

Mining and biodiversity: Exploring the conservation strategy of a metallicolous vegetation in the Katangan Copperbelt (D.R.C.) Focus on integrated actions combining biodiversity and reclamation

Sylvain Boisson | Guylain Handjila | Mylor Ngoy Shutcha | Grégory Mahy

The tropical metallicolous grasslands of South DRC Cu-Co outcrops and the plant diversity

The tropical metallicolous grasslands of South DRC Cu-Co outcrops and the plant diversity

Duvigneaud and Denayer-De Smet 1963, Leteinturier 2002, Cailteux et al. 2005, Faucon et al. 2010

More than 550 plant taxa (The Copper Flora)

10 % endemic of Southeastern DRC 5 % restricted to Cu-Co soils (Specialized)

A diversity of habitats (from Forest to Rocks) A diversity of life forms

Copper in Sustainable Energy

eMining's eDumper is the world's largest electric truck

Battery

How does your mobile phone last for 12 hours on just one charge?

It's the power of cobalt, along with several other battery metals, that keeps your lithium-ion battery running.

The only problem?

Getting cobalt from the source to your electronics is not an easy feat – which makes for an extremely precarious and questionable supply chain.

Copper Mine Production by Country: Top 20 Countries in 2015

Chile accounted for almost one-third of world copper mine production in 2015 with mine output of 5.76 million t copper

2016 Global Production

DRC	62.0%
Russia	5.0%
Australia	5.0%
Cuba	5.0%
Philippines	4.0%
Madagascar	3.0%
New Caledonia	3.0%
Canada	2.8%
Other Countries	8.0%

1st

Source: CRU

Environmental impact (from mining exploration to metal extraction)

Conservation actions for preserving endemic species

Since 2007 conservation actions are implemented for plant diversity

Plant communities translocation

Innovative actions

For preserving the biodiversity: Copper Flora (endemics and specialized species)

For decreasing the impact of mining operations on environment

In ecological point of view

Mining activities

Mining activities

Opportunity for testing integrated actions

Phytostabilization

Metalliferous particles

Crotalaria cobalticola

Diplolophium marthozianum

Gladiolus ledoctei

Triumfetta welwitschii

Fabaceae Annual

Habitat : Steppes Strict endemic

Apiaceae Perennial Habitat : Steppes/Steppic savanna Broad endemic Iridaceae Perennial Habitat : Steppes Broad endemic

Malavaceae Perennial Habitat: Steppic savanna Strict endemic

Proposed IUCN status by Faucon 2010

Characterization of the natural conditions where the endemic species occurs – Along copper gradient

Monitoring

Modeling the probability of presence according to copper concentrations

Characterization of the natural conditions where the endemic species occurs – Along copper gradient

Characterization of the natural conditions where the endemic species occurs – Along copper gradient

Plant shoot response in artifical polluted soil with copper

BY SPECIES

3 POPULATIONS

X

3 COPPER CONCENTRATIONS IN SOIL 0 ppm

100 ppm

1000 ppm

Contaminated with CuSO₄.5H₂O + 0.2 % compost

X 10 repicates

2. Sowing the species in phytostabilized area

2. Sowing the species in phytostabilized area

Results

Sylvain Boisson · Maxime Séleck · Soizig Le Stradic
Julien Collignon · Olivier Garin · François Malaisse
Mylor Ngoy Shutcha · Grégory Mahy
Using phytostabilisation to conserve threatened endemic species
in southeastern Democratic Republic of the Congo

Germination

	With vegetation cover	Without cover	F	<i>p</i> - value
A. davyi	16.1 ± 4.9 ^a	5.0 ± 2.8^{b}	19.0	< 0.01
C. cobalticola	49.4 ± 19.6 ^a	28.8 ± 11.9^{b}	7.09	< 0.05
C. peschiana	11.1 ± 8.3 ^b	26.7 ± 10.5^{a}	4.89	0.07
T. welwitschii	8.3 ± 3.5	6.1 ± 6.8	1.28	0.30

Survival

	With vegetation cover	Without cover	F	<i>p</i> - value
A. davyi	0	0	-	-
C. cobalticola	37.8 ± 20.0	23.9 ± 26.4	2.27	0.18
C. peschiana	91.7 ± 20.4	73.1 ± 29.6	3.86	0.09
T. welwitschii	100 ± 0	80.6 ± 40.0	1.32	0.29

Results

Sylvain Boisson - Maxime Séleck - Soizig Le Stradic
Julien Collignon - Olivier Garin - François Malaisse
Mylor Ngoy Shutcha - Grégory Maly

Using phytostabilisation to conserve threatened endemic species
in southeastern Democratic Republic of the Congo

Germination

	With vegetation cover	Without cover	F	<i>p</i> - value
A. davyi	16.1 ± 4.9 ^a	5.0 ± 2.8 ^b	19.0	< 0.01
C. cobalticola	49.4 ± 19.6 ^a	28.8 ± 11.9 ^b	7.09	< 0.05
C. peschiana	11.1 ± 8.3 ^b	26.7 ± 10.5 ^a	4.89	0.07
T. welwitschii	8.3 ± 3.5	6.1 ± 6.8	1.28	0.30

Survival

	With - vegetation cover	Without cover	F	<i>p</i> - value
A. davyi	0	0	-	-
C. cobalticola	37.8 ± 20.0	23.9 ± 26.4	2.27	0.18
C. peschiana	91.7 ± 20.4	73.1 ± 29.6	3.86	0.09
T. welwitschii	100 ± 0	80.6 ± 40.0	1.32	0.29

Tertiary habitat

Discussion

Distinct response of species to environment

Interspecific interaction (competition, faciliation)

For germination: Competition was not highlighted

For growth: Competition for the light

Selecting species according to hosted sites

Phenology (= Presence of individuals)

Metal – Concentration in soil

Esthetics (Color of shoot, leaves, flowers)

PERSPECTIVES:

To create new species association (Grasses-Legumes)

To adapt phytostabilization technics at large scale (hay transfer, etc...)

To test other species

Sylvain Boisson · Maxime Séleck · Soizig Le Stradic Julien Collignon · Olivier Garin · François Malaisse Mylor Ngoy Shutcha · Grégory Mahy

Using phytostabilisation to conserve threatened endemic species in southeastern Democratic Republic of the Congo

Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo

Poaceae candidates for phytostabilisation

Sylvain Boisson 1 · Soizig Le Stradic 1 · Julien Collignon 1 · Maxime Séleck 1 · François Malaisse 1 · Mylor Ngoy Shutcha 2 · Michel-Pierre Faucon 3 · Grégory Mahy 1

Integrated actions

Integrated actions Conservation – Operations – Services (rehabilitation) **Nursery Community translocation** Cu Co **Natural sites** Cu Co Phytostabilized area Cu Co **Protected areas** Cu Co Cu Co **Operated** Revegetation area of backfill

Obrigado

More information

Copperflora.org

ResearchGate: #SylvainBoisson

Our partners

Congo's Cobalt

Tons produced at mines in the Democratic Republic of Congo in 2016

Source: Darton Commodities Ltd.

Bloomberg