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Abstract

We introduce a novel and simple diagnostic tool to improve the performance of public services

(e.g. in health, education, utilities and transportation). We propose a method to compute perfor-

mance/productivity ratios, which can be applied as soon as data on production units�outcomes

and resources are available. These ratios have an intuitive interpretation: values below unity

indicate that better outcomes can be attained through weaker resource constraints (pointing at

scarcity of resources) and, conversely, values above unity indicate that better outcomes can be

achieved with the given resources (pointing at unexploited production capacity). We demonstrate

the practical usefulness of our methodology through an application to secondary schools in the

Netherlands. In this application, we also account for outlier behavior and environmental e¤ects

by using a robust nonparametric estimation method. Our empirical results indicate that in most

cases schools� performance improvement is a matter of unexploited production capacity, while

scarcity of resources is a lesser issue.
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1 Introduction

One of the major di¢ culties in the provision of public services (e.g. in health, education, utilities

and transportation) is for the principal to identify underperformance and its origin. It is for this

reason that benchmark methodologies such as frontier analysis have become popular in the literature

on public sector evaluation (Fried et al., 2008). Basically, two di¤erent approaches have been used in

benchmarking applications. The �rst approach focuses on performance measurement that exclusively

evaluates the general outcomes (e.g. population coverage, quality of service provided and inequality

issues), without taking into account resource/input constraints. The second approach, which is the

most popular one in the applied literature, concentrates on the measurement of productivity, i.e.

output performance that explicitly incorporates input constraints.1

One essential di¤erence between these two approaches relates to whether or not resource constraints

are taken into account. We may also argue that both approaches provide a partial analysis, which may

thus give incomplete and potentially misleading information. First, performance scores, also known

as measures of e¤ectiveness, tell us to which extent targets are ful�lled, but they do not inform us

if the service provided is produced at full capacity. Second, productivity scores show whether or not

the service is supplied e¢ ciently (by exploiting the available production capacity in an optimal way),

but they do not tell us to which extent the general outcome targets are achieved. The main reason

behind this incompleteness is data availability. Very often data on outcomes and resources are not

observable simultaneously, or they do not match perfectly for the production units under observation

(Pestieau, 2009; Lefebvre et al., 2017).

Our paper connects to the literature that discusses the intertwining of e¢ ciency and e¤ectiveness

(a review is provided in Førsund, 2017). Up to now, most studies consider the case in which the

link between outcomes and resources is not directly observable, basically because other factors out

of the control of public services a¤ect outcomes.2 Therefore, they proceed in a two-step model. In a

�rst step, they compute e¢ ciency at the public service level using outputs and inputs as in a normal

production process and, in a second step, e¤ectiveness is computed at a more aggregated level using

outcomes as targets and public service outputs as resources.

This paper provides a unifying framework that �lls this informational gap between performance

and productivity measures. Our main contribution is threefold. First, we show that when data on

outcomes and resources are available for a large sample of service production units (called Decision

Making Units (DMUs) in what follows), both performance and productivity scores are computable

by using an appropriate frontier approach. Second, we propose a novel and simple framework to

evaluate the importance of resource constraints. As we will demonstrate in the next section, a perfor-

mance/productivity ratio below unity indicates that better outcomes can be attained by weakening

the resource constraints. In other words, scarcity of resources hampers output performance. On the

contrary, a performance/productivity ratio above unity indicates that better outcomes can be achieved

with the same resources. This mainly signals unexploited production capacity rather than scarcity of

resources. Third, we apply the suggested approach to a representative sample of secondary schools in

1For an overview, see Cherchye et al (2007).
2Among factors a¤ecting public service performance, De Witte and Geys (2013) emphasize the role of consumers�

coproduction, in an application to public libraries.
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the Netherlands, for which we have exceptionally rich data, covering most outcome and input/resource

dimensions, with identical de�nitions of the variables. This application will demonstrate the useful of

our method to guide policies.

The remainder of the paper is organized as follows. In Section 2 we present the theoretical measures

of productivity and performance. In Section 3 we show that these measures can be operationalized

by solving linear programs of the DEA (Data Envelopment Analysis) form. In particular, we use

the robust and conditional DEA form which accounts, respectively, for outlying observations and

the operational environment. Section 3 also introduces dual representations of the productivity and

performance measures, which gives these measures an additional interpretation in terms of �bene�t-of-

the-doubt�weighting. Section 4 introduces the data of our empirical application to secondary schools

in the Netherlands. In this application, we will account for outlier behavior and environmental e¤ects,

which are essentially resources out of schools�control, by using a robust conditional nonparametric

(DEA) order-m approach. Section 5 presents our empirical results. These results will indicate that, in

most cases, school performance improvement is a matter of unexploited production capacity (technical

e¢ ciency), while resource constraints are a lesser issue. Using quantile regressions, we provide evidence

on the characteristics of schools with unexploited capacity and schools with resource constraints. A

�nal section concludes.

2 Productivity, performance and resource constraints

We �rst introduce our theoretical measures of productivity and performance. The basic di¤erence

between these two measures pertains to whether or not resource constraints are taken into account

when evaluating the possibility to expand outcomes.3 We then also introduce a measure that allows

us to identify either possible outcome gains when resource constraints are weakened or, alternatively,

unexploited production capacity for the resources that are available.

2.1 Productivity

We consider Decision Making Units (DMUs) that use an N -dimensional resource vector x 2 RN+
to produce an M -dimensional outcome vector y 2 RM+ . Productivity relates the resources to the
outcomes. In what follows, we evaluate the productivity of DMU E, which uses the resources xE to

produce the outcomes yE : We want to measure the productivity of DMU E in relative terms (also

referred to as technical e¢ ciency), which compares DMU E�s productivity to the maximum attainable

productivity for the given state of technology. To this end, we consider the production possibility set

P , which contains all combinations of resources and outcomes that are technically feasible (including

(xE ;yE)). Formally,

P = f(x;y) jx can produce yg.

Throughout, we will assume that the production technology satis�es the technical properties that

are needed for our following productivity and performance measures to be well-de�ned. In particular,

3We adapt the traditional approach, applied to �rms production, to the particular case of public services. For this
purpose, the output-input setting is replaced by the outcome-resource setting.
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we assume that it is characterized by constant returns-to-scale, i.e.4

if (x;y) 2 P , then (�x;�y) 2 P for � � 0, (1)

free disposability of resources and outcomes, i.e.

if (x;y) 2 P , then (x0;y0) 2 P for x0 � x and y0 � y, (2)

and convexity, i.e.

if (x;y) 2 P and (x0;y0) 2 P , (3)

then (�x+(1� �)x0;�y+(1� �)y0) 2 P for 1 � � � 0.

In practice, we typically do not observe the true production set P . Empirical production analysis

starts from an observed set of T DMUs, with resource vector xt and outcome vector yt for every DMU

t 2 f1; :::; Tg. This de�nes the set of observations

X = f(xt;yt) jt 2 f1; :::; Tgg:

The nonparametric approach to production analysis (see, for example, Afriat (1972) and Varian

(1984)) adopts the basic assumption

X � P: (4)

Essentially, this assumes that resources and outcomes are measured without error. Obviously, this is

an overly strong hypothesis in many practical situations. Therefore, while we maintain the assumption

to simplify our theoretical exposition, we will relax it in our following empirical application (see Section

3.3, where we present the robust estimation method that we will use).

When assuming constant returns-to-scale, free disposability and convexity, we can build the em-

pirical set bP = f(x;y) jx �XT

t=1
�txt, y �

XT

t=1
�tyt, �t�0g. (5)

It can be shown that this set bP is the smallest set consistent with our technological assumptions in

(1), (2) and (3), and our empirical assumption in (4) (see, for example, Charnes, Cooper and Rhodes

(1978) and Banker, Charnes and Cooper (1984)). As such, it provides a useful empirical approximation

for the true but unobserved set P .

Using this, the relative productivity (or technical e¢ ciency) of DMU E is captured by the degree

measure

ProdE = min
�2R

f�j
�
xE ;

yE
�

�
2 bPg: (6)

Intuitively, for the possibility set bP , the measure ProdE captures the maximum (proportional) expan-
4We remark that we may also have used alternative returns-to-scale assumptions. One motivation for assuming

constant returns-to-scale is that it allows for an intuitive (dual) interpretation of our productivity-performance measures
in terms of �bene�t-of-the-doubt� weighting, which we explain in Section 3.2. Another motivation, more practical, is
that outcomes and resources will be generally represented by indicators, ratios or per-capita values, as in the example
presented in next sections.
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sion of the outcome yE for the given resource xE . Clearly, for an observed DMU E (i.e. E 2 f1; :::; Tg
and (xE ;yE) 2 bP ) we have 0 � ProdE � 1. Generally, higher values for ProdE indicate a higher

degree of relative productivity (i.e. less possibility to expand outcomes for the given resource). We

also say that DMU E is �technically e¢ cient�if ProdE = 1.

2.2 Performance

Performance evaluation disregards resources and only considers outcomes. Put di¤erently, in terms

of our above resource-outcome framework, it implicitly assumes that all DMUs can use the same

resources. Performance di¤erences between DMUs are solely de�ned in terms of outcome di¤erences,

because di¤erences in resource/input constraints are ignored.

To formalize this basic di¤erence between productivity and performance measurement, we consider

DMUs with resources normalized at unity. Following Lovell, Pastor and Turner (1995), we can inter-

pret this (normalized) resource unit as representing a DMU�s apparatus to achieve its outcome goals,

a system which we refer to as the DMU�s �helmsman�(a concept also used by Koopmans (1951)).5

This system may vary across DMUs, but this variation is viewed as irrelevant for the objective of per-

formance evaluation, which only considers the outcomes achieved and not the size of the underlying

resource system.

Using this idea, the relevant set of observations is

X 0 = f(1;yt) jt 2 f1; :::; Tgg:

which has a similar interpretation as the set X used above, except that now each (helmsman) resource

is set equal to one. Using the same technology assumptions as before (constant returns-to-scale, free

disposability and convexity), the empirical production set relevant for outcome performance evaluation

is given as cP 0 = f(1;y) j1�XT

t=1
�t, y �

XT

t=1
�tyt, �t�0g. (7)

Then, the relative performance of DMU E is de�ned as

PerfE = min
�2R

f�j
�
1;
yE
�

�
2 cP 0g; (8)

which looks for the maximum outcome expansion when ignoring di¤erences in resource constraints.

Like before, for an observed DMU E we have 0 � PerfE � 1, and higher values for PerfE indicate a
higher degree of relative performance.

5See also Lovell and Pastor (1999) for a detailed discussion on productivity measurement with constant input. Lovell,
Pastor and Turner (1995) used the helmsman interpretation in the context of macroeconomic policy evaluation. Here,
we use the same idea in the context of output assessments of micro-DMUs. As a speci�c example, our following empirical
application will use the idea for a school performance assessment that focuses on educational outputs per pupil.
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2.3 Resource constraints and unexploited capacity

We can distinguish three scenarios when comparing the measures ProdE and PerfE . In the �rst

scenario, we have

ProdE > PerfE :

Thus, the maximum outcome expansion without constraints (captured by PerfE , which ignores re-

source variation) exceeds the maximum outcome expansion with resource constraints (captured by

ProdE , which �xes the resource xE). This suggests that DMU E can mainly gain in terms of out-

come performance by weakening its resource constraints:

The opposite scenario occurs if

ProdE < PerfE :

This inequality reveals that ignoring the resource variation across DMUs actually improves DMU E�s

outcome performance. In a sense, the DMU �bene�ts�when we disregard resource variation, which

suggests that the DMU does not fully exploit its production capacity (given the resources that it

controls). There is speci�c potential for outcome expansion even without additional resources.

The �nal scenario pertains to a situation where

ProdE = PerfE :

Intuitively, the maximum outcome expansion without constraints exactly equals the maximum out-

come expansion with resource constraints. In this case, weakening DMU E�s resource constraints will

not contribute to a better outcome performance, but ignoring the DMU�s resource constraints does

not improve its production assessment either. Comparing the measures ProdE and PerfE does not

speci�cally suggest a particular strategy (i.e. additional resources or better capacity use) to increase

outcome performance. Clearly, if ProdE = PerfE = 1, then DMU E is technically e¢ cient and, thus,

it can only improve performance by additional resource (i.e. weaker resource constraints) or technical

change which shifts the frontier up. However, ProdE = PerfE < 1 reveals that better capacity use

can also lead to performance gains (because ProdE < 1).

Thus, the di¤erence between PerfE and ProdE can reveal interesting information regarding spe-

ci�c outcome gains from weakened resource constraints (�rst scenario) or unexploited production

capacity (second scenario). We can distinguish between the di¤erent scenarios by using the ratio

measure

RE =
PerfE
ProdE

.

The three scenarios discussed above correspond to RE < 1; RE > 1 and RE = 1, respectively.

Greater deviations of RE from unity indicate either more outcome gain to be expected from weaker

resource constraints (if RE < 1) or, alternatively, a greater degree of unexploited production capacity

or technical ine¢ ciency (if RE > 1). In case RE = 1;there might still be a problem of unexploited

production capacity if ProdE = PerfE < 1:

The following example illustrates the measures PerfE , ProdE and RE for a simple setting with

only three DMUs, one resource and one outcome. To better articulate the basic intuition, the three

DMUs achieve either PerfE = 1 or ProdE = 1 (or both). Of course, this intuition carries over
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to situations with PerfE < 1 and ProdE < 1: In such situations, RE < 1 particularly suggests

increasing outcome performance by additional resources (i.e. a weaker resource constraints), while

RE > 1 mainly indicates possibilities of outcome expansion by better using the available resources

(i.e. improved capacity use).

Example 1 Suppose a set of observations with 3 DMUs (T = 3) that use a single resource (N = 1)

to produce a single outcome (M = 1),

X = f(5; 5) ; (10; 10) ; (20; 10)g:

Correspondingly,

X 0 = f(1; 5) ; (1; 10) ; (1; 10)g:

This gives the results

Prod1 = 1; P rod2 = 1; P rod3 = 0:5, and

Perf1 = 0:5; P erf2 = 1; P erf = 1:

Given this, we also obtain

R1 = 0:5; R2 = 1; R3 = 2.

We conclude that DMU 1 can improve its outcome performance by increasing its resources (because

R1 < 1). Given that this DMU is technically e¢ cient (i.e. Prod1 = 1), weakening its resource

constraint is the only possibility to achieve a better outcome performance. By contrast, DMU 3 has

potential to improve its outcome performance even without additional resources, by better exploiting

its available capacity (because R3 < 1).

3 Operationalization, duality and robust estimation

In this section, we show that the measures ProdE and PerfE (and, thus, also RE) can be computed by

simple linear programming. This is particularly convenient from a practical point of view. The linear

programs are of the form used in the nonparametric approach for production frontier analysis that is

known as Data Envelopment Analysis (DEA, after Charnes et al., 1978; see also Fried et al., 2008, for

a more recent account of the DEA literature). Attractively, the dual representations of these linear

programs also reveal an interesting additional interpretation of our productivity and performance

measures. In particular, they show that the measures can be given an intuitive interpretation in

terms of �bene�t-of-the-doubt�weighting (see also Cherchye, Moesen, Rogge and Van Puyenbroeck,

2007). Finally, we will show how we can account for outlier behavior and environmental e¤ects by

using a robust and conditional estimation method that has been proposed in a DEA context.
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3.1 Linear programming formulations

Productivity. As a �rst step, we note that the constant returns-to-scale assumption makes that we

can re-write productivity measure (6) as

ProdE = min
�2R

f�j (�xE ;yE) 2 bPg; (9)

Using bP instead of P in this expression de�nes the empirical estimate [ProdE . By combining (5)
and (9), we obtain that this measure can be calculated as the outcome of a linear program:

[ProdE = min � (Prod_LP)

s.t �xE �
XT

t=1
�txt, (Prod_1)

yE �
XT

t=1
�tyt, (Prod_2)

�t � 0 t 2 f1; :::; Tg;

� free.

Performance. Similar to before, we use that performance measure (8) can be written equivalently

as

PerfE = min
�2R

f�j (�;yE) 2 cP 0g: (10)

Taken together, (7) and (10) de�ne the empirical measure [PerfE as the outcome of a linear

program:

[PerfE = min � (Perf_LP1)

s.t � �
XT

t=1
�t, (Perf_1)

yE �
XT

t=1
�tyt,

�t � 0 for all t 2 f1; :::; Tg;

� free.

In a �nal step, we can drop the variable � and the constraint (Perf_1) as redundant, which leads

to the following equivalent formulation:

[PerfE = min
XT

t=1
�t (Perf_LP2)

s.t yE �
XT

t=1
�tyt, (Perf_2)

�t � 0 for all t 2 f1; :::; Tg.

3.2 Dual representations

Productivity. Let the vectors pE 2 RN+ and wE 2 RM+ represent the shadow prices for the con-

straints (Prod_1) and (Prod_2), respectively. Then, the dual of the linear program (Prod_LP) is as
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follows:

[ProdE = maxwEyE (Prod_LP3)

s:t:

pExE = 1;

wEyt � pExt � 0 for all t 2 f1; :::; Tg;

pE 2 RN+ , wE 2 RM+ :

It is easy to verify that this allows us to de�ne [ProdE as

[ProdE = max
pE2RN+ , wE2RM+

�
wEyE
pExE

jwEyt
pExt

� 1 for all t 2 f1; :::; Tg
�
;

which implies a speci�c interpretation for [ProdE as the ratio of a weighted outcome sum over a

weighted resource sum. A particular feature is that the resource and outcome weights are chosen so

as to maximize this ratio, which e¤ectively gives the �bene�t-of-the-doubt� to the evaluated DMU

E.6

Next, the normalization constraint (wEyt
pExt

� 1) imposes that the maximum attainable productivity
ratio over the sample of T DMUs equals unity. This feature e¤ectively yields an intuitive degree

interpretation for [ProdE : using the weights wE and pE de�ned by the program (using bene�t-of-the-

doubt), it represents DMU E�s input-outcome ratio (at most equal to unity) as a proportion of the

best achievable ratio in the observed sample of DMUs (which is �xed at unity).

Performance. Interestingly, we can derive an analogous bene�t-of-the-doubt interpretation for our

performance measure [PerfE . Following our previous exposition, the basic di¤erence is that resource
constraints are ignored in the evaluation exercise.

Similar to before, we let vE 2 RM+ represent the shadow prices for the constraint (Perf_2). Then,

the dual of the program (Prod_LP) is de�ned as follows:

[PerfE = maxvEyE (Perf_LP3)

s:t:

vEyt � 1 for all t 2 f1; :::; Tg;

vE 2 RM+ :

In short, we thus obtain

[PerfE = max
wE2RM+

fvEyE jvEyt � 1 for all t 2 f1; :::; Tgg ;

which represents [PerfE as a weighted sum of outcomes. Once more, the weights are chosen to

6We remark that the ratio formulation of [ProdE actually expresses this measure as maximizing �pro�tability� (i.e.
revenue over cost), a concept that is often used in the literature on productive e¢ ciency measurement (see, for example,
Grifell-Tatjé and Lovell (2015)).
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maximize this sum, which implies bene�t-of-the-doubt weighting. In this case, the normalization

constraint (vEyt � 1) imposes a maximum outcome sum value of unity for the sample of T DMUs,

which again provides an intuitive degree interpretation to the measure [PerfE .

3.3 Robust and conditional estimation

Robust estimation. As discussed in Section 2.1, so far we have assumed that resources and out-

comes are measured without errors. Obviously, this assumption may be problematic in empirical

applications. As measurement errors can shift signi�cantly the production set bP ; they can bias [ProdE
and [PerfE : Removing the DMUs with measurement errors from bP is usually not an option, mainly

because of the following two reasons. First, we often do not know which observations are prone to

measurement errors. Second, by simply dropping the observations with outlying values for resources

and outcomes we might in fact falsely remove the most interesting observations from the sample.

Cazals et al. (2002) and Daraio and Simar (2005) proposed a method to mitigate the in�uence

of outlying observations and/or observations with measurement errors in applications using the Free

Disposal Hull model (i.e., DEA without convexity constraint). Daraio and Simar (2007) extended

this to DEA. This method is readily adapted to our productivity and performance measures. In

particular, we estimate [ProdE and [PerfE relative to an empirical production set bPm that is based on
a strict subset ofm observations that is drawn (randomly and with replacement) from the observations

t 2 f1; :::Tg with xt � xE : Let us denote the resulting estimates as [Prod
b

E;m and [Perf
b

E;m: Then, we

redo this estimation of [Prod
b

E;m and [Perf
b

E;m a large number of times (say B times, with B > 2000),

and we average these B productivity and performance estimates. The obtained averages [ProdE;m and
[PerfE;m are called robust order-m e¢ ciency estimates. Basically, they are robust because outlying

observations and observations with measurement errors will typically not de�ne the empirical set bPm
in every draw b. Thus, we have e¤ectively mitigated their in�uence.

As a �nal remark, it is also possible that the evaluated observation E does not belong to the

set bPm: As an implication, the values of [ProdE;m and [PerfE;m may well exceed 1. If this is the

case, we label DMU E as �super-e¢ cient�. Basically, a super-e¢ cient DMU is (on average, over the

B draws) better performing than the m randomly drawn observations. It is interesting to observe

that the robust and deterministic estimates will converge as m ! 1 (i.e. [ProdE;m ! [ProdE and
[PerfE;m ! [PerfE): The parameter m serves as a trimming value, which allows us to tune the

percentage of super-e¢ cient observations. In our next application, we will follow Daraio and Simar

(2005) to �xm at its value for which the marginal decrease in the fraction of super-e¢ cient observations

becomes su¢ ciently small (see Appendix 1 for details).

Conditional and robust estimation. A second issue related to the practical implementation of

the programs (Prod_LP3) and (Perf_LP3) concerns inter-DMU heterogeneity in terms of production

environments. Clearly, DMUs that can operate in a favorable environment have an advantage; the

environment works as a substitutive input, and [ProdE;m and [PerfE;m will be upward biased. Con-

versely, DMUs working in an unfavorable environment will have to put more e¤orts as the environment

works as a substitutive output. In what follows, we assume that a DMU�s operational environment is

summarized by the s-dimensional vector z 2 RS+.

10



Daraio and Simar (2005, 2007) suggest to include the operational environment by extending the

robust order-m procedure of Cazals et al. (2002). Like before, the re�ned procedure draws the

m observations with replacement from the observations t 2 f1; :::Tg with xt � xE . But now it

attaches to each observation a particular probability, which is de�ned on the basis of a multivariate

kernel function around zE (which characterizes the environment of DMU E). Basically, observations

which are more similar to DMU E in terms of their operational environment are drawn with greater

likelihood. Similar to before, a given draw b of observations de�nes an empirical production set bPZm,
for which we can compute the estimates [Prod

Z;b

E;m and [Perf
Z;b

E;m. Again, we redo this B (> 2000)

times to obtain [Prod
Z

E;m and [Perf
Z

E;m. It follows that these so-called �conditional robust�estimates

e¤ectively compare like with likes, by explicitly accounting for the operational environment.

In the estimation of the conditional robust productivity and performance measures, the choice of

kernel function and corresponding bandwidth are of vital importance. In our following application, we

will follow De Witte and Kortelainen (2013), who suggested to use the Li and Racine (2007) discrete

kernel function with a data driven bandwith h as in Badin et al. (2010) and Li and Racine (2007).

As an advantage, this bandwidth can remove irrelevant covariates by oversmoothing them.

4 Data

We demonstrate the practical usefulness of our methodology through an application to secondary

schools in the Netherlands. As we will argue, we can use detailed resource, outcome and environmental

data that are very well suited for the practical implementation of our methodology. Moreover, and

importantly, the type of conclusions that can be drawn from the performance-productivity analysis

that we introduced above are directly relevant for this policy setting. In this section, we �rst introduce

our data sources, and subsequently motivate our selection of resources, outcomes and control variables

(which characterize the DMUs�operational invironment).

4.1 Data sources

We apply our methodology to a rich administrative dataset from Dutch secondary schools. The

data originate from two sources. First, we retrieved data from the Dutch ministry of Education,

Culture and Sciences, which publishes comparable information at school level. We use the school

year 2011-12. This information provides us with insights in the educational attainments of the school,

the allocation of the school budget and the composition of the school in terms of share of students

from disadvantageous backgrounds. In addition, we have information on two types of educational

attainments of students: the school average of the national exam and the school exam. In the �nal

years of secondary education, all students in the Netherlands have to take two exams for each course

that they took (independent of the educational track). The former exam �the �national exam��is

an absolute assessment with criterion-referencing that is uniform for all subjects and schools in the

Netherlands (see De Witte, Geys and Solondz, 2013, for a discussion). The latter exam �the �school

exam��has fewer quality controls in its construction and evaluation as it is set up and corrected only

by a school�s teachers. Aggregate information on the school and national exam is publicly available.
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We augment this �rst data source with unique pupil level data for more than 12,800 students in

80 schools. The data are unique as they accurately trace the performance of middle school students

on math exercises. Dutch schools pay increasingly attention to math due to some recently formulated

performance standards (Commissie Meijerink, 2008). We can distinguish four domains in mathemat-

ics: numbers, proportions, measurement, and associations. To practice these domains, a national

publisher (ThiemeMeulenho¤) has developed an innovative computer-assisted instruction (CAI) tool,

called Gotit?!. The program o¤ers a wide range of exercises of di¤erent di¢ culty levels. It is an

adaptive program as it adjusts its exercices to the knowlegde and the level of the student. This allows

the teacher to di¤erentiate within the class (an extensive discussion and e¤ectiveness study of this

program is provided in De Witte et al., 2014). We have access to the logged data of all 80 schools

that are using this tool. In particular, we observe the time that students devote to math exercises,

and the test results of the exercise. The time can be interpreted as a proxy for ability as more able

students can comply the exercises more quickly than less able students.

One caveat should be taken into account. For the unique pupil level data, we only consider students

in the third year of secondary education (comparable to middle school). From the administrative

data, the information concerns all incoming and outgoing students of the school. In other words,

the underlying students are di¤erent for the di¤erent variables. Nevertheless, this creates insightful

information as the full education process at the school is included: from exogenous (at least for the

school) abilities at the start of secondary education, through the performance and heterogeneity in the

middle of secondary education, until the standardized test results at the end of secondary education.

4.2 Outcomes, resources and control variables

Society expects that schools deliver value for money. We measure the outcomes of schools by two

variables. First, the average score obtained by the standardized school exam (average for all courses)

at the end of secondary education. As the exam is taken simultaneously for all students, and as it

is independently corrected by two teachers, it can be easily compared between schools. As a second

outcome variable, we consider the average exercise score for math in the third year of secondary

education. This score is obtained from the average on the exercises from the computer-assisted tool.

The outcomes indicate that schools have to maximize �nal and intermediate outputs. As revealed in

the literature review on e¢ ciency in education by De Witte and Lopez (2017), these outcome variables

are commonly used in earlier work.

In the model with resource constraints, we consider four resources. The resources re�ect the

monetary and time costs for education. Dutch schools receive a lump sum subsidy per student by the

central government. They are relatively free to allocate the money. As a �rst resource variable, we

use the costs for teachers per student. This re�ects the teaching capacity. It can be compared to the

traditional number of teachers per student. As a second and third resource variable, we use the cost

of materials per student and the cost of housing per student. These variables provide a proxy for the

available facilities at the school. Finally, in line with the traditional education production function

we include the time for education. As suggested by Hanushek (1995) one should not include "the

time spent in schools without judging what happens in schools", but rather include a precise measure

of time use. Therefore, we include the time that students spend on the math exercises. The latter
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variable allows us to capture the heterogeneity in abilities among students (i.e., less able students will

spend more time on math exercises). As all 80 schools in the sample use the computer-assisted tool,

the variable can be easily compared among the schools.7

A �nal set of variables capture the heterogeneity in the schools�operational environments. We

consider three variables which we assume represent resources out of schools�control. A �rst variable

measures the quality of the student intake. At the end of primary education, students have to make a

compulsory (although there are some minor exceptions) standardized central exam. Together with the

advice from the primary school teacher, the score on this centralized so-called �cito-exam�provides a

binding advice for the secondary education track a student has to follow. As a second control variable,

we include the average age of the teachers. In line with earlier literature (see De Witte and Lopez,

2017), this serves as a proxy for the experience of teachers. Finally, we include the percentage of

students coming from disadvantaged neighborhoods. These neighborhoods are de�ned by Statistics

Netherlands. This variable can explain the cultural and societal abilities of students. If a school

attracts more students from disadvantaged neighborhoods, it can be expected that it has di¤erent

issues to deal with than schools with a more favorable student population.

Table 1 provides summary statistics for our three categories of variables. Concerning the resources,

a large majority of the lump sum budget is devoted to teaching sta¤. On average, schools spend about

7 times as much per student on teachers than on materials or housing. The time devoted to math

exercises varies signi�cantly over the schools. Some schools pay a lot of attention to math excercises,

whereas other schools are more restrictive in the time for math exercises.

The descriptive statistics of the outcomes variables exhibit an interesting heterogeneity across

schools. We �nd signi�cant di¤erences between the best and worst performing schools in terms of

both the average scores for math exercises and the standardized exam. Also the inequality in the

math scores is relatively large between schools.

These di¤erences might at least partly be explained by heterogeneity in the schools�operational

environments (which is captured by our control variables). For example, the sample includes schools

without any student from disadvantaged neighborhoods as well as schools with no less than 41%

of such students. We also observe signi�cant variation in the average exam scores at the end of

primary education. Finally, the age di¤erence among teachers is, on average, almost 10 years. These

inter-school di¤erences directly motivate the need to account for the operational environment in our

performance-productivity analysis.

< Table 1 about here >
7As robustness checks we have redone the analysis for alternative selections of inputs and outputs: excluding the

variable �time devoted to math exercises� from the resources as this variable shows a large variation and a wide spread
between the minimum and maximum values; dropping the school average on the math exercises as output given the
large di¤erence among schools on this variable; adding a (positively oriented) score for inequality in abilities among
the students as output by using the inverse of the standard deviation of the exercise scores. This shows that our
above results are quite robust. This carries over to the qualitative conclusions that we draw from them, also regarding
school characteristics that relate to unexploited production capactity or resource constraints hampering the schools�
performance (see below). The results are available upon request.
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5 Empirical results

In this section, we will �rst consider our productivity and performance results separately. Subse-

quently, we will investigate the performance/productivity ratios of the schools under study, and show

that these ratios give rise to a number of interesting insights (regarding unexploited capacity versus

resource constraints hampering schools�performances).

5.1 Productivity versus performance

Productivity. We begin by studying schools�productivity scores, which account for di¤erences in

resources among schools. As indicated in our discussion of the descriptive statistics (in Table 1),

despite similar budget and time constraints (i.e. lump sum per student as well as total number

of teaching hours are roughly the same across schools), we do observe signi�cant heterogeneity in

the way resources are used (i.e. di¤erences in teaching outcomes). The productivity results are

presented in Table 2. The �rst column in this table shows the �robust� results, while the second

column presents the conditional and robust (in short �conditional�) results. The former ignore the

operational environment, while the latter apply the conditional approach that we set out at the end

of Section 3.

Let us �rst consider the robust results. These results indicate that the average school has a

productivity shortfall of 27%. In other words, for the given resources, a school could (on average)

increase its productivity by 27% if it would produce at its best practice level. The best performing

schools are super-e¢ cient. As explained in Section 3, this indicates that these schools are performing

better than their randomly drawn reference observations in the order-m procedure (i.e. robust score

above unity). More precisely, the best performing school performs 35% better than its reference

(averaged over all random draws). Next, when we look at the �rst quartile, we �nd that 25% of

the schools performs more than 52% worse than their reference. Finally, the minimal productivity

value is as low as 22%, which suggests that the worst performing school can massively increase its

productivity.

Importantly, however, these results do not account for di¤erences in the schools�operational envi-

ronments. If we do take such environmental di¤erences into account, only a slightly di¤erent picture

emerges. It does not seem that the di¤erences between the schools further enlarges or decreases. The

average school can improve by 25%, while still a quarter of the schools can improve by more than

50% in educational attainments. Despite the use of the order-m methodology, which mitigates the

in�uence of outlying observations, some schools are clearly super-(in)e¢ cient.

< Table 2 about here >

Performance. In a following step, we ignore inter-school di¤erences in resources and consider �per-

formance� scores. The results are presented in Table 3, which shows that ignoring the resources

delivers a more benevolent model. While the average performance increases in comparison to the

productivity model, there are less super-e¢ cient observations. On average, a school could increase

its educational attainments by 22% if it would perform as e¢ cient as its reference outcome. The

14



observation with the lowest performance could improve by as much as 72%. About 25% of the schools

have a performance shortfall of less than 6%.

A similar picture emerges for the conditional performance estimations, which are, again, well

comparable to the robust performance estimations. It is actually quite remarkable that the robust

and conditional estimates are that similar. This suggests that the schools�operational environments

do not signi�cantly impact their output performance. This is con�rmed by additional analyses in

which we set out (non-parametrically) how the ratio of robust over conditional performance estimates

relate to school characteristics �% of students from disadvantaged neighborhoods�, �average age of the

teachers�, and �average score of standardized exam at the end of primary education�(using a procedure

proposed by De Witte and Kortelainen, 2013). For this exercise, we �nd that none of these variables

shows a signi�cant relationship to the (robust over conditional) performance ratio.8

< Table 3 about here >

5.2 Performance/productivity ratios

By comparing the performance and productivity estimates, we can obtain insights into the prevalence

of resource constraints versus unexploited capacity. The results for the ratios [PerfE;m / [ProdE;m
and [Perf

Z

E;m / [Prod
Z

E;m are summarized in Table 4. We observe that there are schools for which we

can expect more outcome gain from a weaker resource constraint (i.e. the ratio is below unity) as well

schools which can increase the educational attainments when the resource variation is disregarded (i.e.

the ratio is above unity). Interestingly, the �average�school corresponds to the latter scenario, which

suggests that a majority of schools does not fully exploit the production capacity. The conditional

scores in Table 4 reveal that this conclusion is not impacted by heterogeneity in schools�operational

environments.

< Table 4 about here >

As a further investigation, we present the performance/productivity ratios as a function of the

underlying performance and productivity scores. This is visualized in Figure 1. Some interesting

patterns emerge. Speci�cally, the schools that are mainly hampered by scarce resources are often

super-e¢ cient in terms of the productivity measure. For the given resources, these observations

are doing better than expected, which may signal �resource over-utilization�. Those observations

would bene�t from weaker resource constraints. By contrast, the schools with unexploited capacity

(or �resource under-utilization�) are predominantly those which combine low productivity with high

performance. Those observations would bene�t from more stringent resource constraints, because less

resources need not impact the output performance.

< Figure 1 about here >

8We do not report these analyses for compactness, but the results are available upon request.
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The question remains which are the characteristics of the schools with unexploited capacity

(or resource under-utilization) and those which are faced by resource constraints (or resource over-

utilization). To address this issue, we estimate the following model:

[Perf
Z

E;m=[Prod
Z

E;m = �+ �XE + �E (11)

where � denotes a constant, � vector with coe¢ cients of the observed characteristics X of observation

E, and �E an i.i.d. error term. Given the signi�cant di¤erences in under and over-utilization of re-

sources (see Table 4) we estimate model (11) by a quantile analysis. A standard OLS regression would

focus on the conditional mean of the performance/productivity ratio without accounting for its full

distributional properties. On the contrary, a quantile regression estimates the potentially di¤erential

e¤ect of an independent variable X on various quantiles in the conditional distribution (Koenker and

Bassett, 1978). As observed characteristics we include variables which have been indicated in earlier

literature (see overview by De Witte and Lopez-Torres, 2017) to in�uence the productivity and per-

formance of schools. They include (1) the number of students per teacher, (2) the school size (number

of students in the school), (3) the number of school managers in full time equivalents (FTE), (4) the

number of school locations per school district or governing body, and (5) the percentage of early school

leavers, de�ned as students who leave the school without higher secondary degree and do not enroll

in further education or training. The descriptive statistics are presented in Table 5. They show some

signi�cant heterogeneity across the schools. For example, some schools have clearly more students per

teachers than other schools. Given the relative autonomy of Dutch schools in spending the lump sum

budget, it is intuitive that we observe a negative correlation (-0.14) between the number of students

per teacher and the number of managers at a school (expressed in FTE).

While this regression lacks su¢ cient power to obtain statistically signi�cant outcomes, we do

observe some noteworthy patterns. We report in Figure 2 the graphs of the coe¢ cients of the quantile

analysis. Each �gure reports for each parameter the complete picture, that is the values each parameter

takes, from quantile 0.01 to quantile 1.00. The grey areas denote the 95%-con�dence interval around

the estimates.

< Table 5 about here >

< Figure 2 about here >

The negative sign in the �rst graph (student per teacher) suggests that more students per teacher

generally corresponds to less unexploited capacity (over-utilization of resources). The estimated cor-

relation is roughly similar for all quantiles of the student-teacher ratio. This suggests that the number

of students per teacher does vary with having weaker or stronger resource constraints.

Second, smaller schools (in terms of student numbers) are characterized by less unexploited capac-

ity, which is not the case for the larger schools. It is interesting to observe that the estimated coe¢ cient

slightly increases with the quantile of the number of students at a school. This suggests that larger

schools have more unexploited capacity, although the con�dence interval around the estimate also
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increases dramatically (due to fewer observations of large schools).

Third, we observe a decreasing pattern for the relationship between the number of school managers

(in FTE) and the performance/productivity ratio. For the �rst quantiles of the number of school man-

agers, we observe a positive (insigni�cant) correlation to the performance/producativity ratio. This

suggests that schools with few managers have a greater degree of unexploited production capacity or

technical ine¢ ciency. By moving along the quantiles of the number of school managers the coe¢ cients

of the quantile analysis decrease and even become negative. This suggests that for schools with more

managers, we can expect more output gains from weaker resource constraints.

Fourth, the number of schools per governing body (school district) does not exhibit a signi�-

cant correlation with the performance/productivity ratio. Con�dence intervals are fairly large for all

quantiles and, correspondingly, the estimated coe¢ cient is generally close to zero.

Finally, the percentage of early school leavers (school dropouts) correlates negatively and (for

some quantiles) signi�cantly to the performance/productivity ratio. These results suggest that early

school leaving correlates to resource constraints restricting school performance, which implies that

more output gain can be expected from weaker resource constraints. However, while the coe¢ cient

is negative for most quantiles of school dropouts, it is positive for the highest quantiles. Although

largely insigni�cant, this �nding indicate that schools with a high percentage of early school leavers

also have a large degree of unexploited production capacity.

6 Conclusion

Performance of public sector services may be hampered by resource constraints, or may be charac-

terized by unexploited capacity. We have presented a novel and simple framework to evaluate the

public sector performance in view of these issues. Our method computes performance/productivity

ratios, and can be implemented as soon as data on production units� outcomes and resources are

available. Ratio values below unity indicate that better outcomes can be attained through weaker re-

source constraints (pointing at scarcity of resources) and, conversely, ratio values above unity indicate

that better outcomes can be achieved with the same resources (pointing at unexploited production

capacity).

We have demonstrated the practical usefulness of our methodology through an application to

secondary schools in the Netherlands. In this application, we also account for outlier behavior and

environmental e¤ects by using a robust and conditional nonparametric estimation method. Our em-

pirical results indicate that in most cases schools�performance improvement is a matter of unexploited

production capacity, while scarcity of resources is a lesser issue. It provides an argument for educa-

tional policy makers in times of austerity. While there are schools that do su¤er from stringent resource

constraints, the majority of the schools should �rst increase their productivity before requesting ad-

ditional funding.

We have also investigated the characteristics of the schools with unexploited capacity and with

binding resource constraints. First, we found that under-utilization of resources is positively related

to the number of school managers. This �nding is in line with the substantial increase of the number

of middle managers in the Netherlands. Due to a consolidation of the number of school districts (i.e.,
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more schools per governing body), we could observe an increase in the number of school managers.

Our analysis suggests that many schools would bene�t from a reduction of the number of managers.

Next, scarcity of resources bears a positive association with the number of students per teacher. This

observation provides a hands-on tool for policy makers to analyze the over-utilization of resources.

Combing this �nding with the previous one, it can be argued that schools with a high number of

students per teacher and a low number of school managers operate under serious resource constraints.

Furthermore, larger schools also seem to su¤er from scarce resources. These schools are often

located in urban areas, such that they face various challenges due to their unfavorable socioeconomic

position. In addition, larger schools typically have a higher complexity, which should be compensated

by additional resources. Lastly, resource over-utilization correlates positively to the number of students

who leave school without a higher secondary degree and who are not further enrolled in education or

training. This suggests that the more early school leavers a school has, the less unexploited capacity

there will be. Schools with stringent resource constraints seem to be unable to monitor and prevent

early school leaving. Given the substantial societal costs of early school leaving, this suggests that

governments should make sure that they provide su¢ ciently large resources to schools to prevent this

from happening.

As a concluding remark, while our application in the current paper has focused on education, we

emphasize that our methodology can also be relevant in other regulatory contexts. In this respect,

a notable example concerns the provision of public services in developing countries. As stated by

Estache and Wren-Lewis (2009) �The e¢ cient operation and expansion of infrastructures in developing

countries is crucial for growth and poverty reduction�. Mbuvi et al. (2012), for instance, computed

simultaneously performance and productivity of water distribution utilities in Africa and showed that

there was room for dramatic improvements, near 40%, in both performance and productivity, with

the solution relying in most cases on technical ine¢ ciencies rather than on resource constraints.

Appendix 1

As indicated in Section 3, the parameter m in our order-m estimation method serves as a trimming

parameter that can tune the percentage of super-e¢ cient DMUs (i.e. DMUs with [ProdE;m > 1 for

our productivity measure and with [PerfE;m > 1 for our performance measure). We follow Daraio and
Simar (2005) to de�ne the value ofm. In particular, we systematically increasem and �x it at the value

for which the marginal decrease in the fraction of super-e¢ cient DMUs becomes su¢ ciently small.

Figure A1 presents the percentage of super-e¢ cient DMUs as a function ofm. For low values ofm, the

percentage of super-e¢ cient observations decreases dramatically, while this percentage decreases at a

substantially slower rate when m becomes larger. In our application, we selected m = 100 because the

marginal decrease in the fraction of super-e¢ cient observations becomes very small from this point

onwards.

< Figure A1 about here >
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Table 2: Productivity measures

Robust Conditional

Minimum 0.2172 0.2281

25% 0.4802 0.4998

Average 0.7306 0.7497

St. Deviation 0.2997 0.3157

75% 0.9859 1.0073

Maximum 1.3576 1.7709

Table 3: Performance measures

Robust Conditional

Minimum 0.2846 0.2850

25% 0.6422 0.6398

Average 0.7825 0.7831

St. Deviation 0.1983 0.1985

75% 0.9486 0.9482

Maximum 1.0260 1.0314

Table 4: Performance/Productivity ratios

Robust Conditional

Minimum 0.3439 0.3602

25% 0.8535 0.8519

Average 1.2178 1.1897

St. Deviation 0.4701 0.4643

75% 1.4961 1.4402

Maximum 2.6558 2.6630

Table 5: Descriptive statistics of variables which explain the performance/productivity ratio

Obs Mean Std. Dev. Min Max

Students per teacher 80 15.29 1.84 9.64 19.34

School size 80 2370.93 1064.07 400.00 5641.00

Managers at school (FTE) 80 10.50 8.54 0.00 39.80

Nr. school locations at governing body 80 7.19 11.11 1.00 35.00

Early school leaving (%) 80 1.31 0.71 0.00 4.58
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Figure 1 : Resource utilization
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Figure 2: Quantile analysis
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Figure A1: Determining partial frontier size
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