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Nanofitins	 are	 cysteine-free	 protein	 scaffolds	 derived	 from	 the	 hyperstable	
DNA-binding	protein	Sac7d	(7	kDa,	66	amino	acids)	of	Sulfolobus	acidocaldarius	
[1].	 High-affinity	 nanofitins	 have	 been	 easily	 engineered	 by	 ribosome-display	
over	a	wide	range	of	targets	by	the	full	 randomization	of	10	to	14	amino	acid	
residues	localized	in	the	DNA-binding	site	of	Sac7d.	In	this	study,	the	anti-EGFR	
Nanofitin	 Cys−B10	 was	 site-specifically	 labeled	 with	 18F	 by	 site-specific	
conjugation	 with	 the	 prosthetic	 group	 18F−4-fluorobenzamido−N-ethylamino-
maleimide	(18F−	FBEM),	using	a	unique	cysteine	residue	specifically	 introduced	
in	C-terminus	[2].	
	
	
	
	
	
	
	
	
The	resulting	probe,	18F−FBEM−	Cys−B10,	was	then	injected	in	a	double-bearing	
tumor	model	to	evaluate	the	biodistribution	and	the	ability	of	the	radiolabeled	
protein	to	specifically	target	in	vivo	the	EGFR	over-expressing	A431	tumor.		
	
Radiolabeling	
The	 radioactive	 18F−FBEM	 (molar	 activity:	 830	 MBq/nmol)	 was	 automatically	
synthetized	 on	 a	 FastLab	Multitracer	 (GE	 Healthcare)	 as	 previously	 described	
[2].	The	Nanofitin	Cys−B10	was	incubated	with	Ni−nitrilotriacetic	acid	magnetic	
beads	(GE	Healthcare)	in	the	presence	of	TCEP−HCl	(50	equiv,	30	min,	25	°C,	pH	
adjusted	 at	 8).	 Beads	were	washed	with	 phosphate	 buffer	 (200	mM,	 pH	 7.4)	
and	 incubated	with	18F−FBEM	freshly	resuspended	 in	phosphate	buffer.	Beads	
were	 washed	 with	 phosphate	 buffer,	 and	 the	 radiolabeled	 Nanofitin	 called	
18F−FBEM−Cys−B10	 (effective	molar	activity:	37.0−53.6	MBq/nmol)	was	eluted	
with	imidazole.	
	
microPET	
•  Emission:	2	h	dynamic	scan,	Siemens	FOCUS	120.	
•  Transmission:	10	min.,	57Co	point	source.	
•  18F-FDG:	10	min.	static	acquisition,	50	min.	after	i.p.	injection.	
	
Anatomical	reference	
•  MRI	anatomical	whole	body	imaging,	9.4	T	micro-MRI	(Agilent	Technologies).	
•  Micro-CT	anatomical	whole	body	imaging	(Trifoil).	
	
	
	
	
	
	

In	 this	study,	we	provided	the	 first	 report	of	 the	use	of	 the	Nanofitin	
scaffold	 for	generating	targeted	PET	radiotracers,	using	the	anti-EGFR	
B10	Nanofitin	as	proof-of-concept.	18F−FBEM−Cys−B10	shows	a	favor-	
able	 in	 vivo	 profile.	 The	 possibility	 to	 drive	 Nanofitins	 molecular	
recognition	capability,	over	a	fast	and	tunable	in	vitro	selection	system,	
could	 facilitate	 the	 development	 of	 valuable	 PET-based	 companion	
diagnostics.		
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Targeting of the EGFR-positive tumor A431 by the radiolabeled anti-EGFR 
Nanofitin 
A Co-registered transversal sections of PET and CT 1 h after the injection of 18F−FDG (9 MBq) in a 
xenograft model under isoflurane anesthesia (blood glucose level of 73 mg/dL and weight of 29 g). He: 
heart. B Co-registered transversal sections of PET and MRI 2 h after injection in xenograft model under 
isoflurane anesthesia of 18F− FBEM−Cys−B10 (19 MBq/100 µL).  
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Anti-EGFR	B10	Nanofitin.		
	

		
	
	
	
	
	
	
	
	

The	 non-internalizing	 profile	 of	 αEGFR_B10_Pe38-KDEL	 appeared	 not	 to	 be	
shared	with	he	two	other	anti-EGFR	Nanofitins	NF1.	
	
	
	
	
	
	
	
	
	
	

Time-lapse	 microscopy	 on	 A431	 cells	 incubated	 with	 either	 Alexa	 Fluor	 488	
labeled	 anti-EGFR	 B10	 or	 anti-egg	 white	 lysozyme	 H4	 Nanofitin	 (negative	
control)	revealed	a	fast	accumulation	(visible	after	few	seconds)	of	fluorescence	
on	cells	membrane	for	B10,	while	no	targeting	was	observed	with	the	irrelevant	
Nanofitin.	
	
Specificity	of	Tumor	Targeting		

Biodistribution	of	18F−FBEM−Cys−B1	at	2.5	h	Post-Injection.	
	
	

histological analysis of biopsies or surgically resected tissues.
These antiquated methods fail to provide information about
heterogeneity of expression or changes in expression that occur
over time.6

A straightforward strategy for generating targeted PET
radiotracers has relied on the radiolabeling of therapeutic
monoclonal antibodies.7 Examples described in the literature
include 89Zr−trastuzumab,8 89Zr−tevacizumab,9 89Zr−tanitunu-
mab,10 and 89Zr−cetuximab as well as 64Cu−cetuximab.11,12
Immuno-PET radiotracers have shown some promises, but
their sensitivity remains limited due to their full IgG format
(∼150 kDa) and related biophysical characteristics (extended
residence in the bloodstream, slow tumor penetration, and slow
blood clearance).13−15 This results in high tumor accumulation,
yields to low tissue contrast,15 and requires late imaging time
points (at least 2 days after administration).16 Interestingly,
ScFv antibody fragments (∼25 kDa) show faster clearance but
only a moderate tumor accumulation.14 Studies focused on
analyzing the relationship between the size of molecules and
their tumor uptake13,17 and show a U-shaped relationship
between these two parameters with a minimal accumulation of
molecules of the size of a ScFv. Smaller molecules, such as
nonimmunoglobulin alternative scaffolds (4 to 20 kDa), might
provide the optimal balance between a rapid clearance from
blood and nontarget tissue, vascular extravasation, and tissue
penetration while being amenable to a sufficiently high affinity
to provide tumor targeting for imaging applications.18 The
growing number of imaging ligands recently developed,
including affibodies,19−21 fibronectins,22,23 and darpins,24,25

have illustrated the suitability of non-IgG scaffolds for in vivo
tumor visualization. With their very short biological half-life (in
minutes),18 alternative scaffolds are perfectly well-suited for fast
imaging protocols in combination with rapid decaying radio-
isotopes, such as 68Ga (68 min) and 18F (110 min).
Additionally, fast imaging protocols with short physical half-
life radioisotopes facilitate handling of radioactive waste that
can be contained within the hospital facility with the current
common protocols already in place for 18F−fluorodeoxyglucose
(18F−FDG).
Nanofitins are cysteine-free protein scaffolds derived from

the hyperstable DNA-binding protein Sac7d (7 kDa, 66 amino
acids) of Sulfolobus acidocaldarius.26 High-affinity nanofitins
have been easily engineered by ribosome-display over a wide
range of targets (cell surface proteins,26 enzymes,27,28 GFP,29

IgG,30 cytokines,31 etc.) by the full randomization of 10 to 14
amino acid residues localized in the DNA-binding site of Sac7d

(Figure 1). This process allows the full redirection of the initial
DNA specificity of Nanofitins to the binding of a target of
interest.26−32 Nanofitins have kept their extreme stability from
Sac7d origin and have been proven robust enough to remain
active after one cycle of steam sterilization.29 Taking advantage
of their robustness and small size, Nanofitins are currently
developed for challenging nonsystemic administration; orally
deliverable anti-TNF α Nanofitins have entered a preclinical
development program in inflammatory bowel disease.31 Here,
we introduce the use of radiolabeled Nanofitins as a new class
of molecular imaging probes with a suitable pharmacokinetic
profile for the noninvasive diagnosis and monitoring of high
epidermal growth factor expressing solid tumors. The
epidermal growth factor receptor 1 (EGFR) is a trans-
membrane tyrosine-kinase receptor frequently found as over-
expressed or mutated in a variety of human tumors.33,34 In this
study, the anti-EGFR Nanofitin Cys−B10 was site-specifically
labeled with 18F by site-specific conjugation with the prosthetic
group 18F−4-fluorobenzamido−N-ethylamino-maleimide (18F−
FBEM), using a unique cysteine residue specifically introduced
in C-terminus (Figure 1). The resulting probe, 18F−FBEM−
Cys−B10, was then injected in a double-bearing tumor model
to evaluate the biodistribution and the ability of the
radiolabeled protein to specifically target in vivo the over-
EGFR-expressing A431 tumor.

■ RESULTS
Anti-EGFR B10 Nanofitin. Anti-EGFR Nanofitins were

identified upon several rounds of ribosome display29 using the
recombinant extracellular domain of human EGFR fused to a
Fc fragment (Creative Biomart) as a bait. Fusion of anti-EGFR
Nanofitins to Pe38-KDEL toxins allowed the evaluation of their
internalization potential by monitoring IC50 of the constructs
on A431 cells, in comparison to a negative control involving the
anti-egg white lysozyme H4 Nanofitin27,28,35−37 and referred
hereafter as IrrNF (Figure 2).
Pe38-KDEL toxin is a derivative of pseudomonas exotoxin A

that is lacking the cell entry domain required for its intracellular
mechanism of action. Only Nanofitins triggering the internal-
ization of the toxin, i.e., with the Nanofitin moiety replacing the
toxin cell entry domain, allow the restoration of the
internalization of the chimeric construct and its subsequent
cytotoxic activity. As with the negative control, no effect on the
cell viability could be measured over concentrations of the
B10−PE38-KDEL construct ranging from 10−8 to 10−13 M.
This non-internalizing profile appeared not to be shared with

Figure 1. Scheme of 18F−FBEM−Cys−B10 radiosynthesis. Positions randomized in the Nanofitin libraries are labeled in red.
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accumulation in the bladder, only visible at the later time points
(Figure 6C). Taken together, these data suggest a renal
excretion of 18F−FBEM−Cys−B10, which is consistent for a
radioconjugate having a molecular weight below the cutoff for
glomerular filtration. Moreover, based on imaging and
biodistribution studies, the 18F−FBEM−Cys−B10 exhibits
low accumulations in blood (0.99 ± 0.20 %ID/g) and most

normal organs such as the heart (0.48 ± 0.14% ID/g), lung
(0.84 ± 0.59% ID/g), and spleen (0.77 ± 0.22% ID/g).

Biodistribution Study in BALB/c Nude Xenograft
Model. For the in vivo biology assessment, we developed a
double-bearing-tumor animal model using two human
carcinoma cell lines with opposite EGFR expression levels.
We injected in the right flank of nude mice the over-expressing

Figure 7. Immunohistochemistry of A431 and H520 tumors grown on xenograft model. EGFR expression level was evaluated by staining tumors
slices with a rabbit anti-human EGFR antibody and a secondary goat ant-irabbit antibody conjugated to Alexa Fluor 488. Nuclei were counter stained
with 4',6-diamidino-2-phenylindole (DAPI; ×10).

Figure 8. Targeting of the EGFR-positive tumor A431 by the radiolabeled anti-EGFR Nanofitin (A) Co-registered transversal sections of PET and
CT 1 h after the injection of 18F−FDG (9 MBq) in a xenograft model under isoflurane anesthesia (blood glucose level of 73 mg/dL and weight of 29
g). He: heart. (B) Co-registered transversal sections of PET and MRI 2 h after injection in xenograft model under isoflurane anesthesia of 18F−
FBEM−Cys−B10 (19 MBq/100 μL).

Table 1. Biodistribution of 18F−FBEM−Cys−B10 at 2.5 h Post-Injection

biodistribution in xenograft modela tumor-to-nontarget tissue count density ratiosb

tissues xenograft model uptake ratio xenograft model BALB/c

blood 0.32 ± 0.07 liver-to-blood 3.90 ± 1.33 4.80 ± 1.11
brain 0.02 ± 0.01 kidney-to-blood 4.82 ± 0.84 6.74 ± 2.43
bone 0.20 ± 0.01 A431-to-kidney 0.98 ± 0.29
liver 1.13 ± 0.52 A431-to-liver 1.43 ± 0.52
kidney 1.55 ± 0.57 A431-to-H520 2.53 ± 0.18
heart 0.17 ± 0.03 A431-to-lung 2.53 ± 0.89
spleen 0.27 ± 0.08 A431-to-blood 4.55 ± 0.63
skin 0.28 ± 0.12 A431-to-heart 8.56 ± 1.34
muscle 0.12 ± 0.03
lung 0.63 ± 0.31
tumor A431 1.42 ± 0.18
tumor H520 0.56 ± 0.10

aData are expressed in percentage of injected dose per gram of organ [%ID/g] ± SD after intravenous injection of the probe. bTumor-to-nontarget
tissue count density ratios were calculated from the corresponding %ID/g values at 2.5 h after injection of the probe in BALB/c and xenograft
models.
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the two other anti-EGFR Nanofitins NF1 and NF2. Toxicity of
the latter two Nanofitin−Pe38-KDEL constructs is observed to
a different extent with an half maximal inhibitory concentration
(IC50) value of 1.16 × 10−9 and 1.94 × 10−11 M, respectively,
which we attributed to a different ability to trigger internal-
ization. Beside its noninternalizing behavior, the specificity and
efficiency of B10 at localizing at the membrane of EGFR over-
expressing A431 cell lines was evaluated by cell imaging and
flow cytometry (Figure 3).
Time-lapse microscopy on A431 cells incubated with either

Alexa Fluor 488 labeled anti-EGFR B10 (1 μM) or anti-egg
white lysozyme H4 Nanofitin (2 μM, negative control) revealed
a fast accumulation (visible after few seconds) of fluorescence
on cells membrane for B10, while no targeting was observed
with the irrelevant Nanofitin (Figure 3). The effective
localization of B10 at the membrane of the cells was further
confirmed by fluorescence recovery after photobleaching A431
cell membranes (Figure S2), which resulted in instantaneous
recovery of fluorescence, accounting for localization of the
labeling on the membrane. The analysis of the specificity of B10
Nanofitin was complemented by a set of flow-cytometry
experiments using A431 and H520 cells as EGFR-positive and
EGFR-negative cell lines, respectively. While no labeling could

Figure 2. Measurement of A431 cells viability after incubation with
Nanofitins fused to the Pe38 toxin. A431 cells were incubated in the
presence of a concentration range of Nanofitins−Pe38 fusion (10−8 to
10−13 M), and viability was measured after 7 days using a 2,3-bis (2-
methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetra-
zolium hydroxide (XTT) assay. Data points represent the mean and
standard deviation of triplicate results. αEGFR_B10_Pe38-KDEL,
anti-EGFR B10 Nanofitin; αEGFR_NF1- and NF2−Pe38-KDEL,
other anti-EGFR Nanofitins; IrrNF−Pe38_KDEL, irrelevant Nano-
fitin.

Figure 3. (A) In vitro specificity experiments of the Nanofitin B10 cell surface labeling of A431 cells. Labeling of the A431 cells with a 2 μM solution
of an irrelevant Nanofitin conjugated to Alexa Fluor 488 and a 1 μM solution of the anti-EGFR Nanofitin B10 conjugated to Alexa Fluor 488. Images
were captured by time-lapse microscopy (7 images per second, 20× magnification) for 18 s, and the images given were obtained after 6 s of exposure.
(B) Binding and specificity analysis of the Nanofitins B10−FITC and IrrNF−FITC (10 μM) binding to H520 (bottom) or A431 cells (top) and
cross-blocking experiment on A431 cells with B10−FITC pre-incubated with Cetuximab (1.1 μM). The EGFR binding of B10−FITC is represented
by a solid line, IrrNF−FITC is represented by a dotted line, and control cells without staining are represented by gray-shaded profiles. For the mean
fluorescent intensity, please see Figure S1.
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Measurement	of	A431	cells	viability	after	incubation	with	
Nanofitins	fused	to	the	Pe38	toxin.	
	
αEGFR_B10_Pe38-KDEL,	anti-EGFR	B10	Nanofitin.	
αEGFR_NF1-	 and	 NF2−Pe38-KDEL,	 other	 anti-EGFR	
Nanofitins.	
IrrNF−Pe38_KDEL,	irrelevant	Nanofitin.	
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In	 vitro	 specificity	 experiments	 of	 the	
Nanofitin	 B10	 cell	 surface	 labeling	 of	 A431	
cells.	Labeling	of	the	A431	cells	with	a	2	μM	
solution	 of	 an	 irrelevant	 Nanofit in	
conjugated	 to	 Alexa	 Fluor	 488	 and	 a	 1	 μM	
solution	 of	 the	 anti-EGFR	 Nanofitin	 B10	
conjugated	to	Alexa	Fluor	488.	

A431	 tumor	 targeting	and	 specificity	of	 18F-labeled	B10	Nanofitin.	
Uptake	 in	 tumors	 of	 18F−FBEM−Cys−B10	 (2.1−9.1	 MBq)	 in	 mice	
carrying	EGFR-expressing	A431	tumors	without	blocking	(n	=	6)	or	
with	 blocking	 amounts	 of	 nonlabeled	 B10	 (500	 μg,	 n	 =	 6)	 or	
Cetuximab	(45	μg,	n	=	4)	injected	48	h	post-injection.		
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