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The lexicographic order

Let A be a finite alphabet with a total order <.

Then the order < on the letters induces a total order <lex on A∗

called the lexicographic order:

x <lex y ⇐⇒ x ∈ Pref(y) \ y

or ∃p ∈ A∗ & a, b ∈ A :







a < b

pa ∈ Pref(x)

pb ∈ Pref(y)



Lyndon words

A finite word w over A is Lyndon if for all x , y such that w = xy ,

we have w <lex yx .

Thus, w is Lyndon if and only if it is primitive and minimal among

its conjugates.

◮ 0, 1

◮ 01

◮ 001, 011

◮ 0001, 0011, 0111

◮ 00001, 00011, 00101, 00111, 01011, 01111

◮ . . .



The Chen-Fox-Lyndon theorem

Every finite word w over A can be uniquely factorized as

w = ℓ1ℓ2 · · · ℓk

where k ∈ N and (ℓi )1≤i≤k is a nonincreasing sequence of Lyndon

words.

Some Lyndon factorizations:

◮ 0100010110 = (01)(0001011)(0)

◮ 000100111001 = (000100111001)

◮ 0110101 = (011)(01)(01)



Recursive definition of Lyndon words

◮ The letters are Lyndon.

◮ A finite word is Lyndon if and only if it cannot be factorized as

a nonincreasing sequence of shorter Lyndon words.



Nyldon words

◮ The letters are Nyldon.

◮ A finite word is Nyldon if and only if it cannot be factorized as

a nondecreasing sequence of shorter Nyldon words.



Mathoverflow

Nyldon words were defined in a post on Mathoverflow by Grinberg

in November 2014, together with 2 conjectures:

◮ Is it true that any finite word can be uniquely factorized as a

nondecreasing sequence of shorter Nyldon words?

◮ Is it true that Nyldon words form a set of representatives of

the primitive conjugacy classes?



Let’s look at them

◮ 0, 1



Let’s look at them

◮ 0, 1 ◮ 0, 1



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 0, 1



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 0, 1

◮ 10



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 000, 001, 010, 011,

100, 101, 110, 111

◮ 0, 1

◮ 10



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 000, 001, 010, 011,

100, 101, 110, 111

◮ 0, 1

◮ 10

◮ 100, 101



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 000, 001, 010, 011,

100, 101, 110, 111

◮ 0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

◮ 0, 1

◮ 10

◮ 100, 101



Let’s look at them

◮ 0, 1

◮ 00, 01, 10, 11

◮ 000, 001, 010, 011,

100, 101, 110, 111

◮ 0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

◮ 0, 1

◮ 10

◮ 100, 101

◮ 1000, 1001, 1011



Let’s look at them

◮ 0, 1

◮ 10

◮ 100, 101

◮ 1000, 1001, 1011

◮ 10000, 10001, 10010, 10011, 10110, 10111

◮ 100000, 100001, 100010, 100011, 100110, 100111,

101100, 101110, 101111

◮ 1000000, 1000001, 1000010, 1000011, 1000100, 1000110,

1000111, 1001100, 1001110, 1001111, 1011000, 1011001,

1011100, 1011101, 1011110, 1011111

◮ . . .

If we count them, we find: 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, . . .



First observations and properties

◮ Nyldon words are not maximal among their conjugates: for

example, 101 is Nyldon.

◮ Nyldon words are not extremal among their conjugates, for any

order we have thought of.

◮ Apart from 0 and 1, all binary Nyldon words start with the

prefix 10.

◮ If one can prove the unicity of the Nyldon factorization, then

we know that they are as many Nyldon words as Lyndon words

of each length.



Nyldon words start with the prefix 10: why is that?

Nyldon words can’t start with the letter 0 (except for 0 itself).

◮ Let w = 0u, with u 6= ε.

◮ Write

u = n1 · · · nk , k ≥ 1, n1 ≤lex · · · ≤lex nk

◮ But 0 ≤lex n1 and 0 is Nyldon.

◮ Thus w = (0)(n1) · · · (nk) is a factorization of w into

nondecreasing shorter Nyldon words.

◮ By definition, w is not Nyldon.



Nyldon words start with the prefix 10: why is that?

Nyldon words can’t start with 11.

◮ Let w = 11u.

◮ Write

1u = n1 · · · nk , k ≥ 1, n1 ≤lex · · · ≤lex nk

◮ Now observe that n1 begins in 1.

◮ Then 1 ≤lex n1 and 1 is Nyldon.

◮ This shows that w = 11u = (1)(n1) · · · (nk) factors into

nondecreasing shorter Nyldon words.

◮ By definition, w is not Nyldon.



Forbidden prefixes

We can extend this argument in order to show that many other

prefixes are not allowed in the family of Nyldon words:

◮ 00, 01

◮ 11, 1010, 100100, . . . (in general 10k10k)

◮ 1001011, 10001011, . . . (in general 10k1011)

◮ 1011011, 101110111, . . . (in general 101k01k)

◮ 10011011, 1000110011, . . . (in general 10k+1
110

k
11)

◮ . . .



Forbidden prefixes

A forbidden prefix p is a finite word such that no Nyldon word

starts with p.

All the examples we have are from the following family:

F = {p ∈ A∗ : p = p1p2p3, p1 Nyldon, p1 ≤lex p2,

∀x ∈ A∗, p2p3x = n1 · · · nk =⇒ |n1| ≥ |p2|}

∀x , px = /∈ N

≤lexp1 p2 p3 x

n1 n2

◮ All elements of F are forbidden prefixes.

◮ Question: Are there other forbidden prefixes?



Suffixes, rather than prefixes

◮ Prefixes of Lyndon and Nyldon words behave in a very

different manner.

◮ On the opposite, we can show that suffixes of both families

share some properties.



Theorem (Lyndon)

Let w ∈ A∗. Then the following assertions are equivalent:

◮ w is Lyndon

◮ w is strictly smaller than all its proper suffixes

◮ w is strictly smaller than all its proper Lyndon suffixes.

Theorem (Nyldon)

A Nyldon word is strictly greater than all its proper Nyldon suffixes.

But the condition is not sufficient in the Nyldon case, even if we

ask it to be true for all proper suffixes: 110 is not Nyldon.



Nyldon suffixes of Nyldon words

Nyldon

1000000, 1000001, 1000010,

1000011, 1000100, 1000110,

1000111, 1001100, 1001110,

1001111, 1011000, 1011001,

1011100, 1011101, 1011110,

1011111

Lyndon

0000001, 0000011, 0000101,

0000111, 0001001, 0001101,

0001111, 0010011, 0011101,

0011111, 0001011, 0011011,

0010111, 0110111, 0101111,

0111111



The longest Nyldon suffix of a word

Theorem (Lyndon)

◮ The longest Lyndon suffix of a finite word is the right-most

factor of its Lyndon factorization.

◮ The longest Lyndon prefix of a finite word is the left-most

factor of its Lyndon factorization.

Theorem (Nyldon)

The longest Nyldon suffix of a finite word is the right-most factor

of any of its Nyldon factorizations.

NB: There is no similar condition on prefixes for Nyldon words.



Unicity of the Nyldon factorization

Every finite word w over A can be uniquely factorized as

w = n1n2 · · · nk

where k ∈ N and (ni )1≤i≤k is a nondecreasing sequence of Nyldon

words.

Lyndon vs Nyldon factorizations:

◮ 0100010110 = (01)(0001011)(0) = (0)(1000)(10110)

◮ 000100111001 = (000100111001) = (0)(0)(0)(100111001)

◮ 0110101 = (011)(01)(01) = (0)(1)(10)(101)



Standard factorization

Theorem (Lyndon)

◮ Let S be the longest Lyndon proper suffix of a word w and let

w = PS . Then w is Lyndon iff P is Lyndon and P <lex S .

◮ Let P be the longest Lyndon proper prefix of a word w and let

w = PS . Then w is Lyndon iff S is Lyndon and P <lex S .

Theorem (Nyldon)

Let S be the longest Nyldon proper suffix of a word w and let

w = PS . Then w is Nyldon iff P is Nyldon and P >lex S .

NB: There is no similar condition on prefixes for Nyldon words.



Faster algorithm for computing Nyldon words

◮ Compute the Nyldon factorization of w from right to left.

n← |w |; NylF ← (w [n])

for i = 1 to n − 1 do

if w [n − i ] ≤lex NylF (1) then

NylF ← (w [n − i ],NylF )

else

while #NylF ≥ 2 and NylF (1) >lex NylF (2) do

NylF ← (NylF (1) · NylF (2), NylF (3), . . .)

end while

end if

end for

return NylF

◮ w is Nyldon if and only if #NylF = 1.



From Lyndon to Nyldon: lost properties

Many results for Lyndon words don’t have analogues in the case of

Nyldon words.

◮ Results concerning prefixes.

◮ Let u, v be Lyndon words such that u <lex v . Then uv is

Lyndon.

◮ For example, 10010 >lex 1 but 100101 = (100)(101) is not

Nyldon.

◮ The longest Lyndon suffix of a word is also the suffix that is

minimal w.r.t. the lexicographic order.

◮ For example, the longest Nyldon suffix of 110 is 10 although it

is not lex-maximal (nor lex-minimal).



Complete factorizations of the free monoid

A totally ordered family F ⊆ A∗ is called a complete factorization

of A∗ if each w ∈ A∗ can be uniquely factorized as

w = x1x2 · · · xk (1)

where k ∈ N and (xi )1≤i≤k is a nonincreasing sequence of F .

◮ Lyndon words are a complete factorization for the order <lex.

◮ Nyldon words are a complete factorization for the order >lex.



Schützenberger’s theorem (1965)

Quote from the webpage of Dominique Perrin: “The following

result has no known elementary proof.”

Theorem (Schützenberger 1965)

Let A be an alphabet, F ⊆ A∗ and ≺ be a total order on F .

Then any two of the following three conditions imply the third:

◮ Each w ∈ A∗ admits at least one factorization (1).

◮ Each w ∈ A∗ admits at most one factorization (1).

◮ All elements of F are primitive and each primitive conjugacy

class of A+ contains exactly one element of F .



Nyldon words and primitivity

As a consequence of the unicity of the Nyldon factorization and

Schützenberger’s theorem, we obtain:

Corollary

The Nyldon words form a set of representatives of the primitive

conjugacy classes.



A simpler proof of the primitivity of Nyldon words?

Lyndon words are primitive by definition.

But suppose for a minute that you only know Lyndon words from

their recursive definition and that all Lyndon proper suffixes of a

Lyndon word is greater than the word itself.

(Of course, also suppose that you don’t know Schützenberger’s

theorem.)

Then we easily deduce that Lyndon word are primitive and that

each primitive conjugacy class contains exactly one Lyndon word.



Lyndon word are primitive and each primitive conjugacy

class contains exactly one Lyndon word

◮ By induction on the length n of the words.

◮ Base case: all letters are Lyndon.

◮ Let w be a word of length n ≥ 2 which is a power: w = xm

with x primitive and m ≥ 2.

◮ By induction hypothesis, we know that x has a Lyndon

conjugate: y = vu is Lyndon and x = uv .

◮ Then w = xm = (uv)m = u(vu)m−1v = uymv .

◮ Let u = u1 · · · uk and v = v1 · · · vℓ be the Lyndon

factorizations of u and v .

◮ Then uk ≥lex y ≥lex v1.

◮ Therefore w = u1 · · · uk · y · · · y
︸ ︷︷ ︸

m−1

·v1 · · · vℓ is not Lyndon.



Lyndon word are primitive and each primitive conjugacy

class contains exactly one Lyndon word.

◮ We have shown that Lyndon words of length n are primitive.

◮ Now suppose that there exist distinct Lyndon words x , y of

length n in the same conjugacy class: x = uv and y = vu.

◮ Then x2 has two Lyndon factorizations:

x2 = x · x

= u1 · · · uk · y · v1 · · · vℓ.

◮ But our hypotheses imply the unicity of the Lyndon

factorization, hence we have reached a contradiction.



The same reasoning doesn’t work for Nyldon words.

If x = uv and y = vu is Nyldon, then

xm = u1 · · · uk · y · · · y
︸ ︷︷ ︸

m−1

·v1 · · · vℓ

is not the Nyldon factorization of xm.

◮ For example, if x = 01 then y = 10 and x2 = (0)(101).

If yv is Nyldon, then the Nyldon factorization of xm is

xm = u1 · · · uk · y · · · y
︸ ︷︷ ︸

m−2

· (yv).

But this is not always the case.

◮ For example, if x = 001100101 then y = 100101001 and

x2 = (0)(0)(1)(10010)(1001100)(101).



Lazard factorizations of the free monoid

A Lazard factorization of A∗ is a set F ⊆ A∗ satisfying the

following conditions:

1. F is totally ordered by some order ≺

2. For every n ≥ 1, if

F ∩ A≤n = {u1, . . . , uk} with u1 ≺ · · · ≺ uk

and if

Y1 = A and Yi+1 = u∗i (Yi \ ui) for all i,

then we have

(i) for every i ∈ {1, . . . , k}, ui ∈ Yi

(ii) Yk ∩ A≤n = {uk}.



Lyndon is Lazard

The set L is a Lazard factorization for the order <lex.

For A = {0, 1}, the words of length ≤ 4 in the lexicographic order

are 0, 0001, 001, 0011, 01, 011, 0111, 1.

◮ Y1 = {0, 1}

◮ Y2 = 0
∗(Y1 \ 0) = {1, 01, 001, 0001}

◮ Y3 = (0001)∗(Y2 \ 0001) = {1, 01, 001}

◮ Y4 = (001)∗(Y3 \ 001) = {1, 01, 0011}

◮ Y5 = (0011)∗(Y4 \ 0011) = {1, 01}

◮ Y6 = (01)∗(Y5 \ 01) = {1, 011}

◮ Y7 = (011)∗(Y6 \ 011) = {1, 0111}

◮ Y8 = (0111)∗(Y7 \ 0111) = {1}

◮ u1

◮ u2

◮ u3

◮ u4

◮ u5

◮ u6

◮ u7

◮ u8

We observe that ui = minYi .



Nyldon is not Lazard

Theorem (Viennot 1978)

A complete factorization (F ,≺) of A∗ is a Lazard factorization if

and only if

∀x , y ∈ F , xy ∈ F =⇒ x ≺ xy .

◮ Since the Lyndon words are a complete factorization w.r.t.

<lex, this result confirms that they are indeed a Lazard

factorization.

◮ Since the Nyldon words are a complete factorization w.r.t.

>lex, this result tells us that they are not a Lazard

factorization.



But Nyldon is right-Lazard

For A = {0, 1}, the Nyldon words of length ≤ 4 in the (increasing)

lexicographic order are 0, 1, 10, 100, 1000, 1001, 101, 1011.

◮ Y1 = {0, 1}

◮ Y2 = (Y1 \ 0) 0
∗ = {1, 10, 100, 1000}

◮ Y3 = (Y2 \ 1) 1
∗ = {10, 100, 1000, 101, 1011, 1001}

◮ Y4 = (Y3 \ 10)(10)∗ = {100, 1000, 101, 1011, 1001}

◮ Y5 = (Y4 \ 100)(100)∗ = {1000, 101, 1011, 1001}

◮ Y6 = (Y5 \ 1000)(1000)∗ = {101, 1011, 1001}

◮ Y7 = (Y6 \ 1001)(1001)∗ = {101, 1011}

◮ Y8 = (Y7 \ 101)(101)∗ = {1011}

◮ u1

◮ u2

◮ u3

◮ u4

◮ u5

◮ u6

◮ u7

◮ u8

We observe that ui = minYi .



Right Lazard factorizations of the free monoid

Lazard factorization → left Lazard factorization

A right Lazard factorization of A∗ is a set F ⊆ A∗ satisfying the

following conditions:

1. F is totally ordered by some order ≺

2. For every n ≥ 1, if

F ∩ A≤n = {u1, . . . , uk} with u1 ≻ · · · ≻ uk

and if

Y1 = A and Yi+1 = (Yi \ ui) u
∗
i for all i,

then we have

(i) for every i ∈ {1, . . . , k}, ui ∈ Yi

(ii) Yk ∩ A≤n = {uk}.

Regular factorization = left and right Lazard factorization.



Right factorizations of the free monoid

Theorem (Viennot 1978)

A complete factorization (F ,≺) of A∗ is a right Lazard

factorization if and only if

∀x , y ∈ F , xy ∈ F =⇒ xy ≺ y .

◮ Lyndon words are a right Lazard factorization for <lex.

◮ Nyldon words are a right Lazard factorization for >lex.



Four types of Lazard factorizations

The min and max choices show an asymetric situation for left and

right Lazard factorizations:

Left Lazard Right Lazard

lexmin L lexmin N

lexmax L̄ lexmax L



Final comment

One can now easily check that L̄ is a complete factorization of A∗

for the order ∝ defined by u ∝ v if and only if ū <lex v̄ .

This emphasizes that a complete factorization of the free monoid is

given by the choice of the order on the words, more than by the

choice of the allowed factors.



References

◮ J. Berstel, D. Perrin and C. Reutenauer, Codes and Automata, Encyclopedia of

Mathematics and its Applications 129, Cambridge University Press, 2010.

◮ D. Grinberg, “Nyldon words”: understanding a class of words factorizing the free

monoid increasingly, Mathoverflow 2014.

◮ M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its

Applications 17, Addison-Wesley Publishing Co.,1983.

◮ M.-P. Schützenberger, On a Factorisation of Free Monoids, Proc. Amer. Math.

Soc., 16, 21–24, 1965.

◮ G. Viennot, Algèbres de Lie Libres et Monoïdes libres, Lecture Notes in

Mathematics, 691, Springer-Verlag, 1978.


