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Abstract: Collagen from a marine resource is believed to have more potential activity in bone tissue
engineering and their bioactivity depends on biochemical and structural properties. Considering
the above concept, pepsin soluble collagen (PSC) and acid soluble collagen (ASC) from blue shark
(Prionace glauca) skin were extracted and its biochemical and osteogenic properties were investigated.
The hydroxyproline content was higher in PSC than ASC and the purified collagens contained three
distinct bands α1, α2, and β dimer. The purity of collagen was confirmed by the RP-HPLC profile and
the thermogravimetric data showed a two-step thermal degradation pattern. ASC had a sharp decline
in viscosity at 20–30 ◦C. Scanning electron microscope (SEM) images revealed the fibrillar network
structure of collagens. Proliferation rates of the differentiated mouse bone marrow-mesenchymal
stem (dMBMS) and differentiated osteoblastic (dMC3T3E1) cells were increased in collagen treated
groups rather than the controls and the effect was dose-dependent, which was further supported
by higher osteogenic protein and mRNA expression in collagen treated bone cells. Among two
collagens, PSC had significantly increased dMBMS cell proliferation and this was materialized
through increasing RUNX2 and collagen-I expression in bone cells. Accordingly, the collagens from
blue shark skin with excellent biochemical and osteogenic properties could be a suitable biomaterial
for therapeutic application.

Keywords: blue shark collagen; osteogenic activity; Runx2; differentiated mesenchymal stem cell;
osteoblast; proliferation
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1. Introduction

There are three major types of protein present in fish, such as sarcoplasmic (25–30%), myofibrillar
(66–77%), and stroma protein (1–5%). Among them, stromal proteins are mostly located in the
interstitial space of muscle cells and the extracellular membrane. One of the most available stromal
proteins in fish is collagen. It is extracted from different part of fish such as bones, scales, skin, swim
bladder, and fins. Currently, collagen from the marine organism has been widely investigated due to
its excellent biological activity with low or no side effect as an alternative to mammalian collagen [1,2].
Collagen is graded based on its biochemical, functional, and rheological characteristics, which may
depend on fish species and the manufacturing method. Based on the quality and bioactivity, fish
collagen can be used as a drug in the biomedical industries or as a food supplement in food industries.

In tissue engineering, fish collagen is used in the form of films, scaffolds, sponge, hydrogel,
microspheres, and composite biopolymers. Wang et al. [3] studied the hemostatic properties of type
I collagen to treat tissue burns. In another study, type I collagen 3D matrix was used as a potential
biomaterial for heart regeneration [4]. It is well known that the growth and characteristic of cells such
as proliferation, adhesion, and maturation were enhanced by collagen labeling [5]. It was found that
the inflammatory response of tilapia collagen biomaterials in rabbits was similar to that of collagen
from porcine or polyethylene [6]. In addition, the collagen from jellyfish could induce an immune
response similar to that of bovine collagen [7]. Sugahara et al. [8] reported that jellyfish collagen
produced by pepsin digestion up-regulated the production of immunoglobulin IgM in the human
hybridoma cells and IgM and IgG in human peripheral blood lymphocytes due to the presence of
telopeptides. Our recent research confirmed the biocompatible and non-immunogenic effect of acid
soluble- and pepsin soluble-collagen isolated from shark cartilages and tilapia skin and these collagens
did not elicit immune response in in-vivo and in-vitro models [9,10]. In that sense, collagen from shark
can be used as a potential biomaterial for bone tissue engineering.

Indeed, shark collagen has been widely used in bone tissue engineering application due to its
excellent biocompatible, osteoconductive, osteoinductive, and natural bone biomimetic properties.
The collagen material used in bone tissue engineering not only regulates morphological properties
but also maintains appropriate cues for regulating cellular processes during bone formation. It was
reported that the collagen-based biomaterial implanted in rabbit induced neotendon and neoligament
formation [11,12]. Our previous study revealed the osteogenic potential of whale shark bone collagen
on mesenchymal stem cells and primary osteocytes [13]. In another study, composite scaffold 3D
matrices were prepared by mixing acid soluble collagen from blue shark (Prionace glauca) skin with
calcium phosphates from the teeth of Prionace glauca and Isurus oxyrinchus and tested the effect of a
composite collagen scaffold 3D matrix in the proliferation of osteoblast-like cells, Saos-2 [14]. However,
the osteogenic properties of pure collagen isolated from blue shark skin need to be addressed before
being used as a biomaterial in bone tissue engineering, since the osteogenic potential of fish collagen is
profoundly influenced by the molecular composition and arrangement, which is thought to be varied
by different extraction methods. Considering the above hypothesis, for the first time, we explored the
osteogenic response of type I collagens (Acid and Pepsin soluble) isolated from blue shark (Prionace
glauca) skin using differentiated mouse bone marrow-mesenchymal stem (dMBMS) and differentiated
osteoblastic (dMC3T3E1) cells and their relationship with the biochemical and functional properties of
collagen in the present study.

2. Results and Discussion

2.1. Hydroxyproline and Collagen Content of Raw Materials

The quantification of total collagen content from hydroxyproline (Hyp) was determined as per
the earlier method [15]. In general, the PSC had a high content of Hyp than ASC, similarly the collagen
content was also high in PSC. The hydroxyproline and collagen contents of PSC and ASC were about
120 and 106.36 mg/g and, 896.738 and 793.49 mg/g, respectively (Figure 1). The present result was in
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accordance with the hydroxyproline content of collagen from silvertip shark (113 and 105 mg/g) and
brownbanded bamboo shark (103.71 mg/g) [1,16]. The hydroxyproline content may depend on the
seasonal variations and body temperature of the fish species.
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Figure 1. Hydroxyproline and collagen content of blue shark skin collagen. ASC-Acid soluble collagen,
PSC-Pepsin soluble collagen. * p < 0.05 vs. ASC.

2.2. Amino Acid Content

The amino acid profiles of blue shark collagens (PSC and ASC) were similar in trend and expressed
as residues per 1000 total residues (Table 1). Both ASC and PSC had glycine (392 and 387) as a
foremost amino acid, followed by alanine (144–130) and proline (132–124). The amino acid contents
of glycine, asparagine, proline, and hydroxyl-proline were high in general. The sum of Pro and Hyp
(imino acid) content was higher in PSC (222) than ASC (213). The high content of alanine, glycine,
hydroxyproline, and proline were the typical amino acids that represent the high content of collagen
in blue shark skin. The present finding of collagen amino acid composition was similar to other fish
collagen [16,17]. The differing amino acid composition between PSC and ASC was due to the removal
of some non-collagen amino acid and the breakdown of certain specific amino acid residues at the
telopeptide region during pepsin hydrolysis.

Table 1. The amino acid composition of ASC and PSC from blue shark skin.

Amino Acids ASC PSC

Glycine 392.44 387.12
Alanine 144.59 130.88
Proline 132.98 124.46

Hydroxyproline 80.45 98.28
Glutamic acid 69.23 71.50
Aspartic acid 36.73 40.51

Arginine 28.64 26.25
Leucine 24.44 13.83
Serine 21.75 26.25
Lysine 14.84 15.95

Phenylalanine 13.63 14.02
Methionine 10.17 12.03
Threonine 10.04 8.19
Histidine 5.39 6.65

Valine 7.61 8.38
Isoleucine 3.79 9.38

2.3. Molecular Weight Analysis

The electrophoretic pattern of the skin collagen was shown in Figure 2A. The electrophoretic
pattern of ASC and PSC was comparable, which was comprised of three distinct bands, α1, α2

and β chains. However, there was some smaller molecular weight component observed in the
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PSC electrophoretic pattern, which was due to the hydrolysis of pepsin at the telopeptide region.
The present finding of the collagen molecular pattern (α1, α2 and β) was a characteristic type I collagen
electrophoretic profile and was comparable with other teleost fish species [18].

2.4. Viscosity and Solubility

Upon increasing temperature, the viscosity of ASC and PSC had decreased gradually (Figure 2B).
The viscosity of PSC was gradually decreased in respect to temperature, which was similar to other
fish collagen [19,20], whereas the viscosity of ASC had a sharp decline at 20–30 ◦C. The collagens had
lost their viscosity against the temperature due to the breaking of the collagen molecule hydrogen
bonds that lead separate triple helix chains into random coils or distinct chains during heating at high
temperature. Therefore, the secondary structure highly influences the viscosity of collagen. In this
study, PSC was more viscous than ASC due to the high content of imino acid, which is believed to be
responsible for the stability of collagen [19].

1 

 

 
Figure 2. Electrophoretic profile (A), viscosity (B) and solubility against pH (C) and salt (D) of blue
shark skin collagen. ASC-Acid soluble collagen, PSC-pepsin soluble collagen.

The solubility of collagen against pH was presented in Figure 2C. The results showed that ASC
had high solubility in acidic conditions at pH 4.0, whereas the maximum solubility PSC was observed
at pH 6.0. The solubility of collagen against salt, NaCl, showed that the maximum solubility of PSC
and ASC was observed at 3% and 4% NaCl concentration, respectively (Figure 2D). Similar findings on
salt solubility (3–4%) of eel fish skin collagen were earlier reported by Veeruraj et al. [17]. In general, the
collagen tends to precipitate at their iso-ionic point (pH 5–8), which leads to decrease the solubility [18].
Also, the solubility of collagen against pH is closely related with the molecular composition and ionic
state of the functional groups present in collagen [15].

2.5. UV Absorbance

The UV absorbance pattern of blue shark skin collagen was presented in Figure 3A. Both collagens,
PSC and ASC, had a UV maximum absorption at 225 nm. It was reported that the major functional



Mar. Drugs 2018, 16, 350 5 of 15

groups (-COOH, C=O and CO-NH2) of collagen tend to absorb UV light [21]. An earlier study revealed
that the purity of collagen was indirectly measured by the absence of UV absorption at 280 nm since
the non-collagen proteins tend to absorb maxima at this particular UV wavelength [16].

2.6. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR peak of blue shark skin collagen was presented in Figure 3B. As shown, the primary
peaks such as Amide-A and Amide-B were observed at 3302.67 and 3301.20 cm−1, and 2972.57 and
2972.36 cm−1 for ASC and PSC, respectively. Amide-A and Amide-B peaks are generally produced
by N-H stretch joined with the H2 bond in a carbonyl group of peptide chains and an asymmetric
stretching vibration of NH3

+ with =C-H, respectively. The major spectral wavelength observed in blue
shark skin collagen was similar to earlier studies [17,20,22,23]. In this study, the shifting of Amide-A
peak in PSC to lower wavelength was due to the hydrogen bond vibration of the NH group.

The other major peaks like Amide-1 and Amide-2 occurred at 1632.28–1632.06 cm−1 and
1547.89–1547.25 cm−1 for blue shark skin ASC and PSC, respectively. The secondary structure of
collagen is closely represented by Amide-1 peak, which is due to the C=O stretching vibration of
peptides. Therefore, any shifting in the amide-1 peak directly reflects the changes in the secondary
structure of a protein. In this study, the amide-1 peak of PSC shifted to a lower wavelength compared
to ASC, which denotes the secondary structural changes of PSC by pepsin digestion.

Mar. Drugs 2018, 16, x 5 of 15 

 

2.5. UV Absorbance 

The UV absorbance pattern of blue shark skin collagen was presented in Figure 3A. Both 

collagens, PSC and ASC, had a UV maximum absorption at 225 nm. It was reported that the major 

functional groups (-COOH, C=O and CO-NH2) of collagen tend to absorb UV light [21]. An earlier 

study revealed that the purity of collagen was indirectly measured by the absence of UV absorption 

at 280 nm since the non-collagen proteins tend to absorb maxima at this particular UV wavelength 

[16]. 

2.6. Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR peak of blue shark skin collagen was presented in Figure 3B. As shown, the primary 

peaks such as Amide-A and Amide-B were observed at 3302.67 and 3301.20 cm−1, and 2972.57 and 

2972.36 cm−1 for ASC and PSC, respectively. Amide-A and Amide-B peaks are generally produced by 

N-H stretch joined with the H2 bond in a carbonyl group of peptide chains and an asymmetric 

stretching vibration of NH3+ with =C-H, respectively. The major spectral wavelength observed in blue 

shark skin collagen was similar to earlier studies [17,20,22,23]. In this study, the shifting of Amide-A 

peak in PSC to lower wavelength was due to the hydrogen bond vibration of the NH group. 

The other major peaks like Amide-1 and Amide-2 occurred at 1632.28–1632.06 cm−1 and 1547.89–

1547.25 cm−1 for blue shark skin ASC and PSC, respectively. The secondary structure of collagen is 

closely represented by Amide-1 peak, which is due to the C=O stretching vibration of peptides. 

Therefore, any shifting in the amide-1 peak directly reflects the changes in the secondary structure of 

a protein. In this study, the amide-1 peak of PSC shifted to a lower wavelength compared to ASC, 

which denotes the secondary structural changes of PSC by pepsin digestion. 

 

Figure 3. UV absorption (A) and Fourier transform infrared spectroscopy (FTIR) pattern (B) of blue 

shark skin collagen. ASC-Acid soluble. collagen, PSC-Pepsin soluble collagen. 

2.7. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

In order to confirm the purity, the extracted blue shark skin collagens were eluted through RP-

HPLC column and compared with standard bovine collagen. As shown in Figure 4, there were two 

main chromatogram peaks eluted at 3.427 and 19.0 min for ASC and 3.407 and 22.980 min for PSC, 

respectively. The first peak observed at 3.4 was the acetic acid peak. The present observation was in 

accordance with a previous report [24]. Compared to the standard bovine collagen, the blue shark 

B 

A 

Figure 3. UV absorption (A) and Fourier transform infrared spectroscopy (FTIR) pattern (B) of blue
shark skin collagen. ASC-Acid soluble. collagen, PSC-Pepsin soluble collagen.

2.7. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)

In order to confirm the purity, the extracted blue shark skin collagens were eluted through
RP-HPLC column and compared with standard bovine collagen. As shown in Figure 4, there were
two main chromatogram peaks eluted at 3.427 and 19.0 min for ASC and 3.407 and 22.980 min for
PSC, respectively. The first peak observed at 3.4 was the acetic acid peak. The present observation
was in accordance with a previous report [24]. Compared to the standard bovine collagen, the blue
shark fish collagen showed a dissimilar chromatographic pattern. We speculated that this might be
due to the difference in their molecular arrangements between mammalian and fish collagen. Also,
the RP-HPLC pattern confirmed that extracted collagen was pure and free from non-collagen protein
and other contaminants, further justifying the SDS-PAGE data of collagen (Figure 2A).
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2.8. Thermal Properties

Thermal properties such as the material weight loss towards temperature and the thermal
disintegration configuration of the blue shark skin collagens were evaluated by the thermogravimetric
analyzer (TGA). From the TGA curves, 50% weight loss in ASC and PSC were observed at 339 and
342 ◦C, respectively (Figure 5A). At high temperature (650 ◦C), the mass weight of ASC and PSC were
about 22.53 and 23.64, respectively.
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Figure 5. Thermogravimetric analysis (TGA) (A) and differential scanning calorimetry (DSC) (B) of
blue shark skin collagen. ASC-Acid soluble collagen, PSC-pepsin soluble collagen.

ASC and PSC from blue shark skin had two endothermic peaks, which denoted the thermal
denaturation and melting temperature. The denaturation temperature of ASC and PSC was about
28.3 and 29.8 ◦C, respectively (Figure 5B). The degree of hydroxylation and certain specific amino
acid residues such as Gly-Pro-Hyp might determine the denaturation temperature of collagen [15].
It was observed that imino acids play a major role in the thermal properties of collagen. For instance,
the hydroxyproline mainly contributes to the stability of the helix chain [25]. In this study, PSC had
better thermal properties than ASC due to the high content of iminoacids.
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2.9. Morphalogical Characteristics

The field emission scanning electron microscope was used to analyse the morphological structures
of the blue shark skin collagens (PSC and ASC). From the microphotography, both collagens were rich in
a fibrillar network with many flaky orientation layers (Figure 6). The present finding was in accordance
with the morphology of other fish collagens reported earlier [10,17]. However, the morphology was
regular and an organized fibrillar network in PSC, while ASC had irregular fibrillar interconnectivity
and wall morphology. It was opioned that the morphalogical features of collagen such as fibril
interconnectivity, shape and wall morphology were important factors in tissue engineering, since
they may influence the growth, migration, proliferation, differentiation, and maturation of cells [26].
In recent research, the collagen from the same species (blue shark skin) was used to formulate a scaffold
3D matrix and tested the proliferation and mineralisation effect on Saos-2 cells, and further confirmed
that the scaffold prepared from blue shark skin collagen could support Saos-2 cell attachment and
osteoblast-like cells formation [14]. In the present study, the morphological features confirmed the
aptness of blue shark skin collagens in bone tissue engineering.
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Figure 6. Morphological features of blue shark skin collagens using field emission scanning electron
microscope. ASC-Acid soluble collagen, PSC-Pepsin soluble collagen. SEM image with 200 micro
meter magnifications.

2.10. Effect of Collagen on Bone Cells

The effect of collagens on the dMBMS and dMC3T3E1 cell growth was determined and presented
in Figure 7. As shown in Figure 7, the collagens treated dMBMS and dMC3T3E1 cells showed a
higher cell proliferative rate than the control cells and the rate was accelerated with increasing collagen
concentration in a dose-dependent manner. Remarkably, the osteogenic effect of the collagen on
the bone cell was maxima at a high concentration (50 ng/mL). Among the two cells, dMBMS cells
had a higher proliferation rate in PSC treated group. Whereas dMC3T3TE1 cells showed similar cell
proliferation in both ASC and PSC treated groups. A recent study by Diogo et al. [14] reported that the
composite blue shark skin collagen-calcium phosphate scaffold crosslinked with 12.5% EDC/NHS
accelerated Saos-2 cells metabolic activity and supported osteoblast-like cells formation, however,
this study was conducted using acid soluble collagen. Conversely, in the present study, the collagen
was extracted by two different methods using acetic acid and pepsin, respectively, and the proliferative
effect of freeze dried collagens was tested using dMBMS and dMC3T3E1 cells.
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differentiated mouse bone marrow mesenchymal stem cells, MC3T3E1- differentiated-osteoblasts,
ASC-Acid soluble collagen, PSC-pepsin soluble collagen. For differentiation, MBMS and MC3T3E1
cells were cultured with osteoblast differentiation medium for 21 days. * p < 0.05 vs control.

The levels of osteogenic mRNA expression of alkaline phosphatase, collagen 1 aplha1 and Runx2
were significantly increased in the collagen treated cells than the control cells, however, the osteocalcin
mRNA expression was not significantly altered between the collagen and control cells (Figure 8A).
Confocal laser scanning microscope showed a high number of mature bone cells in collagen treated
cells compared to control cells (Figure 8B), which further substantiated the osteogenic stimulatory
activities of blue shark skin collagens. Similar to the present study, type I collagen and its peptides
from rat tail showed osteogenic stimulatory activities on a mesenchymal stem cell [27,28]. Recently,
Chiu et al. [29] reported that the MBMS cell expressed a high the level of integrin α2β1 complex
upon collagen treatment. In support of the proliferation result, the levels of osteogenic mRNA of
alkaline phosphatase and collagen 1 were increased in collagen treated cells. Runx mRNA expression
of collagen treated cells revealed the potential osteogenic activity of collagen. These findings further
justify the increased proliferation rate of collagen treated cells. Recent studies claimed that certain
amino acids such as glutamine, alanine, asparagine, and glycine of collagen triggered new bone cell
formation through the initiation of FAK-JNK signaling pathway via RUNX2 in MBMS cell [29,30].
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The western blot analysis of the osteogenic protein expression of collagen treated cells was in
agreement with the proliferation, mRNA expression, and microscopic results, which indicated the
higher osteogenic protein expression of collagen I alpha I and Runx2 in collagen treated cells than in
the control (Figure 9A).
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Figure 9. Osteogenic regulatory protein expressions (Collagen I and Runx2) of bone cells (differentiated
MBMS) treated with blue shark skin collagen by western blot assay. (A) Level of osteogenic protein
expression of bone cells (B) Fold changes of osteogenic protein expression compared to control
(GAPDH). ASC-Acid soluble collagen, PSC-Pepsin soluble collagen. For differentiation, MBMS cells
were cultured with osteoblast differentiation medium for 21 days, * p < 0.05.
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In addition, the cells treated with PSC showed higher osteogenic regulatory protein expressions
than ASC treated cells (Figure 9B). Interestingly, the Runx2 protein was highly expressed in collagen
treated cells, especially in PSC treated cells. It was reported that the collagen could interact with
integrin alpha1 beta 2 of the mesenchymal stem cells and trigger FAK/JNK signals through Runx2
during osteoblast differentiation [29]. In that sense, the blue shark skin collagen accrued osteoblast
differentiation through upregulating the Runx2 protein expression in dMBMS cells. These findings
further confirmed the admirable osteogenic properties of blue shark skin collagens.

3. Materials and Methods

3.1. Extraction, Purification, and Total Collagen Content of Fish Collagen

The raw material, blue shark skin (Prionace glauca), was procured from a private fish processing
plant, M/s. Yueqing Biological Health Care Product Co., Ltd. Zhejiang, China and chopped into
small pieces. They were then homogenized in PBS prior to extraction. The pretreatment was done in
order to remove water-soluble protein, non-collagen protein, and mineral content using distilled water,
NaOH and ethylenediaminetetraacetic acid (EDTA), respectively. The pretreated samples were used
for the extraction of acid soluble collagen (ASC) and pepsin soluble collagen (PSC) using acetic acid
and acetic acid containing 1% pepsin, respectively, as per our previous method [10]. The extracted
samples were purified using Sephadex G-100 column chromatography coupled with UV spectroscopy
with the absorbance of 230 nm [1]. The purified samples were freeze-dried using a lyophilizer.
The hydroxyproline and total collagen content of the purified samples were determined [31].

3.2. Molecular Mass by SDS-PAGE and Amino Acid Profile

The protein molecular mass analysis was done by SDS-PAGE using 10% running gel, 4% stacking
gel, 20 microliter sample loading volume (10 micrograms per lane) and 120 voltage as per our earlier
method [10]. After the run, the gels were stained with Coomassie blue R-250 in methanol and acetic
acid for 30 min followed by detaining with methanol and acetic acid [32]. The amino acid profile
was determined by hydrolyzing the samples in 6M hydrochloric acid at 110 ◦C for 24 h and then
injected (aliquot of 0.4 mL) into an amino acid analyzer (Hitachi L-8800, Tokyo, Japan) and expressed
as residues per 1000 residues [1].

3.3. Viscosity and Solubility

The viscosity and solubility of the collagen samples were done as per our earlier method [1].
For viscosity, the samples were heated from 5 to 40 ◦C followed by injection to a Brookfield LVDV-II+P
viscometer (Brookfield Engineering Laboratories Ltd., Middleboro, MA, USA) to measure relative
viscosity. The percentage of collagen solubility was tested against different pH (2–10) and salt
concentrations (1–6%). The relative solubility was measured from the protein content [33].

3.4. Absorbance UV Maxima and FTIR Spectra

The maximum UV absorbance of collagen was done using a UV-spectrophotometer, scanning
at a different wavelength from 210 to 318 nm. For the FTIR spectra, the collagen samples were
mixed with kBr to produce a disk and scanned at different wavelengths using a Fourier transform
infrared spectrometer (Nicolet 6700, Thermofisher Scientific Inc., Waltham, MA, USA) equipped with a
DLaTGS detector. The absorption intensity of each peak was calculated as mentioned in our previous
method [1].

3.5. RP-HPLC

The purity of extracted collagen was confirmed by RP-HPLC as per our earlier method [34].
In brief, a collagen sample dissolved in acetic acid was loaded on a ZORMAX 300 SM-C18 (Agilent,
Shanghai, China) column of LaChrom Elite HPLC system (Hitachi, Tokyo, Japan) equipped with an
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L-2130 pump, L-2300 column oven, L-2400 UV detector and L-2200 auto-sampler; and eluted with a
two gradient solvent system using acetonitrile and trifluoroacetic acid with the peak absorbance at
230 nm using the HITACHI D-2000 Elite workstation software (Hitachi, Tokyo, Japan).

3.6. Thermal Stability

The thermal stability of collagen was determined from differential scanning calorimetry (DSC)
and TGA analysis [35]. In brief, the DSC spectrum was obtained by scanning the collagen samples
from 20 to 120 ◦C using a differential scanning calorimeter (Model-DSC822e, Mettler-Toledo GmbH,
Greifensee, Switzerland). For TGA Analysis, the samples were scanned using a TG 209 F1 analyzer
(NETZSCH-Geratebau GmbH, Selb, Germany) from 0 to 650 ◦C at a rate of 10 ◦C min−1 in a
nitrogen atmosphere.

3.7. Morphological Analysis

The morphology of the blue shark skin colalgens, PSC and ASC was captured using a field
emission scanning electron microscope (FE-SEM S-3400 N, Hitachi, Tokyo, Japan) operated at 5 kV.
The samples were sputter-coated with gold to produce 10 nm thin layer and moved to the SEM
chamber for image capturing at 20 kV voltage.

3.8. Effect of Collagen on Osteoblastogenesis

3.8.1. Cell Culture

Mouse bone marrow-mesenchymal stem (MBMS) and MC3T3E1 cells were received from the
cell bank (Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd., Shanghai, China) and were
cultured in stem cell culture medium and DMEM, respectively, comprising 10% FBS and antibiotics
(1% penicillin/streptomycin) at 37 ◦C in a CO2 incubator. Mesenchymal stem cell growth supplement
was added with the culture medium to induce MBMS cell growth.

3.8.2. Osteogenic Differentiation

The MBMS and MC3T3E1 cells with a density of 5× 104 cells/well were seeded in 6 well microtiter
culture plate and cultured with osteoblast differentiation medium composed of growth supplements
(Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd., Shanghai, China) for 21 days as reported in
our previous protocol [13]. The culture medium was replaced every three days.

3.8.3. Proliferation Assay

After differentiation, the cells were trypsinized using EDTA/Trypsin solution and re-seeded in
96 well plates. Then the cells were treated with 1, 10, and 50 ng/mL concentration of blue shark skin
collagens. Cells grown without collagen samples served as the control. The proliferative effect of
collagen on bone cells was measured using a cell counter (Invitrogen, Countess II Automated Cell
Counter, ThermoFisher Scientific, Shanghai, China) at 3 days after treatment.

3.8.4. mRNA Expression

The bone cells were treated with collagen as mentioned above and the total mRNA was isolated
using the TRIzol method as per our earlier protocol [13]. Briefly, a Trizol lysed cell monolayer
was mixed with chloroform to obtain RNA and the RNA was precipitated using isopropanol.
After thorough washing with 70% ethanol, the RNA was converted to first strand cDNA using an
Invitrogen kit as per the manufacturer’s instructions. The percentage of osteogenic mRNA expression
(ALP, Runx2, osteocalcin, Col1a1, and beta-actin) (Table 2) of blue shark collagen treated bone cells was
determined using an ABI 7500 Fast Real-Time PCR System (Applied Biosystems, Shanghai, China) [13].
The cDNA template was mixed with SYBR Green Fast qPCR RT Master Mix (Invitrogen, Shanghai,
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China) and target primers as per the manufacture’s instructions. The relative mRNA expression of the
target gene was calculated by subtracting the mRNA expression of a house-keeping gene, beta-actin.

Table 2. List of primers and its sequence used in this study.

S.No Primers Name Primers Sequence

1 Alkaline phosphatase (ALP)
5′-TCC TGA CCA AAA ACC TCA AAG G-3′

5′-TGC TTC ATG CAG AGC CTG C-3′

2 Osteocalcin
5′-CTC ACA GAT GCC AAG CCC-3′

5′-CCA AGG TAG CGC CGG AGT CT-3′

3 Collagen 1 alpha 1 (Col1a1)
5′-GCG AAG GCA ACA GTC GCT-3′

5′-CTT GGT GGT TTT GTA TTC GAT GAC-3′

4 Runx2
5′-CCA CCA CTC ACT ACC ACA CG-3′

5′-TCA GCG TCA ACA CCA TCA TT-3′

5 Beta-actin
5′-CTG GCA CCA CAC CTT CTA CA-3′

5′-GGT ACG ACC AGA GGC ATA CA-3′

3.8.5. Immunocytochemistry

For immunocytochemistry, cells were grown in the confocal disc (Cat no. 150682, ThermoFisher
Scientific, Shanghai, China) with collagen, washed with ice-cold PBS, fixed with 4% paraformaldehyde
for 15 min and permeabilized at room temperature with 0.1% Triton X-100 for 15 min.
Then, the cells were incubated with fluorescence stains such as fluorescein isothiocyanate (FITC)
and 4′,6-diamidino-2-phenylindole (DAPI). The images were captured using a confocal laser scanning
microscope (Leica TCS SP8, Leica Microsystems CMS GmbH, Wetzlar, Germany).

3.9. Western Blot Analysis

The osteogenic effect of the ASC and PSC was further tested in dMBMS cells using the western
blot method, as an empirical study. In brief, the cells were seeded at a cell density of 1 × 105 in 6
well plates and cultured with 1 mL culture medium for control. For collagen treatment, the samples
(50 ng/mL) were mixed with 1 mL cultured medium and cultured for three days. Then, the treated
and untreated cells were harvested using a lysis buffer with 30 s sonication and centrifuged at 12,000
rpm at 4 ◦C for 15 min for the extraction of total cellular protein. The protein content was quantified
using a BCA kit as per the manufacturer’s instructions (Thermo Fisher Scientific, Shanghai, China) and
then was separated by 12% SDS-PAGE and transferred to PVDF nitrocellulose membrane (Invitrogen,
Shanghai, China) using iblot-2 dry blotting system (Invitrogen, Shanghai, China). A protein transferred
membrane blocked with 5% BSA-PBST were incubated with primary antibodies such as anti-GAPDH,
anti-Col1α2 and anti-Runx2 (ABcam, Shanghai, China) overnight at 4 ◦C. Then the membrane was
incubated with secondary goat anti-rabbit IgG-HRP (Abcam) for 1 h at 37 ◦C and exposed to an
enhanced chemiluminescent reagent. Images were captured with a Universal Hood II Gel Doc System
(Bio-Rad, Rochester, NY, USA).

3.10. Statistical Analysis

All the experiments were conducted three times and the data were presented as mean with
standard error based on descriptive statistics. One way ANOVA (p < 0.05) and post hoc test were
adapted using the statistical software SPSS version 16.0 (SPSS, Chicago, IL, USA).

4. Conclusions

In this study, two types of collagens, PSC and ASC were isolated and purified from blue shark
skin, which contained three distinct chains, 2 alpha, and beta chains. The amino acid composition
and the FTIR secondary structure of PSC varied with ASC due to pepsin hydrolysis. Among
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two collagens, PSC had high thermal stability, which might be due to high imino acid content.
Most importantly, the obtained collagens promoted osteoblast cell growth and upregulated collagen
synthesis in bone cells, which is a most desirable property of biomaterials for the treatment of a bone
disorder. Proliferation of differentiated osteogenic cells by blue shark skin collagen may be achieved
through activation of Runx2 dependent FAK/JNK signaling pathway. Overall, the blue shark skin
collagens with good biochemical and osteogenic properties may be considered as a potential drug
in biomedical application. Conversely, the in vivo evaluation of blue shark skin collagen and its
molecular interaction with bone cells needs to be addressed by further research in order to understand
the actual mechanism of the action.
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