PB 8783: the first sdO star suitable for asteroseismic modeling?

Valerie Van Grootel\(^{(1)}\)

S. Randall\(^{(2)}\), M. Latour\(^{(3)}\), P. Németh\(^{(4)}\), G. Fontaine\(^{(5)}\), P. Brassard\(^{(5)}\), S. Charpinet\(^{(6)}\), and E.M. Green\(^{(7)}\)

(1) STAR Institute, Université de Liège, Belgium
(2) ESO, Garching, Germany
(3) University of Göttingen, Germany
(4) Astroserver.org, Czech Republic
(5) Université de Montréal, Canada
(6) IRAP Toulouse, France
(7) University of Arizona, Tucson, USA
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
1. **Introduction to sdB and sdO stars**

Evolved, hot ($T_{\text{eff}} = 20,000 - 70,000$ K) and compact ($\log g = 5.2 - 6.2$) stars

sdB stars
- Extreme Horizontal Branch stars, core He-burning, extremely thin H-rich envelope
- p-mode and g-mode pulsators, κ-mechanism due to Fe-like elements ionization
- About 100 pulsators known in the galactic field, none in globular clusters (GCs)

sdO stars
- Mixture of sdB progeny (post-EHB) and post-AGB stars
- 2 pulsators known in the field, 12 in GCs
- Short-period (80-140s), p-mode pulsations
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
2. Asteroseismology of sdB and sdO stars

- To date: 15 sdB pulsators modeled by asteroseismology

Mass distribution of sdB stars

- Access to global and structural parameters (M_*, logg, R_*, M_{env}, M_{core}, core composition, etc.)
- Help to clarify the question of **origin** of sdB stars (post-RBG stars having lost most of their H-envelope through binary interaction: stellar, sub-stellar and planet)

Asteroseismic modeling of sdO pulsators:
- in GCs: no hope to have good enough photometry for seismology
- in the field: faint ($V\sim15-18$) + difficulties to get accurate Teff (almost all metal lines in UV at these Teff)

Fontaine et al. (2012)
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
3. Non-adiabatic asteroseismology of sdB and sdO stars

- Static envelope models with non-uniform Fe abundances (gravitational settling + radiative levitation): l=1 excited pulsations predicted by Cpulse and MAD
3. Non-adiabatic asteroseismology of sdB and sdO stars

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r
3. Non-adiabatic asteroseismology of sdB and sdO stars

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r
- sdO pulsators in Omega Cen
3. Non-adiabatic asteroseismology of sdB and sdO stars

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r
- sdO pulsators in Omega Cen
- Field sdO pulsators
3. Non-adiabatic asteroseismology of sdB and sdO stars

Corrected Teff based on UV (HST/COS) spectra: +8,000 K (Latour et al. 2017)
3. Non-adiabatic asteroseismology of sdB and sdO stars

There is also a problem at the period level...
3. Non-adiabatic asteroseismology of sdB and sdO stars

There is also a problem at the period level...

![Graph showing observed periods vs. effective temperature (T_eff) with various labels: log g = 5.9, Fe: 1X, Observed periods.]

Hopefully to be solved with Fe+Ni models:

- Importance of Ni for driving (Jeffery & Saio 2006, Hu et al. 2011, Bloemen et al. 2014)
- Higher ionization T => deeper Z-bump => longer periods
- ready since April 2018 (OPAL monochromatic opacities of Ni), hurray!
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
4. PB 8783: sdB or sdO star?

PB 8783 = pulsating subdwarf + F companion

- The second pulsating subdwarf discovered: Koen et al. (1997)
- Frequently re-observed over the years (V=12.6):
 - O’Donoghue et al. (1998), multi-site campaign, 183h data over 15 days
 - Jeffery & Pollacco (2000): pulsations from RV spectroscopy
 - Vuckovic et al. (2005) and Vuckovic et al. (2010): ULTRACAM@WHT in u’g’r’
 - This work: 78d @61”-Mont Bigelow campaign in fall 2007 (Fontaine et al. 2012)

Mt-Bigelow campaign:
- Formal resolution: 0.15µHz
- Noise level: 35 ppm

An old friend of us, always thought to be a sdB star
4. PB 8783: sdB or sdO star?

A very stable pulsation spectrum

<=>: observed multiplets structure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>94.133</td>
<td>94.118</td>
<td>94.13</td>
<td>94.165</td>
</tr>
<tr>
<td>94.454</td>
<td>...</td>
<td>...</td>
<td>94.452</td>
</tr>
<tr>
<td>116.418</td>
<td>116.809</td>
<td>116.42</td>
<td><116.43></td>
</tr>
<tr>
<td><122.678></td>
<td>122.835</td>
<td>122.60</td>
<td><122.680></td>
</tr>
<tr>
<td>123.578</td>
<td>...</td>
<td>123.58</td>
<td><123.630></td>
</tr>
<tr>
<td>127.060</td>
<td>127.275</td>
<td>127.01</td>
<td><127.044></td>
</tr>
<tr>
<td><134.165></td>
<td>134.120</td>
<td>134.44</td>
<td><134.169></td>
</tr>
<tr>
<td>136.269</td>
<td>136.258</td>
<td>...</td>
<td>136.273</td>
</tr>
</tbody>
</table>

In our Mont Bigelow data (analysis with FELIX, Charpinet et al. 2010):

- 11 additional periods with amplitudes between 4.5 and 6.0σ =>
 19 independent observed periods in total, 60-190 s
- Many observed rotational multiplets (1 triplet, 3 quintuplets without central components, and 1 l=4 with 6 components)

A priori an excellent target for asteroseismology
4. **PB 8783: sdB or sdO star?**

- Highly contaminated spectrum by the F-companion -> “depollution” procedure needed. Various methods available in spectroscopy...but none is easy to apply and fully convincing here
- Østensen 2012: new medium-resolution spectroscopy @WHT and Mercator, he noticed absence of HeI, and presence of HeII, which is typical of sdO stars

\[T_{\text{eff}} \approx 50,000 \text{ K} \]
\[\log g \sim 6 \]
4. PB 8783: sdB or sdO star?

- **Our work:** very high S/N, low-resolution (9Å) spectra (Bok telescope, AZ)
- **Method:** fit to a linear combination of synthetic sdO and F spectra, to minimize χ^2
- **The F-companion dominates:** ~72% of the flux at 660 nm, still >50% at 435 nm
4. PB 8783: sdB or sdO star?

- **Our work**: in summer 2017, we obtained high S/N, very high-resolution (0.1 Å) spectroscopy @UVES/VLT
- **Same analysis method**: $T_{\text{eff}} \sim 52,000$ K, $\log g \sim 5.85$ (± 3000K and 0.15, ongoing)

We definitely have a sdO star...but to be more accurate and precise, we (desperately) need UV spectra!
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
5. Asteroseismic modeling of PB 8783

Models:

> 2nd generation models: up to 70,000 K, adapted to sdB and sdO stars
 • static envelope structures; central regions (e.g. convective core) ≡ hard ball
 • include detailed envelope microscopic diffusion (nonuniform envelope Fe abundance),
 • 4 input parameters: T_{eff}, log g, M_*, envelope thickness log (M_{env}/M_*)

> 3rd and 4th generation models (complete static structures):
only for subdwarf on EHB (core He-burning), not suited for sdO stars

Method: usual forward modeling approach

Fit directly and simultaneously all observed pulsation periods with theoretical ones calculated from sdB models, in order to minimize

$$S^2 = \sum_{i=1}^{N_{\text{obs}}} \left(\frac{P_{\text{obs}}^i - P_{\text{th}}^i}{\sigma_i} \right)^2$$

• Efficient optimization algorithms are used to explore the model parameter space in order to find the minima of S^2 i.e. the potential asteroseismic solutions
5. Asteroseismic modeling of PB 8783

- Search parameter space
 - $0.3 \leq \frac{M_*}{M_s} \leq 0.7$ (Han et al. 2002, 2003)
 - $-10.0 \leq \log \left(\frac{M_{\text{env}}}{M_*} \right) \leq -2.5$
 - $\log g$ between 5.7 and 6.1

- $T_{\text{eff}} = 53,000$ K fixed (p-modes are not sensitive to T_{eff})

- Best fit: $S^2 \sim 3.5$, i.e. $<\Delta P/P> \sim 0.37\%$, $<\Delta P> = 0.4$ s, but non-unique solution
5. Asteroseismic modeling of PB 8783

- Search parameter space:
 - \(0.3 \leq M_*/M_s \leq 0.7\) (Han et al. 2002, 2003)
 - \(-10.0 \leq \log (M_{\text{env}}/M_*) \leq -2.5\)
 - \(\log g\) between 5.7 and 6.1

\(T_{\text{eff}} = 53,000\) K **fixed** (p-modes are not sensitive to \(T_{\text{eff}}\))

- Best fit: \(S^2 \sim 3.5\), i.e. \(<\Delta P/P> \sim 0.37\%\), \(<\Delta P> = 0.4\) s, **but non-unique solution**

\[M_* = 0.42 \pm 0.03\ M_{\odot}\]
5. Asteroseismic modeling of PB 8783

- Same exercise, but $T_{\text{eff}} = 60,000$ K **fixed** (inspired by Latour et al. 2017)
- Best fit: $S^2 \approx 4.3$, i.e. $\Delta P/P \approx 0.43\%$, $\Delta P = 0.47$ s, but **non-unique solution**

$$M_\ast = 0.486 \pm 0.041 \, M_\odot$$
Plan

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
2. Asteroseismology of sdB and sdO stars: state-of-the-art
3. Non-adiabatic asteroseismology of sdB/sdO stars
4. PB 8783: pulsating sdB or sdO star?
5. Asteroseismic modeling of PB 8783
6. Conclusion
Conclusions

Nonadiabatic seismology of sdB/sdO stars
- OK for sdBV_r stars, not for sdOs
- Under-estimation of Teff for sdO stars with optical spectroscopy
- Still a period problem: models with Fe+Ni in the envelope

PB8783
- A priori an excellent target for asteroseismology
- Definitely a sdO pulsator
- But we need UV spectra to get accurate and precise spectroscopic parameters
- (partly) due to this, non-unique asteroseismic solution

Prospects:
✓ “Special” models for sdO, post-EHB stars (He-shell burning)
✓ UV spectroscopy for sdO stars
✓ Using the GAIA distances as constraints (PB 8783: d=911 pc)
✓ Exploitation of the rotational multiplets to get internal rotation profile (PB 8783)