Some mathematical aspects of RNA velocity

Loïc DEMEULENAERE

Université de Liège－GIGA－Genomics

Liège，January 9， 2019

Purpose: summary of the mathematical aspects of the paper "RNA velocity of single cells" ([1])

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

The notion of derivatives
Let f be a function and t_{0} a point of its domain.

(if this limit exists and is finite).

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\lim _{t \rightarrow 0} \frac{\overbrace{f\left(t_{0}+t\right)-f\left(t_{0}\right)}^{t}}{t}
$$

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\lim _{\lim _{t \rightarrow 0} \overbrace{\frac{f\left(t_{0}+t\right)-f\left(t_{0}\right)}{t}}^{\text {average change during } t \text { units of time }}}
$$

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\underbrace{\lim _{t \rightarrow 0} \overbrace{\frac{f\left(t_{0}+t\right)-f\left(t_{0}\right)}{\text { average change during } t \text { units of time }}}^{t}}_{\text {Instantaneous rate of varation with respect to time }}
$$

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\underbrace{\lim _{t \rightarrow 0} \frac{\overbrace{f\left(t_{0}+t\right)-f\left(t_{0}\right)}^{t}}{\text { average change during } t \text { units of time }}}_{\text {Instantaneous rate of varation with respect to time }}
$$

Examples (Physics)

- $f(t)=x(t)$: motion (1D) of a particle;

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\underbrace{\lim _{t \rightarrow 0} \overbrace{\frac{f\left(t_{0}+t\right)-f\left(t_{0}\right)}{t}}^{\text {average change during } t \text { units of time }}}_{\text {Instantaneous rate of varation with respect to time }}
$$

Examples (Physics)

- $f(t)=x(t)$: motion (1D) of a particle; the velocity of the particle (at time t) is

$$
v(t):=\frac{d x}{d t}(t)
$$

Variations with respect to time

$$
\frac{d f}{d t}\left(t_{0}\right):=\underbrace{\lim _{t \rightarrow 0} \overbrace{\frac{t\left(t_{0}+t\right)-f\left(t_{0}\right)}{\text { average change during } t \text { units of time }}} \overbrace{}^{\frac{t}{t}}}_{\text {Instantaneous rate of varation with respect to time }}
$$

Examples (Physics)

- $f(t)=x(t)$: motion (1D) of a particle; the velocity of the particle (at time t) is

$$
v(t):=\frac{d x}{d t}(t)
$$

- In 3D: likewise! If $\vec{x}(t):=(x(t), y(t), z(t))$ is the position of a particle in the space, then its velocity is

$$
\vec{v}(t):=\frac{d \vec{x}}{d t}(t):=\left(\frac{d x}{d t}(t), \frac{d y}{d t}(t), \frac{d z}{d t}(t)\right) .
$$

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

RNA dynamics: the idea

In one cell, for one gene...

Transcription

Unspliced RNA

DNA

RNA dynamics: the idea

In one cell, for one gene...

Transcription Rate $\alpha(t)$
 Unspliced RNA

DNA

RNA dynamics: the idea

In one cell, for one gene...

Transcription Rate $\alpha(t)$
 Unspliced RNA

DNA

Degradation

RNA dynamics: the idea

In one cell, for one gene...

Transcription Rate $\alpha(t)$
 Unspliced RNA

DNA

RNA dynamics: the idea

In one cell, for one gene...

RNA dynamics: the idea

In one cell, for one gene...

RNA dynamics: the idea

In one cell, for one gene...

RNA dynamics: the idea

In one cell, for one gene...

Transcription
 Rate $\alpha(t)$

Unspliced RNA
DNA
Quantity $u(t)$

$\left\{\begin{array}{l}\frac{d u}{d t}(t)=\alpha(t)-\beta(t) u(t) \\ \frac{d s}{d t}(t)=\beta(t) u(t)-\gamma(t) s(t)\end{array}\right.$	Splicing Rate $\beta(t)$
$\emptyset<$	Spliced RNA
Degradation Rate $\gamma(t)$	Quantity $s(t)$

RNA dynamics

In this context

- $u(t)$ and $s(t)$ are the expected values of the numbers of molecules of unspliced and spliced RNA (at time t)

RNA dynamics

In this context

- $u(t)$ and $s(t)$ are the expected values of the numbers of molecules of unspliced and spliced RNA (at time t)
- Real numbers of molecules (at time t) have a bivariate Poisson distribution with parameters (expected values) $u(t)$ and $s(t)$.

RNA dynamics

In this context

- $u(t)$ and $s(t)$ are the expected values of the numbers of molecules of unspliced and spliced RNA (at time t)
- Real numbers of molecules (at time t) have a bivariate Poisson distribution with parameters (expected values) $u(t)$ and $s(t)$.

Our equations

$$
\left\{\begin{aligned}
\frac{d u}{d t}(t) & =\alpha(t)-\beta(t) u(t) \\
\frac{d s}{d t}(t) & =\beta(t) u(t)-\gamma(t) s(t)
\end{aligned}\right.
$$

RNA dynamics

Assumptions

- The rates α, β, γ are constant: $\alpha \geq 0, \beta>0, \gamma>0$.

RNA dynamics

Assumptions

- The rates α, β, γ are constant: $\alpha \geq 0, \beta>0, \gamma>0$.
- $\beta=1$ (all units expressed in terms of β, i.e. everything divided by β).

RNA dynamics

Assumptions

- The rates α, β, γ are constant: $\alpha \geq 0, \beta>0, \gamma>0$.
- $\beta=1$ (all units expressed in terms of β, i.e. everything divided by β).

Final equations

$$
\left\{\begin{aligned}
\frac{d u}{d t}(t) & =\alpha-u(t) \\
\frac{d s}{d t}(t) & =u(t)-\gamma s(t)
\end{aligned}\right.
$$

RNA dynamics

Assumptions

- The rates α, β, γ are constant: $\alpha \geq 0, \beta>0, \gamma>0$.
- $\beta=1$ (all units expressed in terms of β, i.e. everything divided by β).

Final equations

$$
\left\{\begin{array}{l}
\frac{d u}{d t}(t)=\alpha-u(t) \\
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
\end{array}\right.
$$

"(Linear) differential equations"

Solution of the first equation

$$
\frac{d u}{d t}(t)=\alpha-u(t)
$$

Solution of the first equation

$$
\frac{d u}{d t}(t)=\alpha-u(t)
$$

Solution
If $u_{0}:=u(0)$,

$$
u(t)=\alpha+\left(u_{0}-\alpha\right) e^{-t}
$$

Solution of the first equation

$$
\frac{d u}{d t}(t)=\alpha-u(t)
$$

Solution
If $u_{0}:=u(0)$,

$$
u(t)=\alpha+\left(u_{0}-\alpha\right) e^{-t}
$$

Solution of the first equation

$$
\frac{d u}{d t}(t)=\alpha-u(t)
$$

Solution
If $u_{0}:=u(0)$,

$$
u(t)=\alpha+\left(u_{0}-\alpha\right) e^{-t}
$$

$$
u_{0}<\alpha
$$

$$
u_{0}>\alpha
$$

Solution of the first equation

$$
\frac{d u}{d t}(t)=\alpha-u(t)
$$

Solution
If $u_{0}:=u(0)$,

$$
u(t)=\alpha+\left(u_{0}-\alpha\right) e^{-t}
$$

$$
u_{0}<\alpha
$$

$u_{0}>\alpha$

In all cases, $\lim _{t \rightarrow \infty} u(t)=\alpha$, i.e. $u(t) \approx \alpha$ if $t \gg 0$.

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} .
$$

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} .
$$

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\left\{\begin{array}{l}
\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} \quad \text { if } \gamma \neq 1 \\
\alpha+\left[\left(u_{0}-\alpha\right) t+s_{0}-\alpha\right] e^{-t} \text { if } \gamma=1(=\beta) .
\end{array}\right.
$$

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\left\{\begin{array}{l}
\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} \quad \text { if } \gamma \neq 1 \\
\alpha+\left[\left(u_{0}-\alpha\right) t+s_{0}-\alpha\right] e^{-t} \text { if } \gamma=1(=\beta) .
\end{array}\right.
$$

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\left\{\begin{array}{l}
\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} \quad \text { if } \gamma \neq 1 \\
\alpha+\left[\left(u_{0}-\alpha\right) t+s_{0}-\alpha\right] e^{-t} \text { if } \gamma=1(=\beta)
\end{array}\right.
$$

Many graphical possibilities...

Solution of the second equation

$$
\frac{d s}{d t}(t)=u(t)-\gamma s(t)
$$

Solution
If $u_{0}=u(0)$ and $s_{0}=s(0)$,

$$
s(t)=\left\{\begin{array}{l}
\frac{\alpha}{\gamma}+\frac{u_{0}-\alpha}{\gamma-1} e^{-t}+\left(s_{0}+\frac{\alpha-u_{0}}{\gamma-1}-\frac{\alpha}{\gamma}\right) e^{-\gamma t} \quad \text { if } \gamma \neq 1 \\
\alpha+\left[\left(u_{0}-\alpha\right) t+s_{0}-\alpha\right] e^{-t} \text { if } \gamma=1(=\beta)
\end{array}\right.
$$

Many graphical possibilities... But we always have

$$
\lim _{t \rightarrow \infty} s(t)=\frac{\alpha}{\gamma}
$$

i.e. $s(t) \approx \frac{\alpha}{\gamma}$ if $t \gg 0$.

Solution of the second equation: graphical examples

RNA dynamics: summary

There exist solutions u, s, depending on u_{0}, s_{0} (initial conditions) and on α, γ (parameters), with

$$
\lim _{t \rightarrow \infty} u(t)=\alpha \quad \text { and } \quad \lim _{t \rightarrow \infty} s(t)=\frac{\alpha}{\gamma} .
$$

RNA dynamics: summary

There exist solutions u, s, depending on u_{0}, s_{0} (initial conditions) and on α, γ (parameters), with

$$
\lim _{t \rightarrow \infty} u(t)=\alpha \quad \text { and } \quad \lim _{t \rightarrow \infty} s(t)=\frac{\alpha}{\gamma} .
$$

In particular,

$$
\lim _{t \rightarrow \infty} \frac{u(t)}{s(t)}=\gamma
$$

RNA dynamics: summary

There exist solutions u, s, depending on u_{0}, s_{0} (initial conditions) and on α, γ (parameters), with

$$
\lim _{t \rightarrow \infty} u(t)=\alpha \quad \text { and } \quad \lim _{t \rightarrow \infty} s(t)=\frac{\alpha}{\gamma} .
$$

In particular,

$$
\lim _{t \rightarrow \infty} \frac{u(t)}{s(t)}=\gamma
$$

Steady state
When $t \gg 0$, the system reaches a steady state, with

$$
u(t) \approx \alpha, \quad s(t) \approx \frac{\alpha}{\gamma}, \quad \text { and } \quad u(t) \approx \gamma s(t)
$$

Phase portrait

Graphic "spliced vs. unspliced"

The system reaches the steady state, i.e. the straight line $u=\gamma s$.

Phase portrait

Graphic "spliced vs. unspliced"

The system reaches the steady state, i.e. the straight line $u=\gamma s$.

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

RNA velocity
Context

- Here, we consider one cell, with p genes.

RNA velocity

Context

- Here, we consider one cell, with p genes.
- Let $s_{j}(t)$ be the (expected value of the) quantity of spliced RNA associated to the $j^{\text {th }}$ gene (at time t).

RNA velocity

Context

- Here, we consider one cell, with p genes.
- Let $s_{j}(t)$ be the (expected value of the) quantity of spliced RNA associated to the $j^{\text {th }}$ gene (at time t).
- Each $s_{j}(t)$ verifies the previous equations, with its own parameters $\alpha_{j} \geq 0, \beta_{j}=1$, and $\gamma_{j}>0$.

RNA velocity

Context

- Here, we consider one cell, with p genes.
- Let $s_{j}(t)$ be the (expected value of the) quantity of spliced RNA associated to the $j^{\text {th }}$ gene (at time t).
- Each $s_{j}(t)$ verifies the previous equations, with its own parameters $\alpha_{j} \geq 0, \beta_{j}=1$, and $\gamma_{j}>0$.

Warning! Implicit assumption!
$\beta_{j}=1$ for all j : the rates of splicing are equal for all genes!

RNA velocity

Context

- Here, we consider one cell, with p genes.
- Let $s_{j}(t)$ be the (expected value of the) quantity of spliced RNA associated to the $j^{\text {th }}$ gene (at time t).
- Each $s_{j}(t)$ verifies the previous equations, with its own parameters $\alpha_{j} \geq 0, \beta_{j}=1$, and $\gamma_{j}>0$.

Warning! Implicit assumption!
$\beta_{j}=1$ for all j : the rates of splicing are equal for all genes!
Definition
The RNA velocity of the cell (at time t) is

$$
\frac{d \vec{s}}{d t}(t):=\left(\frac{d s_{1}}{d t}(t), \ldots, \frac{d s_{p}}{d t}(t)\right)
$$

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA
velocity

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA velocity
- Red point: steady state

Representation: an unreal world...

- A cell with 2 genes...
- $\alpha_{1}=2, \gamma_{1}=0.5 ; \alpha_{2}=3, \gamma_{2}=1$

- Grey curve: trajectory of the cell $\left(\left(s_{1}(t), s_{2}(t)\right)\right)$.
- Arrows: RNA velocity
- Red point: steady state
"Physical velocity" in RNA's space!

Representation of RNA velocity

And if $p>3$?

Representation of RNA velocity

And if $p>3$?

- Principle component analysis: quite natural, projection on P.C.;

Representation of RNA velocity

And if $p>3$?

- Principle component analysis: quite natural, projection on P.C.;
- t-SNE? Possible, but more tricky...

Representation of RNA velocity

Example: Schwann cell precursors (coming from [1])

Representation of RNA velocity

Example: Schwann cell precursors (coming from [1])

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Assumptions

- The sample of cells is sufficiently large to cover all the "RNA cycle" (from beginning of production to steady state).
- The rate of degradation γ of the gene is the same in all cells.

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Assumptions

- The sample of cells is sufficiently large to cover all the "RNA cycle" (from beginning of production to steady state).
- The rate of degradation γ of the gene is the same in all cells.
\sim Estimation of γ with phase portraits...

Theoritical estimation of γ

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 400 cells, uniformly generated in time.

Theoritical estimation of γ

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 400 cells, uniformly generated in time.

Process

1. Selection of the extreme cells (here smallest and greatest 1% 's)

Theoritical estimation of γ

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 400 cells, uniformly generated in time.

Process

1. Selection of the extreme cells (here smallest and greatest 1% 's)
2. Linear regression on the extreme cells

Theoritical estimation of γ

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 400 cells, uniformly generated in time.

Process

1. Selection of the extreme cells (here smallest and greatest 1% 's)
2. Linear regression on the extreme cells

Here, estimation of γ (slope): 0.73493

Difficulties of estimation for $\gamma \ldots$

Assumption 1 not respected...

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 150 cells, uniformly generated in time.

Difficulties of estimation for $\gamma \ldots$

Assumption 1 not respected...

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 150 cells, uniformly generated in time.

Difficulties of estimation for $\gamma \ldots$

Assumption 1 not respected...

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 150 cells, uniformly generated in time.

Estimation of γ : 0.97433...

Difficulties of estimation for $\gamma \ldots$

Assumption 1 not respected...

- $\alpha=3, \gamma=0.75$
- Steady state:
$u=\gamma s$
- 150 cells, uniformly generated in time.

Estimation of γ : 0.97433...
Corrections?
Estimation on very correlated genes, filtering some cells...

Multiple splicing

- In [1], $\pm 89 \%$ of studied genes showed a unique degradation rate $\gamma \ldots$

Multiple splicing

- In [1], $\pm 89 \%$ of studied genes showed a unique degradation rate $\gamma \ldots$ but 11% showed several degradation rates!
- Example from [1]:

- Then the model fails...

Estimation of α

According to [1], it is very difficult to estimate $\alpha \ldots$... Two approximations are considered:

Estimation of α

According to [1], it is very difficult to estimate $\alpha \ldots$ Two approximations are considered:

- Model I: $v:=\frac{d s}{d t}$ is assumed to be constant; then,

$$
s(t)=v t+s_{0}
$$

$$
\text { with } v:=u_{0}-\gamma s_{0} .
$$

Estimation of α

According to [1], it is very difficult to estimate $\alpha \ldots$ Two approximations are considered:

- Model I: $v:=\frac{d s}{d t}$ is assumed to be constant; then,

$$
s(t)=v t+s_{0}
$$

with $v:=u_{0}-\gamma s_{0}$.

- Model II: u is assumed to be constant; then,

$$
s(t)=\frac{u_{0}}{\gamma}+\left(s_{0}-\frac{u_{0}}{\gamma}\right) e^{-\gamma t} .
$$

Estimation of α

According to [1], it is very difficult to estimate $\alpha \ldots$ Two approximations are considered:

- Model I: $v:=\frac{d s}{d t}$ is assumed to be constant; then,

$$
s(t)=v t+s_{0}
$$

with $v:=u_{0}-\gamma s_{0}$.

- Model II: u is assumed to be constant; then,

$$
s(t)=\frac{u_{0}}{\gamma}+\left(s_{0}-\frac{u_{0}}{\gamma}\right) e^{-\gamma t}
$$

These two models are correct in the short term; they have to be used "step by step" to predict the future (Markov process).

Thank you for your attention!

Some recalls

A mathematical model

RNA velocity

Estimation of parameters and prediction

Appendix

And if the parameters are non-constant?

Much more complex...
Example
Assume that $\alpha(t)=1-\cos (t), \beta=1$, and $\gamma>0$ is constant.

And if the parameters are non-constant?

Much more complex...
Example
Assume that $\alpha(t)=1-\cos (t), \beta=1$, and $\gamma>0$ is constant.

RNA equations

$$
\left\{\begin{aligned}
\frac{d u}{d t}(t) & =[1-\cos (t)]-u(t) \\
\frac{d s}{d t}(t) & =u(t)-\gamma s(t)
\end{aligned}\right.
$$

Solutions

Unspliced RNA

$$
\begin{array}{cc}
u(t)=1-\frac{1}{2}(\cos (t)+\sin (t))+\left(u_{0}-\frac{1}{2}\right) e^{-t} . \\
u_{0}=0 & u_{0}=3
\end{array}
$$

Solutions

Spliced RNA
If $\gamma \neq 1$,

$$
\begin{aligned}
s(t) & =\frac{1}{\gamma}-\frac{1}{2\left(1+\gamma^{2}\right)}((\gamma-1) \cos (t)+(\gamma+1) \sin (t)) \\
& +\frac{u_{0}-1 / 2}{\gamma-1} e^{-t}+\left(s_{0}-\frac{1}{\gamma}+\frac{1 / 2-u_{0}}{\gamma-1}+\frac{\gamma-1}{2\left(1+\gamma^{2}\right)}\right) e^{-\gamma t}
\end{aligned}
$$

and, if $\gamma=1$,

$$
s(t)=1-\frac{1}{2} \sin (t)+\left(\left(u_{0}-\frac{1}{2}\right) t+s 0-1\right) e^{-t} .
$$

Solutions

$u_{0}=20, s_{0}=5, \gamma=1$

Phase portraits

$$
u_{0}=1, s_{0}=2, \gamma=2.5
$$

$u_{0}=7, s_{0}=5, \gamma=0.2$

$u_{0}=20, s_{0}=5, \gamma=1$

References I

R. La Manno et al. RNA velocity of single cells. Nature, 560:494-516, 2018.

