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Purpose: summary of the mathematical aspects of
the paper �RNA velocity of single cells� ([1])
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The notion of derivatives
Let f be a function and t0 a point of its domain.
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Variations with respect to time

df

dt
(t0) := lim

t→0

average change during t units of time

︷ ︸︸ ︷
f (t0 + t)− f (t0)

t︸ ︷︷ ︸

Instantaneous rate of varation with respect to time

Examples (Physics)

� f (t) = x(t): motion (1D) of a particle; the velocity of the
particle (at time t) is

v(t) :=
dx

dt
(t)

� In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a
particle in the space, then its velocity is

~v(t) :=
d~x

dt
(t) :=

(
dx

dt
(t),

dy

dt
(t),

dz

dt
(t)

)
.
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RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription

Rate α(t)

..
Unspliced RNA

Quantity u(t)

Splicing

Rate β(t)

��
∅ Spliced RNA

Quantity s(t)

Degradation

Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA

Quantity u(t)

Splicing

Rate β(t)

��
∅ Spliced RNA

Quantity s(t)

Degradation

Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA

Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)

Degradation

Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA

Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)

Degradation
Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA
Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)

Degradation
Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA
Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)Degradation
Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA
Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)Degradation
Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription
Rate α(t)

..
Unspliced RNA
Quantity u(t)

Splicing
Rate β(t)

��
∅ Spliced RNA

Quantity s(t)Degradation
Rate γ(t)

nn


du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)



Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

In this context

� u(t) and s(t) are the expected values of the numbers of
molecules of unspliced and spliced RNA (at time t)

� Real numbers of molecules (at time t) have a bivariate Poisson
distribution with parameters (expected values) u(t) and s(t).

Our equations
du

dt
(t) = α(t)− β(t)u(t)

ds

dt
(t) = β(t)u(t)− γ(t)s(t)
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RNA dynamics

Assumptions

� The rates α, β, γ are constant: α ≥ 0, β > 0, γ > 0.

� β = 1 (all units expressed in terms of β, i.e. everything divided
by β).

Final equations


du

dt
(t) = α− u(t)

ds

dt
(t) = u(t)− γs(t)

�(Linear) di�erential equations�
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Solution of the �rst equation

du

dt
(t) = α− u(t)

Solution
If u0 := u(0),

u(t) = α+ (u0 − α)e−t .

u0 < α
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In all cases, limt→∞ u(t) = α, i.e. u(t) ≈ α if t � 0.
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Solution of the second equation

ds

dt
(t) = u(t)− γs(t)

Solution
If u0 = u(0) and s0 = s(0),

s(t) =
α

γ
+

u0 − α
γ − 1

e−t +

(
s0 +

α− u0
γ − 1

− α

γ

)
e−γt .

Many graphical possibilities... But we always have

lim
t→∞

s(t) =
α

γ
,

i.e. s(t) ≈ α

γ
if t � 0.
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Solution of the second equation: graphical examples

u0 = s0 = 0, α = 0.25, γ = 0.75
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RNA dynamics: summary

There exist solutions u, s, depending on u0, s0 (initial conditions)
and on α, γ (parameters), with

lim
t→∞

u(t) = α and lim
t→∞

s(t) =
α

γ
.

In particular,

lim
t→∞

u(t)

s(t)
= γ.

Steady state

When t � 0, the system reaches a steady state, with

u(t) ≈ α, s(t) ≈ α

γ
, and u(t) ≈ γs(t).
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Phase portrait

Graphic "spliced vs. unspliced"
u0 = 0, s0 = 0, α = 3, γ = 0.75
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RNA velocity

Context

� Here, we consider one cell, with p genes.

� Let sj(t) be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

� Each sj(t) veri�es the previous equations, with its own
parameters αj ≥ 0, βj = 1, and γj > 0.

Warning! Implicit assumption!

βj = 1 for all j : the rates of splicing are equal for all genes!

De�nition
The RNA velocity of the cell (at time t) is

d~s

dt
(t) :=

(
ds1
dt

(t), ...,
dsp
dt

(t)

)
.
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Representation: an unreal world...

� A cell with 2 genes...

� α1 = 2, γ1 = 0.5; α2 = 3, γ2 = 1
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� Grey curve:
trajectory of
the cell
((s1(t), s2(t))).

• Arrows:
RNA
velocity

• Red point:
steady state

�Physical velocity� in RNA's space!
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Representation of RNA velocity

And if p > 3?

� Principle component analysis: quite natural, projection on
P.C.;

� t-SNE? Possible, but more tricky...
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Representation of RNA velocity

Example: Schwann cell precursors (coming from [1])

PCA t-SNE
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Estimation of γ

We study one gene (i.e. its parameters) through a sample of
several cells.

Assumptions

� The sample of cells is su�ciently large to cover all the �RNA
cycle� (from beginning of production to steady state).

� The rate of degradation γ of the gene is the same in all cells.

; Estimation of γ with phase portraits...
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Theoritical estimation of γ
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� α = 3, γ = 0.75

� Steady state:
u = γs

� 400 cells,
uniformly
generated in
time.

Process

Selection of the extreme cells (here smallest and greatest 1%'s)

Linear regression on the extreme cells

Here, estimation of γ (slope): 0.73493
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Theoritical estimation of γ
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� α = 3, γ = 0.75

� Steady state:
u = γs

� 400 cells,
uniformly
generated in
time.

Process

1. Selection of the extreme cells (here smallest and greatest 1%'s)

Linear regression on the extreme cells

Here, estimation of γ (slope): 0.73493
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Theoritical estimation of γ
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generated in
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Process

1. Selection of the extreme cells (here smallest and greatest 1%'s)

2. Linear regression on the extreme cells

Here, estimation of γ (slope): 0.73493
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Di�culties of estimation for γ...

Assumption 1 not respected...
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� α = 3, γ = 0.75

� Steady state:
u = γs

� 150 cells,
uniformly
generated in
time.

Estimation of γ: 0.97433...

Corrections?
Estimation on very correlated genes, clusters of very correlated
cells...
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Di�culties of estimation for γ...

Assumption 1 not respected...
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Corrections?
Estimation on very correlated genes, �ltering some cells...
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Di�culties of estimation for γ...
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Di�culties of estimation for γ...

Assumption 1 not respected...
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Multiple splicing

� In [1], ± 89 % of studied genes showed a unique degradation
rate γ...

but 11 % showed several degradation rates!

� Example from [1]:

Ntrk2

� Then the model fails...
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Estimation of α

According to [1], it is very di�cult to estimate α... Two
approximations are considered:

� Model I: v :=
ds

dt
is assumed to be constant; then,

s(t) = vt + s0,

with v := u0 − γs0.
� Model II: u is assumed to be constant; then,

s(t) =
u0
γ

+

(
s0 −

u0
γ

)
e−γt .

These two models are correct in the short term; they have to be
used �step by step� to predict the future (Markov process).
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Thank you for your attention!
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And if the parameters are non-constant?
Much more complex...

Example

Assume that α(t) = 1− cos(t), β = 1, and γ > 0 is constant.

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

t

1 
−
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(t
)

RNA equations
du

dt
(t) = [1− cos(t)]− u(t)

ds

dt
(t) = u(t)− γs(t)
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Solutions

Unspliced RNA

u(t) = 1− 1

2
(cos(t) + sin(t)) +

(
u0 −

1

2

)
e−t .

u0 = 0
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Solutions

Spliced RNA

If γ 6= 1,

s(t) =
1

γ
− 1

2(1+ γ2)
((γ − 1) cos(t) + (γ + 1) sin(t))

+
u0 − 1/2

γ − 1
e−t +

(
s0 −

1

γ
+

1/2− u0
γ − 1

+
γ − 1

2(1+ γ2)

)
e−γt

and, if γ = 1,

s(t) = 1− 1

2
sin(t) +

((
u0 −

1

2

)
t + s0− 1

)
e−t .
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Solutions
u0 = s0 = 0, γ = 0.2
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Phase portraits
u0 = s0 = 0, γ = 0.2
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