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Lyndon words

A word is Lyndon if it is primitive and lexi
ographi
ally minimal

among its 
onjugates.

Thus, w is Lyndon i� for all non-trivial fa
torizations w = xy , we

have w <
lex

yx .

◮
0, 1

◮
01

◮
001, 011

◮
0001, 0011, 0111

◮
00001, 00011, 00101, 00111, 01011, 01111

◮
. . .



The Chen-Fox-Lyndon theorem

Every word w 
an be uniquely fa
torized as

w = ℓ
1

ℓ
2

· · · ℓ
k

where k ∈ N and ℓ
1

≥
lex

ℓ
2

≥
lex

· · · ≥
lex

ℓ
k

are Lyndon words.

Some Lyndon fa
torizations:

◮
0100010110 = (01)(0001011)(0)

◮
000100111001 = (000100111001)

◮
0110101 = (011)(01)(01)



Re
ursive de�nition of Lyndon words

◮
The letters are Lyndon.

◮
A word is Lyndon if and only if it 
annot be fa
torized as a

de
reasing sequen
e of shorter Lyndon words.

NB: In this talk, �de
reasing� means �nonin
reasing�.



Nyldon words

◮
The letters are Nyldon.

◮
A word is Nyldon if and only if it 
annot be fa
torized as an

in
reasing sequen
e of shorter Nyldon words.

NB: In this talk, �in
reasing� means �nonde
reasing�.



Mathover�ow

Nyldon words were de�ned in a post on Mathover�ow by Grinberg

in November 2014, together with 2 
onje
tures:

◮
Is it true that any word 
an be uniquely fa
torized as an

in
reasing sequen
e of shorter Nyldon words?

◮
Is it true that Nyldon words form a set of representatives of

the primitive 
onjuga
y 
lasses?



Let's look at them

◮
0, 1



Let's look at them

◮
0, 1 ◮

0, 1



Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
0, 1



Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
0, 1

◮
10



Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
000, 001, 010, 011,

100, 101, 110, 111

◮
0, 1

◮
10



Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
000, 001, 010, 011,

100, 101, 110, 111

◮
0, 1

◮
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◮
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Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
000, 001, 010, 011,

100, 101, 110, 111

◮
0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

◮
0, 1

◮
10

◮
100, 101



Let's look at them

◮
0, 1

◮
00, 01, 10, 11

◮
000, 001, 010, 011,

100, 101, 110, 111

◮
0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

◮
0, 1

◮
10

◮
100, 101

◮
1000, 1001, 1011



Let's look at them

◮
0, 1

◮
10

◮
100, 101

◮
1000, 1001, 1011

◮
10000, 10001, 10010, 10011, 10110, 10111

◮
100000, 100001, 100010, 100011, 100110, 100111,

101100, 101110, 101111

◮
1000000, 1000001, 1000010, 1000011, 1000100, 1000110,

1000111, 1001100, 1001110, 1001111, 1011000, 1011001,

1011100, 1011101, 1011110, 1011111

◮
. . .

If we 
ount them, we �nd: 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, . . .



First observations and properties

◮
Nyldon words are not maximal among their 
onjugates: for

example, 101 is Nyldon.

◮
Ex
ept 0 and 1, all binary Nyldon words start with 10.

◮
If one 
an prove the uni
ity of the Nyldon fa
torization, then

we know that they are as many Nyldon words as Lyndon words

of ea
h length.



Nyldon words start with the pre�x 10: why is that?

Nyldon words 
an't start with the letter 0 (ex
ept for 0 itself).

◮
Let w = 0u, with u 6= ε.

◮
Write

u = n

1

· · · n
k

, k ≥ 1, n

1

≤
lex

· · · ≤
lex

n

k

◮
But 0 ≤

lex

n

1

and 0 is Nyldon.

◮
Thus w = (0)(n

1

) · · · (n
k

) is a fa
torization of w into

in
reasing shorter Nyldon words.

◮
By de�nition, w is not Nyldon.



Nyldon words start with the pre�x 10: why is that?

Nyldon words 
an't start with 11.

◮
Let w = 11u.

◮
Write

1u = n

1

· · · n
k

, k ≥ 1, n

1

≤
lex

· · · ≤
lex

n

k

◮
Now observe that n

1

begins in 1.

◮
Then 1 ≤

lex

n

1

and 1 is Nyldon.

◮
This shows that w = 11u = (1)(n

1

) · · · (n
k

) fa
tors into

in
reasing shorter Nyldon words.

◮
By de�nition, w is not Nyldon.



Forbidden pre�xes

We 
an extend this argument in order to show that many other

pre�xes are not allowed in the family of Nyldon words:

◮
0

◮
11, 1010, 100100, . . . (in general 10

k

10

k)

◮
1001011, 10001011, . . . (in general 10

k

1011)

◮
1011011, 101110111, . . . (in general 101

k

01

k )

◮
10011011, 1000110011, . . . (in general 10

k+1

110

k

11)

◮
. . .



Forbidden pre�xes

All the examples we have are from the following family:

F = {p ∈ A

∗ : p = p

1

p

2

p

3

, p

1

Nyldon, p

1

≤
lex

p

2

,

∀x ∈ A

∗, p

2

p

3

x = n

1

· · · n
k

=⇒ |n
1

| ≥ |p
2

|}

∀x , px = /∈ N

≤
lex

p

1

p

2

p

3

x

n

1

n

2

◮
All elements of F are forbidden pre�xes.

◮
Question: Are there other forbidden pre�xes?



Su�xes, rather than pre�xes

◮
Pre�xes of Lyndon and Nyldon words behave in a very

di�erent manner.

◮
On the opposite, we 
an show that su�xes of both families

share some properties.



Theorem (Lyndon)

Let w ∈ A

∗
. Then the following assertions are equivalent:

◮
w is Lyndon

◮
w is smaller than all its proper su�xes

◮
w is smaller than all its Lyndon proper su�xes.

Theorem (Nyldon)

A Nyldon word is greater than all its Nyldon proper su�xes.

But the 
ondition is not su�
ient in the Nyldon 
ase, even if we

ask it to be true for all proper su�xes: 110 is not Nyldon.



Nyldon su�xes of Nyldon words

Nyldon

1000000, 1000001, 1000010,

1000011, 1000100, 1000110,

1000111, 1001100, 1001110,

1001111, 1011000, 1011001,

1011100, 1011101, 1011110,

1011111

Lyndon

0000001, 0000011, 0000101,

0000111, 0001001, 0001101,

0001111, 0010011, 0011101,

0011111, 0001011, 0011011,

0010111, 0110111, 0101111,

0111111



The longest Nyldon su�x of a word

Theorem (Lyndon)

◮
The longest Lyndon su�x of a word is the right-most fa
tor of

its Lyndon fa
torization.

◮
The longest Lyndon pre�x of a word is the left-most fa
tor of

its Lyndon fa
torization.

Theorem (Nyldon)

The longest Nyldon su�x of a word is the right-most fa
tor of any

of its Nyldon fa
torizations.

NB: There is no similar 
ondition on pre�xes for Nyldon words.



Uni
ity of the Nyldon fa
torization

Every word w over A 
an be uniquely fa
torized as

w = n

1

n

2

· · · n
k

where k ∈ N and n

1

≤
lex

n

2

≤
lex

· · · ≤
lex

n

k

are Nyldon words.

Lyndon vs Nyldon fa
torizations:

◮
0100010110 = (01)(0001011)(0) = (0)(1000)(10110)

◮
000100111001 = (000100111001) = (0)(0)(0)(100111001)

◮
0110101 = (011)(01)(01) = (0)(1)(10)(101)



Faster algorithm for 
omputing Nyldon words

Theorem

If w = PS where S is the longest Nyldon proper su�x of w and if

P = n

1

· · · n
k

is the Nyldon fa
torization of P, then w is Nyldon i�

n

k

>
lex

S.

◮
This result allows us to 
ompute the Nyldon fa
torization of w

from right to left easily.



Compute the Nyldon fa
torization of w from right to left

1010010110 = (10)(100)(10110)

1 101001011.0

2 10100101.1.0, 10100101.10

3 1010010.1.10

4 101001.0.1.10

5 10100.1.0.1.10, 10100.10.1.10, 10100.101.10, 10100.10110

6 1010.0.10110

7 101.0.0.10110

8 10.1.0.0.10110, 10.10.0.10110, 10.100.10110

9 1.0.100.10110

10 .1.0.100.10110, .10.100.10110



Standard fa
torization

Theorem (Lyndon)

◮
Let S be the longest Lyndon proper su�x of a word w and let

w = PS. Then w is Lyndon i� P is Lyndon and P <
lex

S.

◮
Let P be the longest Lyndon proper pre�x of a word w and let

w = PS. Then w is Lyndon i� S is Lyndon and P <
lex

S.

Theorem (Nyldon)

Let S be the longest Nyldon proper su�x of a word w and let

w = PS. Then w is Nyldon i� P is Nyldon and P >
lex

S.

NB: There is no similar 
ondition on pre�xes for Nyldon words.



From Lyndon to Nyldon: lost properties

Many results for Lyndon words don't have analogues in the 
ase of

Nyldon words.

◮
Results 
on
erning pre�xes.

◮
Let u, v be Lyndon words su
h that u <

lex

v . Then uv is

Lyndon.

◮
For example, 10010 >

lex

1 but 100101 = (100)(101) is not

Nyldon.

◮
The longest Lyndon su�x of a word is also the su�x that is

lexi
ographi
ally minimal.

◮
For example, the longest Nyldon su�x of 110 is 10 although it

is not lex. maximal (nor lex. minimal).



Complete fa
torizations of the free monoid

A totally ordered family F ⊆ A

∗
is 
alled a 
omplete fa
torization

of A

∗
if ea
h w ∈ A

∗

an be uniquely fa
torized as

w = x

1

x

2

· · · x
k

(1)

where k ∈ N and (x
i

)
1≤i≤k

is a de
reasing sequen
e of F .

◮
Lyndon words are a 
omplete fa
torization for the order <

lex

.

◮
Nyldon words are a 
omplete fa
torization for the order >

lex

.



S
hützenberger's theorem (1965)

Quote from the webpage of Dominique Perrin: �The following

result has no known elementary proof.�

Theorem (S
hützenberger 1965)

Let A be an alphabet, F ⊆ A

∗
and ≺ be a total order on F .

Then any two of the following three 
onditions imply the third:

◮
Ea
h w ∈ A

∗
admits at least one fa
torization (1).

◮
Ea
h w ∈ A

∗
admits at most one fa
torization (1).

◮
All elements of F are primitive and ea
h primitive 
onjuga
y


lass of A

+

ontains exa
tly one element of F .



Nyldon words and primitivity

As a 
onsequen
e of the uni
ity of the Nyldon fa
torization and

S
hützenberger's theorem, we obtain:

Corollary

The Nyldon words form a set of representatives of the primitive


onjuga
y 
lasses.



A simpler proof of the primitivity of Nyldon words?

Lyndon words are primitive by de�nition.

But suppose for a minute that you only know Lyndon words from

their re
ursive de�nition.

(Of 
ourse, also suppose that you don't know S
hützenberger's

theorem.)

We 
an obtain that Lyndon words are smaller than all their Lyndon

proper su�xes and the uni
ity of the Lyndon fa
torization.

Then, we easily dedu
e that Lyndon word are primitive and that

ea
h primitive 
onjuga
y 
lass 
ontains exa
tly one Lyndon word.



Lyndon word are primitive and ea
h primitive 
onjuga
y


lass 
ontains exa
tly one Lyndon word

◮
By indu
tion on the length n of the words.

◮
Base 
ase: all letters are Lyndon.

◮
Let w be a word of length n ≥ 2 whi
h is a power: w = x

m

with x primitive and m ≥ 2.

◮
By indu
tion hypothesis, we know that x has a Lyndon


onjugate: y = vu is Lyndon and x = uv .

◮
Then w = x

m = (uv)m = u(vu)m−1

v = uy

m−1

v .

◮
Let u = u

1

· · · u
k

and v = v

1

· · · vℓ be (the) Lyndon

fa
torizations of u and v .

◮
Then u

k

≥
lex

y ≥
lex

v

1

.

◮
Therefore w = u

1

· · · u
k

· y · · · y
︸ ︷︷ ︸

m−1

·v
1

· · · vℓ is not Lyndon.



Lyndon word are primitive and ea
h primitive 
onjuga
y


lass 
ontains exa
tly one Lyndon word.

◮
We have shown that Lyndon words of length n are primitive.

◮
Now suppose that there exist distin
t Lyndon words x , y of

length n in the same 
onjuga
y 
lass: x = uv and y = vu.

◮
Then x

2

has two Lyndon fa
torizations:

x

2 = x · x

= u

1

· · · u
k

· y · v
1

· · · vℓ

whi
h is a 
ontradi
tion.



The same reasoning doesn't work for Nyldon words.

If x = uv and y = vu is Nyldon, then

x

m = u

1

· · · u
k

· y · · · y
︸ ︷︷ ︸

m−1

·v
1

· · · vℓ

is not the Nyldon fa
torization of x

m

.

◮
For example, if x = 01 then y = 10 and x

2 = (0)(101).

◮
For example, if x = 001100101 then y = 100101001 and

x

2 = (0)(0)(1)(10010)(1001100)(101).



Lazard fa
torizations of the free monoid

A Lazard fa
torization of A

∗
is a set F ⊆ A

∗
satisfying the following


onditions:

1. F is totally ordered by some order ≺

2. For every n ≥ 1, if

F ∩ A

≤n = {u
1

, . . . , u
k

} with u

1

≺ · · · ≺ u

k

and if

Y

1

= A and Y

i+1

= u

∗
i

(Y
i

\ u
i

) for all i,

then we have

(i) for every i ∈ {1, . . . , k}, u
i

∈ Y

i

(ii) Y

k

∩ A

≤n = {u
k

}.



Lyndon is Lazard

The set L is a Lazard fa
torization for the order <
lex

.

For A = {0, 1}, the words of length ≤ 4 in the lexi
ographi
 order

are 0, 0001, 001, 0011, 01, 011, 0111, 1.

◮
Y

1

= {0, 1}

◮
Y

2

= 0

∗(Y
1

\ 0) = {1, 01, 001, 0001}

◮
Y

3

= (0001)∗(Y
2

\ 0001) = {1, 01, 001}

◮
Y

4

= (001)∗(Y
3

\ 001) = {1, 01, 0011}

◮
Y

5

= (0011)∗(Y
4

\ 0011) = {1, 01}

◮
Y

6

= (01)∗(Y
5

\ 01) = {1, 011}

◮
Y

7

= (011)∗(Y
6

\ 011) = {1, 0111}

◮
Y

8

= (0111)∗(Y
7

\ 0111) = {1}

◮
u

1

◮
u

2

◮
u

3

◮
u

4

◮
u

5

◮
u

6

◮
u

7

◮
u

8

We observe that u

i

= minY

i

.



Nyldon is not Lazard

Theorem (Viennot 1978)

A 
omplete fa
torization (F ,≺) of A

∗
is a Lazard fa
torization if

and only if

∀x , y ∈ F , xy ∈ F =⇒ x ≺ xy .

◮
Sin
e the Lyndon words are a 
omplete fa
torization w.r.t.

<
lex

, this result 
on�rms that they form a Lazard fa
torization.

◮
Sin
e the Nyldon words are a 
omplete fa
torization w.r.t.

>
lex

, this result tells us that they do not form a Lazard

fa
torization.



But Nyldon is right-Lazard

For A = {0, 1}, the Nyldon words of length ≤ 4 in the (in
reasing)

lexi
ographi
 order are 0, 1, 10, 100, 1000, 1001, 101, 1011.

◮
Y

1

= {0, 1}

◮
Y

2

= (Y
1

\ 0) 0∗ = {1, 10, 100, 1000}

◮
Y

3

= (Y
2

\ 1) 1∗ = {10, 100, 1000, 101, 1011, 1001}

◮
Y

4

= (Y
3

\ 10)(10)∗ = {100, 1000, 101, 1011, 1001}

◮
Y

5

= (Y
4

\ 100)(100)∗ = {1000, 101, 1011, 1001}

◮
Y

6

= (Y
5

\ 1000)(1000)∗ = {101, 1011, 1001}

◮
Y

7

= (Y
6

\ 1001)(1001)∗ = {101, 1011}

◮
Y

8

= (Y
7

\ 101)(101)∗ = {1011}

◮
u

1

◮
u

2

◮
u

3

◮
u

4

◮
u

5

◮
u

6

◮
u

7

◮
u

8

We observe that u

i

= minY

i

.



Right Lazard fa
torizations of the free monoid

Lazard fa
torization → left Lazard fa
torization

A right Lazard fa
torization of A

∗
is a set F ⊆ A

∗
satisfying the

following 
onditions:

1. F is totally ordered by some order ≺

2. For every n ≥ 1, if

F ∩ A

≤n = {u
1

, . . . , u
k

} with u

1

≻ · · · ≻ u

k

and if

Y

1

= A and Y

i+1

= (Y
i

\ u
i

) u∗
i

for all i,

then we have

(i) for every i ∈ {1, . . . , k}, u
i

∈ Y

i

(ii) Y

k

∩ A

≤n = {u
k

}.

Regular fa
torization = left and right Lazard fa
torization.



Right fa
torizations of the free monoid

Theorem (Viennot 1978)

A 
omplete fa
torization (F ,≺) of A

∗
is a right Lazard

fa
torization if and only if

∀x , y ∈ F , xy ∈ F =⇒ xy ≺ y .

◮
Lyndon words are a right Lazard fa
torization for <

lex

.

◮
Nyldon words are a right Lazard fa
torization for >

lex

.



Four types of Lazard fa
torizations

The min and max 
hoi
es show an asymetri
 situation for left and

right Lazard fa
torizations:

Left Lazard Right Lazard

lexmin L lexmin N

lexmax L̄ lexmax L
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