 4 

150 Ambient R.H. 
Ambient T°C 75 

75 

* Proposed IUCN classification (Faucon et al., 2010) 655 
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Table 2.  658 

Edaphic content in copper (Cu, mg kg-1), pH, calcium (Ca, mg 100g-1), organic matter (Corg, 659 

%), and total nitrogen (Ntot, %) under controlled conditions. Different letters indicate 660 

significant difference according to Kruskal-Wallis test. Treatment abbreviations: Lime refers 661 

to a plot with limestone amendment, OM refers to a plot with organic matter amendment and 662 

UA refers to a plot without amendment (i.e., unamended) 663 

 
Lime OM UA X

2
 P 

Cu (mg kg
-1
) 1,040 ± 146

a
 939 ± 297

a
 1,122 ± 272

a
 2.66 0.26 

pH KCl 4.6 ± 0.2
a 

4.2 ± 0.1
b 

4.3 ± 0.2
b
 9.06 < 0.05 

Ca (mg 100g
-1
) 34.2 ± 10.4

a 
12.6 ± 4.9

b 
17.2 ± 11.4

b
 12.7 < 0.01 

Corg (‰) 13.8 ± 1.3
 

13.8 ± 1.4
 

14.5 ± 2.8 0.18 0.91 

Ntot (%) 0.141 ± 0.007
 

0.141 ± 0.010
 

0.146 ± 0.018 0.05 0.98 

 664 

 665 

  666 



Table 3.  667 

Percentage of emergence (%) of the four species among the amended and the vegetation cover 668 

treatments (controlled conditions experiment). Data were analysed using a two-way ANOVA 669 

followed by a mean range test. Different letters indicate significant difference according to 670 

Tukey’s HSD range test with an error 5 %. Treatment abbreviations: Lime refers to a plot 671 

with limestone amendment, OM refers to plot with organic matter amendment and UA refers 672 

to a plot without amendment (i.e., unamended). Interactions were not significant. 673 

  
Lime OM UA F P 

With vegetation 

cover 

Without 

cover 
F P 

 Anisopappus 

davyi 
10.8 ± 8.8

 
10.0 ± 8.2

 
10.8 ± 5.7 0.10 0.90 16.1 ± 4.9

a
 5.0 ± 2.8

b
 19.0 < 0.01 

 Crotalaria 

cobalticola 
37.5 ± 18.3

 
50.0 ± 25.4

 
30.0 ± 6.7

 
2.19 0.19 49.4 ± 19.6

a
 28.8 ± 11.9

b
 7.09 < 0.05 

 Crotalaria 

peschiana 
16.7 ± 13.1

 
16.7 ± 11.6

 
23.3 ± 14.1 0.47 0.65 11.1 ± 8.3

b
 26.7 ± 10.5

a
 4.89 0.07 

 Triumfetta 

welwitschii 
11.6 ± 6.9

 
5.8 ± 3.2 4.1 ± 1.7 2.51 0.16 8.3 ± 3.5 6.1 ± 6.8 1.28 0.30 

 674 

 675 

 676 

 677 
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Table 4.  680 

Percentage of survival (%) of the four species among the amendment and the vegetation cover 681 

treatments (controlled conditions experiment). Data were analysed using a two-way ANOVA 682 

followed by a mean range test. . Different letters indicate significant difference according to 683 

Tukey’s HSD range test with an error 5 %. Treatment abbreviations: Lime refers to a plot 684 

with limestone amendment, OM refers to a plot with organic matter amendment and UA 685 

refers to a plot without amendment (i.e., unamended). Interactions were not significant. 686 

  

Lime OM UA F P 

With 

vegetation 

cover 

Without cover F P 

 Anisopappus 

davyi 
0 0 0 - - 0 0 - - 

 Crotalaria 

cobalticola 

53.8 ± 

24.9
a 

24.2 ± 

9.9
ab 14.6 ± 13.8

b 
4.71 0.06 37.8 ± 20.0 23.9 ± 26.4 2.27 0.18 

 Crotalaria 

peschiana 
87.5 ± 25.0 73.8 ± 37.7 85.9 ± 17.6 0.55 0.60 91.7 ± 20.4 73.1 ± 29.6 3.86 0.09 

 Triumfetta 

welwitschii 
95.8 ± 8.3 100 ± 0 75.0 ± 50.0  0.84 0.48 100 ± 0 80.6 ± 40.0 1.32 0.29 

 687 
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Figures 689 

 690 

Fig. 1. Timeline of the study performed between 2013 and 2015 under controlled conditions 691 

(University of Lubumbashi, DRC) and in in situ conditions (polluted area of Lubumbashi, 692 

DRC). 693 


