

PB 8783: the first sdO star suitable for asteroseismic modeling?

Valerie Van Grootel⁽¹⁾

S. Randall⁽²⁾, M. Latour⁽³⁾, P. Németh⁽⁴⁾, G. Fontaine⁽⁵⁾, P. Brassard⁽⁵⁾, S. Charpinet⁽⁶⁾, and E.M. Green⁽⁷⁾

- (1) STAR Institute, Université de Liège, Belgium
- (2) ESO, Garching, Germany
- (3) University of Göttingen, Germany
- (4) Astroserver.org, Czech Republic
- (5) Université de Montréal, Canada
- (6) IRAP Toulouse, France
- (7) University of Arizona, Tucson, USA

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?

- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

Evolved, hot (T_{eff} = 20 000 - 70 000 K) and compact (log g = 5.2 - 6.2) stars

sdB stars

- Extreme Horizontal Branch stars, core Heburning, extremely thin H-rich envelope
- p-mode and g-mode pulsators, κ-mechanism due to Fe-like elements ionization
- About 100 pulsators known in the galactic field, none in globular clusters (GCs)

sdO stars

- Mixture of sdB progeny (post-EHB) and post-AGB stars
- 2 pulsators known in the field, 12 in GCs
- Short-period (80-140s), p-mode pulsations

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

To date: 15 sdB pulsators modeled by asteroseismology

- Mass distribution of sdB stars
- Access to global and structural parameters (M_{*}, logg, R_{*}, M_{env}, M_{core}, core composition, etc.)
- Help to clarify the question of **origin** of sdB stars (post-RBG stars having lost most of their H-envelope through binary interaction: stellar, sub-stellar and planet)

- Asteroseismic modeling of sdO pulsators:
 - in GCs: no hope to have good enough photometry for seismology
 - in the field: faint (V~15-18) + difficulties to get accurate Teff (almost all metal lines in UV at these Teff)

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

 Static envelope models with non-uniform Fe abundances (gravitational settling+ radiative levitation): I=1 excited pulsations predicted by Cpulse and MAD

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r
- sdO pulsators in Omega Cen

- Static envelope models with excited pulsations (Cpulse and MAD)
- Short-period (p-mode) sdB pulsators, i.e. sdBV_r
- sdO pulsators in Omega Cen
- Field sdO pulsators

Corrected Teff based on UV (HST/COS) spectra: +8,000 K (Latour et al. 2017)

There is also a problem at the period level...

There is also a problem at the period level...

Hopefully to be solved with Fe+Ni models:

- Importance of Ni for driving (Jeffery & Saio 2006, Hu et al. 2011, Bloemen et al. 2014)
- Higher ionization T => deeper Z-bump => longer periods
- ready since April 2018 (OPAL monochromatic opacities of Ni), hurray !

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars ?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

PB 8783 = pulsating subdwarf + F companion

- The second pulsating subdwarf discovered: Koen et al. (1997)
- Frequently re-observed over the years (V=12.6):
 - O'Donoghue et al. (1998), multi-site campaign,183h data over 15 days
 - Jeffery & Pollacco (2000): pulsations from RV spectroscopy
 - Vuckovic et al. (2005) and Vuckovic et al. (2010): ULTRACAM@WHT in u'g'r'
 - This work: 78d @61"-Mont Bigelow campaign in fall 2007 (Fontaine et al. 2012)

An old friend of us, always thought to be a sdB star

A very stable pulsation spectrum

<>: observed multiplets structure

DOD 1998	Jeffery & Pollacco (2000)	Vuckovic et al. (2005)	Mont Bigelow
94.133	94.118	94.13	94.165
94.454			94.452
116.418	116.809	116.42	$<\!\!116.43\!\!>$
$<\!\!122.678\!\!>$	122.835	122.60	$<\!\!122.680\!\!>$
123.578		123.58	$<\!\!123.630\!\!>$
127.060	127.275	127.01	$<\!\!127.044\!\!>$
$<\!\!134.165\!\!>$	134.120	134.44	$<\!\!134.169\!\!>$
136.269	136.258		136.273

In our Mont Bigelow data (analysis with FELIX, Charpinet et al. 2010):

- 11 additional periods with amplitudes between 4.5 and 6.0σ =>
 19 independent observed periods in total, 60-190 s
- Many observed rotational multiplets (1 triplet, 3 quintuplets without central components, and 1 I=4 with 6 components)

A priori an excellent target for asteroseismology

- Highly contaminated spectrum by the F-companion -> "depollution" procedure needed. Various methods available in spectroscopy...but none is easy to apply and fully convincing here
- Østensen 2012: new medium-resolution spectroscopy @WHT and Mercator, he noticed absence of HeI, and presence of HeII, which is typical of sdO stars

- Our work: very high S/N, low-resolution (9Å) spectra (Bok telescope, AZ)
- Method: fit to a linear combination of synthetic sdO and F spectra, to minimize χ^2
- The F-companion dominates: ~72% of the flux at 660 nm, still >50% at 435 nm

- Our work: in summer 2017, we obtained high S/N, very high-resolution (0.1 Å) spectroscopy @UVES/VLT
- Same analysis method: $T_{eff} \sim 52,000 \text{ K}$, log g ~ 5.85 (±3000K and 0.15, ongoing)

We definitely have a sdO star...but to be more accurate and precise, we (desperately) need UV spectra !

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

Models:

> 2nd generation models: up to 70,000 K, adapted to sdB and sdO stars

- static envelope structures; central regions (e.g. convective core) = hard ball
- include detailed envelope microscopic diffusion (nonuniform envelope Fe abundance),
- 4 input parameters : T_{eff}, log g, M_{*}, envelope thickness log (M_{env}/M_{*})

> 3rd and 4th generation models (complete static structures): only for subdwarf on EHB (core He-burning), not suited for sdO stars

Method: usual forward modeling approach

Fit directly and simultaneously all observed pulsation periods with theoretical ones calculated from sdB models, in order to minimize

$$S^2 = \sum_{i=1}^{N_{\rm obs}} \left(\frac{P^i_{\rm obs} - P^i_{\rm th}}{\sigma_i}\right)^2$$

 Efficient optimization algorithms are used to explore the model parameter space in order to find the minima of S² i.e. the potential asteroseismic solutions

5. Asteroseismic modeling of PB 8783

- ✓ Search parameter space $0.3 \le M_*/M_s \le 0.7$ (Han et al. 2002, 2003)
 - $-10.0 \le \log (M_{env}/M_{*}) \le -2.5$
 - log g between 5.7 and 6.1

T_{eff}= 53,000 K **fixed** (p-modes are not sensitive to Teff)

✓ Best fit: S²~3.5, i.e. < $\Delta P/P$ >~0.37%, < ΔP >=0.4 s, but non-unique solution

5. Asteroseismic modeling of PB 8783

- ✓ Search parameter space $0.3 \le M_*/M_s \le 0.7$ (Han et al. 2002, 2003)
 - $-10.0 \le \log (M_{env}/M_{*}) \le -2.5$
 - log g between 5.7 and 6.1

T_{eff}= 53,000 K **fixed** (p-modes are not sensitive to Teff)

✓ Best fit: S²~3.5, i.e. < $\Delta P/P$ >~0.37%, < ΔP >=0.4 s, but non-unique solution

- ✓ Same exercise, but T_{eff}= 60,000 K **fixed** (inspired by Latour et al. 2017)
- ✓ Best fit: S²~4.3, i.e. < $\Delta P/P$ >~0.43%, < ΔP >=0.47 s, but non-unique solution

- 1. What are subdwarf B (sdB) and subdwarf O (sdO) stars?
- 2. Asteroseismology of sdB and sdO stars: state-of-the-art
- 3. Non-adiabatic asteroseismology of sdB/sdO stars
- 4. PB 8783: pulsating sdB or sdO star?
- 5. Asteroseismic modeling of PB 8783
- 6. Conclusion

Nonadiabatic seismology of sdB/sdO stars

- OK for sdBV_r stars, not for sdOs
- Under-estimation of Teff for sdO stars with optical spectroscopy
- Still a period problem: models with Fe+Ni in the envelope
- PB8783 A priori an excellent target for asteroseismology
 - Definitely a sdO pulsator
 - But we need UV spectra to get accurate <u>and</u> precise spectroscopic parameters
 - (partly) due to this, non-unique asteroseismic solution

Prospects:

- ✓ "Special" models for sdO, post-EHB stars (He-shell burning)
- ✓ UV spectroscopy for sdO stars
- ✓ Using the GAIA distances as constraints (PB 8783: d=911 pc)
- ✓ Exploitation of the rotational multiplets to get internal rotation profile (PB 8783)