

marine.copernicus.eu

Charles Troupin, Antonis Chalkiopoulos

SOCIB, HCMR

La Spezia, 4 December 2015

CMEMS INSTAC Training

La Spezia, 4 December 2015

- 1. Introduction
- 2. How to get the data?
- 3. How to work with the data?
- 4. Ocean Data View
- 5. Python

1. Introduction

- 1.1– Data quality
- 1.2– About the material
- 2. How to get the data?
- 3. How to work with the data?3.1– Inspection
- 3.2-Visualisation
- 3.3–Processing
- 4. Ocean Data View
- 4.1- Objective 1: time series
- 4.2- Objective 2: CORA dataset
- 5. Python
- 5.1- ipython notebooks
- 5.2- Example 1: plotting

"Without sufficient observations, useful prediction will likely never be possible." "Models will evolve and improve, but, without data, will be untestable, and observations not taken today are lost forever."

C. Wunsch et al. (2010) PNAS

- 1. Model initialisation
- 2. Model validation

models are idealisation of the reality

- 3. Data assimilation
- 4. Satellite cannot see below the surface

- 1. Model initialisation
- 2. Model validation

models are idealisation of the reality

- 3. Data assimilation
- 4. Satellite cannot see below the surface

"Without data assimilation, any attempt to produce reliable forecasts is almost certain to end in failure."

http://www.metoffice.gov.uk/learning/science/first-steps

The ocean is complex

Many processes

The ocean is complex

Many processes

The ocean is complex

Many processes and many scales

"We must be able to document conditions and measure fluxes within the volume of the ocean, simultaneously and in real time, over many scales of time and space, regardless of the depth, energy, mobility, or complexity of the processes involved."

Delaney and Bargas (2009)

A multi-platform approach is essential

Credit: Global Ocean Observing System Office (IOC-GOOS)

A multi-platform approach is essential

Balearic Islands Coastal Ocean Observing and Forecasting System www.socib.es

A multi-platform approach is essential

Coastal Observing System for Northern and Arctic Seas http://codm.hzg.de/codm/

Research Vessel

temperature, salinity, currents, oxygen, ...

Feature type: trajectory of profiles for CTD trajectory for thermosalinograph

Coastal HF Radar

Current speed and direction

Feature type: grid

Types of in situ data

Glider

Temperature, salinity, currents, chlorophyll, ...

Feature type: trajectory

Drifting buoys and profilers

Temperature, salinity, currents, ...

Feature type: trajectory and trajectory of profiles

Types of in situ data

Fixed stations

Sea-level, weather/water column variables

Feature type: time series

Data quality

Example: platform velocity (drifter) in meters per second

PSPEED122521

0.0, 0.2339, 0.3666, 0.4341, 0.3834, 0.3466, 0.3773, 0.3492, 0.323, 0.2699, 0.2069, 0.1519, 0.129, 0.1261, 0.1813, 0.1574, 0.2128, 0.2767, 0.296 0.1328, 0.1152, 0.099, 0.0135, 0.0743, 0.1005, 0.1463, 0.1771, 0.1613, 0.1734, 0.1857, 0.177, 0.1765, 0.2041, 0.1783, 0.1565, 0.6826 0.8473 0.6527 0.6953 0.1482 0.1619 0.2156 0.2329 0.2573 0.2657 0.3225 0.3258 0.2855 0.2669 0.2247 0.1748 0.1183 0.6984 2961. 0.3182 0.2987, 0.2749, 0.2429, 0.2429, 0.2296, 0.0, 0.2104, 0.1023, 0.1705, 0.1957, 0.1991, 0.2107, 0.1944, 0.0, 0.1941, 0.2014, 0.1818, 0.1731, 0.1619, 0.161 2262 0.2231, 0.2413, 0.2319, 0.2115, 0.1704, 0.1339, 0.0719, 0.0467, 0.0539, 0.0911, 0.1372, 0.1492, 0.1717, 0.2119, 8.6001, 0.2228, 0.204, 0.21, 0.1115, 0.1228, 0.304, 0.1474, 0.1660, 0.1701, 0.1815, 0.1751, 0.1967, 0.1812, 0.1654, 0.1679, 0.184, 0.163, 0.1335, 0.1325, 0.1322, 0.1232, 0.1232, 0.1232, 0.1242, 0.1614, 0.1651, 0.1335, 0.1335, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.1325, 0.13 0.0991 82. 0.2395 0.1896, 0.1623, 0.1812, 0.1661, 0.1444, 0.1413, 0.1672, 0.1702, 0.1673, 0.1812, 0.205, 0.2115, 0.1979, 0.1843, 0.1791, 0.1914, 0.2012, 0.2073 0878, 0.0924 0.1246, 0.149, 0.168, 0.1739, 0.1758, 0.1818, 0.1694, 0.1447, 0.1263, 0.1601, 0.0993, 0.1613, 0.1611, 0.0916, 0.0916, 0.0916, 0.092, 0.0923, 0.0933, 0.1240, 0.1232, 0.1103, 0.1174, 0.1632, 0.0725, 0.0851, 0.125, 0.1707, 0.2834, 0.2226, 0.1112, 0.2664, 0.1672, 0.1670, 0.1583, 0.0841-0.6861 1568, 0.1342, 0.1775, 0.175, 0.144, 0.106, 0.0866, 0.0571, 0.0662, 0.0588, 0.0321, 0.0576, 0.0608, 0.0657, 0.1628, 0.1181, 0.1349, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1348, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1662, 0.1466, 0.1466, 0.1662, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0.1466, 0. 16018.5532, 658.102, 0.1164, 0.1064, 0.1194, 0.1296, 0.1267, 0.1057, 0.124, 0.1272, 0.1143, 0.6812, 0.064, 0.0618, 0.034, 0.0623, 225557, 2817 0.1354, 0.1483, 0.0066, 0.1051, 0.1317, 0.1211, 0.0807, 0.0694, 0.0823, 0.0905, 0.1022, 0.0978, 0.1201, 0.1477, 0.1552, 0.1649, 0.1364, 0.069 0.0277, 0.0338, 0.0402, 0.0891, 0.0932, 0.1299, 0.1545, 0.1037, 0.0406, 0.0578, 0.0453, 0.0533, 0.0555, 0.0404, 0.0461, 0.0465, 0.0422, 0.0528, 0.0 0.1049, 0.097, 0.0899, 0.0644, 0.0623, 0.0774, 0.0537, 0.0969, 0.1311, 0.1573, 0.171, 0.1769, 0.163, 0.139, 0.1313, 0.1414, 0.1562, 0.0968, 0.0804, 0.1.0349, 1.0252, 0.1694, 0.1655, 0.1368, 0.0768, 0.123, 0.1223, 0.2471, 0.2638, 0.2733, 0.2527, 0.2035, 0.1741, 0.1470, 0.1712, 0.1481, 0.1391 8, 181, 8, 5928 0.1993, 0.1639, 0.1893, 0.2007, 0.1945, 0.1876, 0.1644, 0.1201, 0.1051, 0.1328, 0.143, 0.1399, 0.155, 0.1712, 0.1771, 0.1653, 0.1759, 0.3497, 0.2572, 1604, 0.2042, 0.2178 0.1932, 0.1618, 0.1456, 0.114, 0.1065, 0.118, 0.0983, 0.1341, 0.1678, 0.2128, 0.2473, 0.2424, 0.2083, 0.1911, 0.149, 0.1015, 0.0421, 0.0215, 0.1037, 0.1910 8.3877 8.2796 8.2717 0.2144, 0.1772, 0.1398, 0.063, 0.0467, 0.1006, 0.1491, 0.2251, 0.328, 0.3323, 0.3237, 0.334, 0.3056, 0.2453, 0.208, 0.1704, 0.1105, 0.0657, 0.0109, 0.0311, 0.0 0.1459. 0.138. 0.119 0.0789, 0.0795, 0.1078, 0.1198 0.0906, 0.0949, 0.1004, 0.0908, 0.0923, 0.079, 0.0637, 0.088, 0.0728, 0.0626, 0.0852, 0.0852, 0.1258, 0.1553, 0.1741, 0.1983, 0.1875, 0.1677, 0.1361, 0.1044, 0.104, 0.115 0.1155, 0.142, 0.1666, 0.1478, 0.1911, 0.1843, 0.1548, 0.1232, 0.0926, 0.1031, 0.069, 0.0211, 0.82, 0.0617, 0.0919, 0.0674, 0.0699, 0.0538, 0.0796, 0.1124, 0.1368, 0.1441, 0.1637, 0.1701, 0.1589, 0.1445, 0.1522 0.1279, 0.0817, 0.0478, 0.0383, 0.017, 0.0456, 0.05, 0.0809, 0.1113, 0.1360, 0.1465, 0.152, 0.1467, 0.122, 0.0643, 0.0842, 0.0691, 0.0855, 0.0999, 0.1144, 0.0961, 0.0526, 0.0156, 0.0074, 0.0066, 0.122 0.1142, 0.1382, 0.1207, 0.0835, 0.0963, 0.0976, 0.0977, 0.1121, 0.0944, 0.0708, 0.0393, 0.0273, 0.0221, 0.0382, 0.0588, 0.0936, 0.1036, 0.0872, 0.0633, 0.0785, 0.0806, 0.0802, 0.0859, 0.0727, 0.0867, 0.0758, 0.0916, 0.0802, 0.0804, 0.0802, 0.0859, 0.0727, 0.0867, 0.0758, 0.0916, 0.0802, 0.0804, 0.0802, 0.0804, 0.0758, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.0804, 0.6786, 0.6595, 0.4486, 0.6351, 0.6445, 0.6787, 0.1825, 0.1249, 0.1427, 0.1596, 0.146, 0.1096, 0.099, 0.1009, 0.0838, 0.0947, 0.0847, 0.0819, 0.0859, 0.0892, 0.1274, 0.144, 0.1744, 0.1843, 0.1695, 0.174, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1458, 0.1 0.1447, 0.1402, 0.149, 0.1448, 0.1371, 0.1441, 0.1665, 0.1724, 0.1859, 0.1725, 0.1933, 0.1948, 0.1997, 0.2099, 0.1983, 0.1711, 0.1835, 0.1828, 0.1636, 0.1771, 0.2215, 0.2226, 0.225, 0.2437, 0.234, 0.2397, 0.2148 0.1816. 0.1575. 0.1525. 0.1545. 0.1545. 0.1548. 0.1921. 0.2229. 0.2076. 0.2445. 0.2564. 0.244. 0.2196. 0.1872. 0.1856. 0.1863. 0.1852. 0.1455. 0.1147. 0.1011. 0.1590. 0.2011. 0.22. 0.2432. 0.2447. 0.2344. 0.227. 0.2052. 0.1666, 0.1555, 0.1355, 0.0446, 0.0607, 0.0402, 0.0172, 0.0435, 0.0765, 0.0890, 0.1045, 0.1318, 0.1585, 0.1044, 0.178, 0.1664, 0.1454, 0.1167, 0.1057, 0.0805, 0.0374, 0.0255, 0.0322, 0.0551, 0.0633, 0.1066, 0.1476 0.1018. 0.2024. 0.2131. 0.2115. 0.1019. 0.1305. 0.0900. 0.0554. 0.0462. 0.0776. 0.1015. 0.1102. 0.1539. 0.1571. 0.1729. 0.1035. 0.1099. 0.209. 0.211. 0.1004. 0.1649. 0.1619. 0.2029. 0.2148. 0.2137. 0.2058. 0.21 0.2225 0.2442 0.2301 0.2219 0.2123 0.2265 0.2521 0.2623 0.2773 0.2972 0.2932 0.2931 0.2786 0.2932 0.2931 0.2786 0.285 0.225 0.145 0.144 0.1463 0.1663 0.1663 0.1663 0.1663 0.1673 0.1284 0.1868 0.1662 0.1797 0.1833 0.1886, 0.1614, 0.1447, 0.1397, 0.1313, 0.1525, 0.1699, 0.1891, 0.1853, 0.1725, 0.1724, 0.2157, 0.2236, 0.2255, 0.2091, 0.1929, 0.1766, 0.1567, 0.1772, 0.1766, 0.1811, 0.1934, 0.2162, 0.2313, 0.2447, 0.2167, 0.2166, 0.1614, 0.1447, 0.1947, 0.1567, 0.1772, 0.1766, 0.1811, 0.1944, 0.2162, 0.2313, 0.2447, 0.2167, 0.2265, 0.2091, 0.1929, 0.1966, 0.1567, 0.1772, 0.1766, 0.1811, 0.1944, 0.2162, 0.2313, 0.2447, 0.2167, 0.2162, 0.2161, 0.2162, 0.2161, 0.2162, 0.2161, 0.2162, 0.2161, 0.2162, 0.2161, 0.2162, 0.2161, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162, 0.2162 0.2594, 0.2475, 0.2059, 0.1574, 0.118, 0.0954, 343,2381, 0.1979, 0.1689, 0.2158, 0.2823, 0.3196, 0.3487, 0.3565, 0.3592, 0.3206, 0.2777, 0.2244, 0.1202, 0.0561, 0.0479, 0.0946, 0.1293, 0.1787, 0.2497 0.2722, 0.283, 0.2831, 0.2967, 0.233, 0.2814, 0.2435, 0.2041, 0.1693, 0.1325, 0.6824, 0.9567, 0.9622, 0.1283, 0.1948, 0.249, 0.2656, 0.2867, 0.2914, 0.2622, 0.2699, 0.1835, 0.1567, 0.1178, 0.13, 0.1174, 0.1867 0.1686, 0.2564, 0.2783, 0.2631, 0.2371, 0.2309, 0.23, 0.2371, 0.2531, 0.2106, 0.1039, 0.1596, 0.1204, 0.0739, 0.1615, 0.1607, 0.1343, 0.152, 0.1568, 0.1759, 0.1881, 0.2448, 0.2311, 0.2346, 0.2411, 0.2358, 0.2411, 0.2358, 0.2411, 0.2358, 0.2411, 0.2358, 0.2411, 0.2358, 0.2411, 0.2358, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0.2411, 0.2558, 0. 0.2164 0.1933 0.1556 0.1265 0.1309 0.1164 0.1207 0.1273 0.1338 0.1494 0.1868 0.1576 0.1547 0.1459 0.1713 0.2089 0.2628 0.174 0.1007 0.2331 0.2501 0.2779 0.297 0.289 0.2777 0.234 0.25 0.265. 0.1773. 0.1596. 0.169. 0.1725. 0.1484. 0.1535. 0.1817. 0.2143. 0.2413. 0.2461. 0.2466. 0.2466. 0.1583. 0.1584. 0.1552. 0.1442. 0.126. 0.1599. 0.1596. 0.1479. 0.1376. 0.1376. 0.1376. 0.2018 0.1011, 0.1875, 0.1942, 0.1342, 0.1259, 0.1465, 0.1681, 0.1339, 0.1354, 0.1551, 0.1464, 0.1173, 0.0055, 0.0766, 0.0461, 0.0046, 0.0165, 0.0543, 0.0746, 0.0792, 0.0976, 0.1352, 0.1888, 0.1949, 0.2009, 0.1638, 0.0142, 0.0142, 0.0142, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0144, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.0044, 0.1265, 0.135, 0.137, 0.147, 0.147, 0.147, 0.147, 0.412, 0.407, 0.441, 0.407, 0.444, 0.109, 0.155, 0.155, 0.157, 0.499, 0.459, 0.459, 0.454, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.451, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0.454, 0 6.3778, 0.6106, 0.6127, 0.6155, 0.6106, 0.6167, 0.6464, 0.6659, 0.111, 0.1344, 0.1305, 0.1775, 0.1646, 0.1434, 0.1432, 0.1448, 0.143, 0.1261, 0.6098, 0.6342, 0.6224, 0.6715, 0.6754, 0.6159, 0.141, 0.1412, 0.1441, 0.1432, 0.1448, 0.1432, 0.1448, 0.1432, 0.1448, 0.1432, 0.1448, 0.1442, 0.1442, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1444, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0.1452, 0 0.1299, 0.1574, 0.1593, 0.1844, 0.2011, 0.2039, 0.1577, 0.1262, 0.4955, 0.1137, 0.1325, 0.1577, 0.171, 0.1980, 0.2272, 0.2221, 0.1874, 0.1013, 0.1805, 0.2175, 0.1844, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.44513, 0.2164, 0.2467, 0.4451, 0.2164, 0.2467, 0.4451, 0.2464, 0.2467, 0.2451, 0.2454, 0.2467, 0.44513, 0.2164, 0.2467, 0.4451, 0.2464, 0.2467, 0.4451, 0.2464, 0.2467, 0.4451, 0.2464, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2467, 0.2451, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454, 0.2466, 0.2454 0.277, 0.3202, 0.3681, 0.3536, 0.309, 0.3373, 0.3529, 0.3354, 0.3352, 0.3344, 0.3038, 0.2539, 0.1956, 0.168, 0.1138, 0.0787, 0.0585, 0.0806, 0.0873, 0.0867, 0.0770, 0.0951, 0.1347, 0.1887, 0.2229, 0.2343, 0.2723 0.2999, 0.2897, 0.2901, 0.2902, 0.2006, 0.212, 0.2006, 0.24, 0.2201, 0.1995, 0.1896, 0.1724, 0.1018, 0.1534, 0.13176, 0.1552, 0.1305, 0.1621, 0.7006, 0.1995, 0.1996, 0.2101, 0.2305, 0.3301, 0.3300, 0.3301, 0.3300, 0.2301, 0.2706, 0.2331, 0.3300, 0.3301, 0.3300, 0.3301, 0.3300, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3301, 0.3362, 0.3263, 0.3143, 0.72130, 0.4567, 0.7030, 0.3105, 0.3, 0.7644, 0.2409, 0.2373, 0.2567, 0.2602, 0.702, 0.3199, 0.3433, 0.3697, 0.3585, 0.3174, 0.3097, 0.7368, 0.2644, 0.2602, 0.2546, 0.2227, 0.1071, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0.1611, 0. 0.1162, 0.1031, 0.4994, 0.6844, 0.1356, 0.1494, 0.1331, 0.1497, 0.1347, 0.1311, 0.2459, 0.2431, 0.2396, 0.2431, 0.256, 0.256, 0.1255, 0.167, 0.1252, 0.256, 0.2305, 0.2575, 0.2557, 0.2525, 0.2557, 0.2525, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2557, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0.2577, 0. 0.1975, 0.1787, 0.1596, 0.1527, 0.1773, 0.1702, 0.1797, 0.1869, 0.1561, 0.1879, 0.2337, 0.2011, 0.1943, 0.1778, 0.1885, 0.1854, 0.2141, 0.2265, 0.2139, 0.2668, 0.2015, 0.1807, 0.1743, 0.2166, 0.2631, 0.2983, 0.2015, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.2141, 0.2265, 0.2139, 0.2668, 0.2015, 0.1807, 0.1743, 0.2166, 0.2631, 0.2983, 0.2983, 0.2015, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.1895, 0.2141, 0.2265, 0.2139, 0.2668, 0.2015, 0.1807, 0.1743, 0.2166, 0.2631, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.2983, 0.3142, 0.2848, 0.264, 0.2775, 0.2711, 0.2566, 0.2499, 0.2207, 0.1944, 0.1897, 0.197, 0.2274, 0.2563, 0.237, 0.2432, 0.2203, 0.248, 0.3060, 0.2676, 0.3829, 0.2339, 0.1676, 0.0789, 0.0644, 0.1576, 0.203, 0.2531, 0.2431, 0.2441, 0.1576, 0.203, 0.2531, 0.2441, 0.1576, 0.203, 0.2531, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2441, 0.2562, 0.2562, 0.2562, 0.2441, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562, 0.2562

Why data are not always good?

Why data are not always good?

- 1. variety of instruments
 - \rightarrow different precision, accuracy and methods
- 2. a given variable should undergo common QC with testing depending on the instrument/platform
- 3. needs for standards indicating reliability
- 4. needs for easily found documentation of the test procedures
- 5. original values must be preserved
- 6. problems found by users \rightarrow reported back to the provider

Example: temperature from a profiler:

```
...
float TEMP(TIME, DEPTH) ;
float TEMP(TIME, DEPTH) ;
TEMP:long_name = "Sea temperature" ;
TEMP:standard_name = "sea_water_temperature" ;
TEMP:inits = "degree_Celsius" ;
TEMP:_FillValue = 9.96921e+36f ;
byte TEMP.QC(TIME, DEPTH) ;
TEMP.QC:long_name = "quality flag" ;
TEMP.QC:conventions = "OceanSites reference table 2" ;
TEMP.QC:conventions = "OceanSites reference table 2" ;
TEMP.QC: valid_min = 0b ;
TEMP.QC: flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 6b, 7b, 8b, 9b ;
TEMP.QC:flag_meanings = "no_qc_performed good_data probably_good_data
bad_data_that_are_potentially_correctable bad_data value_changed
not_used nominal_value interpolated_value missing_value" ;
```


QF value	Meaning
0	no QC performed
1	good data
2	probably good
3	bad data that are potentially correctable
4	bad data
5	value changed
7	nominal value
8	interpolated value
9	missing value

QF value	Meaning
0	no QC performed
1	good data
2	probably good
3	bad data that are potentially correctable
4	bad data
5	value changed
7	nominal value
8	interpolated value
9	missing value

In most situations: only use data with flag=1

Real-time QC cannot detect all the anomalies

- Real-time QC automatic tests thresholds are a compromise between:
 - 1. letting bad data going through and
 - 2. stopping good data
- Delayed mode QC implies visual inspection by an operator

Deepest Pressure Test

- Deepest Pressure Test
- Platform Identification

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

Gradient Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test
- Density Inversion

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test
- Density Inversion
- Grey List

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test
- Density Inversion
- Grey List
- Gross salinity or temperature sensor drift

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test
- Density Inversion
- Grey List
- Gross salinity or temperature sensor drift
- Frozen profile

- Deepest Pressure Test
- Platform Identification
- Impossible Date Test
- Impossible Location Test
- Position on Land Test
- Impossible Speed Test
- Global Range Test
- Regional Range Test
- Pressure Increasing Test
- Spike Test

- Gradient Test
- Digit Rollover Test
- Stuck Value Test
- Density Inversion
- Grey List
- Gross salinity or temperature sensor drift
- Frozen profile
- Visual QC

1. Various types of platforms available

- 1. Various types of platforms available
- 2. Quality flags assigned to the measurements

- 1. Various types of platforms available
- 2. Quality flags assigned to the measurements
- 3. In situ data are essential for numerical model

- 1. Various types of platforms available
- 2. Quality flags assigned to the measurements
- 3. In situ data are essential for numerical model
- 4. In situ observations are scarce

Training material

Training material

ipython notebooks distributed in github Ohttps://github.com/ctroupin/OceanData_NoteBooks

This repository Search		Pull requests Issues Gi	ist	♣ +- ∦ -
ctroupin / OceanDat	a_NoteBooks		O Unwatch - 1	★ Star 0 ¥ Fork 1
Examples of data processing i	in Python using netCDF fil	les. — Edit		
11 commits	₽1 branch	♥ 0 releases	2 contributors	<> Code
Branch: master - Ocea	nData_NoteBooks / +		:=	Issues
Text corrections				ss runrequests
🛊 ctroupin authored 18 days ago			latest conmit acf4d358c8 🔂	EE Wiki
LICENSE	Initial co	ommit	a month ago	de Pulso
Plot_TimeSeries1.ipynb	Various	s small changes	27 days ago	
README.md		d readme	26 days ago	di Graphs
Read_CORA_dataset.ipynb	Various	s small changes	27 days ago	AL Cottings
Read_TimeSeries_1.ipynb	First co	ummit	18 days ago	se ootnigs
Read_TimeSeries_2.ipynb	First co	ummit	18 days ago	HTTPS clone URL
Read_TimeSeries_3.ipynb	First co	ummit	18 days ago	https://github.com 🔯
				You can clone with HTTPS, SSH,

IP[y]: IPython Interactive Computing

- User-friendly
- Free, easy to write, easy to read
- Code and results visible online via http://nbviewer.ipython.org

\mathbf{O}

- Public access, easy to download
- Collaborative development
- Bug tracking, feature request, wikis, ...

How does it looks like?

Finally, the colorbar will be placed below the map.

Even with this type of scatter plot, we can see interesting characteristics of the salinity field.

How to get the data?

http://marine.copernicus.eu: click on ONLINE CATALOGUE

Getting CORA dataset

Select "Global Ocean" and type "CORA" in search box

basis. The time coverage has been extended in the past by

integration of EN4 data for the period 1950-1990.

ONLINE CATALOGUE

NEW SEARCH AREA All areas Global Ocean (3) Arctic Ocean (0) Baltic Sea (0) European North-West Shelf Seas (0) Iberia-Biscay-Ireland Regional Seas (0) Mediterranean Sea (0) Black Sea (0) PARAMETER All parameters Ocean Temperature (3) Ocean Salinity (3) Ocean Currents (1) Sea Ice (1) Sea Level (1) Winds (0) Ocean Optics (0) Ocean Chemistry (0) Ocean Biology (0) Ocean Chlorophyll (0) TIME COVERAGE

MY CART 0 CATALOGUE PDF CORA SEARCH GLOBAL OCEAN PHYSICS REANALYSIS GLORYS2V3 (1993-2013) GLOBAL REANALYSIS PHYS 001 009 Numerical-model, Sea-ice, Currents, Sea-level, Salinity, Temperature, Multi-year, Global-ocean You can find here the new Mercator Ocean (Toulouse, FR) GLORYS2V3 (1993-2013) global ocean reanalysis (i.e. one of the four global ocean reanalysis GLOBAL REANALYSIS PHYS 001 009, 010, 011 and 017) for the Global Ocean and Sea Ice Physics ; monthly means of Temperature, Salinity, Currents, Sea Surface Height and Sea Ice Parameters, at 1/4 degree horizontal resolution, with 75 vertical levels, forced by ERA-Interim atmospheric variables and covering the 1993-2013 time period, with SEEK/IAU Data Assimilation of Temperature and Salinity profiles as well as Sea Level Anomalies. Sea Ice Concentration and Sea Surface Temperature. It also provides with daily means of surface or near surface fields (Sea Surface Temperature, Sea Surface Salinity, Sea Surface Height, currents at depth 0m and 15m, sea ice variables) and 2D diagnostics of mixed layer depth (computed using 3 different criteria) over the 1993-2013 time period GLOBAL OCEAN- CORA- IN-SITU OBSERVATIONS YEARLY DELIVERY IN DELAYED MODE (1950-2013) In-situ-observation, Salinity, Temperature, Multi-year, Global-ocean For the Global Ocean- In-situ observation yearly delivery in delayed mode. The In Situ delayed mode product designed for reanalysis purposes integrates the best available version of in situ data for temperature and salinity measurements. These data are collected from main global networks (Argo, GOSUD, OceanSITES, World Ocean Database) completed by European data provided by EUROGOOS regional systems and national system by the MORE regional INS TAC components. It is updated on a yearly INFO CART

Getting CORA dataset

Download product

Use your username & password

DATA ACCESS			BACK TO SEARCH
MY CART	DATA ACCESS Fill your fogin/password and click on LOGIN to down USERNAME PASSWORD	nload data.	
	If you are not registred yet click on REGISTER Thank you for using Copernic Service products	REGISTER US Marine	
	If you have trouble logging in, make sure your brow accept cookies. For security reasons, please Exit your web browse services requiring authentication!	rser is set to r when you quit	

Getting CORA dataset

FTP access (username & password)

OA directory

Index of ftp://ftp1.ifremer.fr /Core/INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b/CORIOLIS-GLOBAL-CORA04.0-OBS/

Name	Size	Last Modified	
CA CA		12/30/2013	12:00:00 AM
RAW		03/20/2014	12:00:00 AM
🗰 gzip		01/31/2014	12:00:00 AM
📰 readme.txt	2 KB	01/23/2014	12:00:00 AM

data directory

Index of ftp://ftp1.ifremer.fr /Core/INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b/CORIOLIS-GLOBAL-CORA04.0-OBS/OA/

Name	Size	Last M	odified
📾 data		01/21/2014	12:00:00 AM
📾 field		01/21/2014	12:00:00 AM

Select year of interest

Index of ftp://ftp1.ifremer.fr /Core/INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b/CORIOLIS-GLOBAL-CORA04.0-OBS/OA/data/

Name	Size	Last Modified	
iii 1990		01/21/2014	12:00:00 AM
1991		01/22/2014	12:00:00 AM
iii 1992		01/21/2014	12:00:00 AM
iiii 1993		01/21/2014	12:00:00 AM
1994		01/21/2014	12:00:00 AM
🚞 1995		01/21/2014	12:00:00 AM
iiii 1996		01/21/2014	12:00:00 AM
1997		01/21/2014	12:00:00 AM
iii 1998		01/21/2014	12:00:00 AM
📟 1999		01/21/2014	12:00:00 AM
2000		01/21/2014	12:00:00 AM
2001		01/21/2014	12:00:00 AM
2002		01/21/2014	12:00:00 AM
2003		01/21/2014	12:00:00 AM
2004		01/21/2014	12:00:00 AM
2005		01/21/2014	12:00:00 AM
2006		01/21/2014	12:00:00 AM
2007		01/21/2014	12:00:00 AM
2008		01/21/2014	12:00:00 AM
2009		01/21/2014	12:00:00 AM
2010		01/21/2014	12:00:00 AM
2011		01/21/2014	12:00:00 AM
2012		01/21/2014	12:00:00 AM

Select month and variable

Index of ftp://ftp1.ifremer.fr /Core/INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b/CORIOLIS-GLOBAL-CORA04.0-OBS/OA/data/2012/

Name	Size	Last Modified	
OA_CORA4.0_20120115_dat_PSAL.nc	140850 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120115_dat_TEMP.nc	151762 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120215_dat_PSAL.nc	137051 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120215_dat_TEMP.nc	152575 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120315_dat_PSAL.nc	140596 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120315_dat_TEMP.nc	157491 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120415_dat_PSAL.nc	145290 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120415_dat_TEMP.nc	158519 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120515_dat_PSAL.nc	146845 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120515_dat_TEMP.nc	159215 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120615_dat_PSAL.nc	148416 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120615_dat_TEMP.nc	162869 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120715_dat_PSAL.nc	153579 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120715_dat_TEMP.nc	166300 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120815_dat_PSAL.nc	163225 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120815_dat_TEMP.nc	177919 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120915_dat_PSAL.nc	167766 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20120915_dat_TEMP.nc	181738 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121015_dat_PSAL.nc	166023 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121015_dat_TEMP.nc	179268 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121115_dat_PSAL.nc	157182 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121115_dat_TEMP.nc	172260 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121215_dat_PSAL.nc	107337 KB	01/22/2014	12:00:00 AM
OA_CORA4.0_20121215_dat_TEMP.nc	116967 KB	01/22/2014	12:00:00 AM

How to work with the data?

Home page: https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/ncdump.html What is does: text representation of a netCDF dataset (header information, variables, ...)

ncdump applied on a file

```
ncdump -h 20140628_d-OC_CNR-L3-CHL-MedOC3_A_1KM-MED-DT-v02.nc
netcdf \20140628_d-OC_CNR-L3-CHL-MedOC3_A_1KM-MED-DT-v02 {
dimensions:
    time = 1 ;
    lat = 1580 ;
    lon = 3308 :
variables:
    int time(time) :
        time:long_name = "reference time" ;
        time:standard_name = "time" ;
        time:axis = "T"
        time:calendar = "Gregorian"
        time: units = "seconds since 1981-01-01 00:00:00";
        "SUBSAMP=1\n".
        "OUTMODE=0\n".
        ··· ;
```

Ferret

Home page: http://www.ferret.noaa.gov/Ferret/

What is does: visualization and analysis environment

Ferret to get basic info on file

```
ctroupin@SCBD046 ~/ Desktop $ ferret_c
   NOAA/PMEL TMAP
   FERRET v6.62
   Linux(gfortran) 2.6.9-89.0.20.ELsmp - 07/06/13
   25-Nov-15 12:23
ves? SET DATA 20140628_d-OC_CNR-L3-CHL-MedOC3_A_1KM-MED-DT-v02.nc
ves? SHOW DATA
     currently SET data sets:
   1> 20140628_d-OC_CNR-L3-CHL-MedOC3_A_1KM-MED-DT-v02.nc
                                                          (default)
                                                               Κ
                                                                         Τ.
 name
CHL
         Mediterranean Sea Daily Chlorop
                                          1:3308
 OI
         Quality Index of Mediterranean 1:3308
                                                    1:1580
yes?
```

ncview

Home page: http://meteora.ucsd.edu/~pierce/ncview_home_page.html What it does: quick visualisation of 3-4D fields

ncbrowse

Home page: http://www.epic.noaa.gov/java/ncBrowse/ What is does: interactive graphical display

Panoply

Home page: http://www.giss.nasa.gov/tools/panoply/ What is does: plot, slice, combine, overlay, ...

Home page: https://code.zmaw.de/projects/cdo

What is does: manipulate (merging, averaging) netCDF files (+other formats)

Examples: ► Basic info (min, max, avg, size, ...):

cdo info input.nc

Compute standard deviation:

cdo fldstd input.nc output.nc

Home page: http://nco.sourceforge.net/

What is does: command line operations on netCDF files

Examples: Average variable over domain:

ncwa -O -a lon, lat input.nc output.nc

• Extract subregion:

ncks -d lon,13.,18.0 -d lat,33.0,36.0 input.nc output.nc

Home page: http://odv.awi.de/en/home/

What is does: interactive exploration, analysis and visualization of oceanographic data

Wanna know more? Click here

High-level functions to read/write data from/to a netCDF file:

http://octave.sourceforge.net/netcdf/overview.html

http://es.mathworks.com/help/matlab/network-common-data-form.html

Example with Octave

<pre>nc = netcdf('input.nc', 'r');</pre>	% open netcdf file in read-only
CHL = nc{'CHL'}(:);	% retrieve variable
CHL_units = nc{'CHL'}.units;	% retrieve the attribute units
CHL_valid_range = nc{'CHL'}.valid_range;	% retrieve the attribute valid_range
global_history = nc.history;	% retrieve the global attribute history

Python

Python interface to the netCDF C library:

http://unidata.github.io/netcdf4-python/

Example with ipython

Wanna know more? Click here

Ocean Data View

> 40000 registered usersData analysis + visualisationAlmost every format supported

Working with ODV on Time Series

Temperature at mooring Athos

$File \rightarrow Open \rightarrow netcdf$

	Open		×
Look in:	🚞 /data_local/DataOceanstory/me	ooring20151104 👻 🔾	0 0 🛤 🗉 🗏
Desktop Docum ODV 2015101	Name MO_TS_MO_68422.nc MO_TS_MO_61277.nc	Size Type 19.8 MB nc File 26.2 MB nc File 15.7 MB nc File	Date Modified 11/4/15 3:12 PM 11/4/15 3:12 PM 11/4/15 3:12 PM
File <u>n</u> ame:	MO_TS_MO_ATHOS.nc		<u>O</u> pen
Files of type:	ODV Files (*.odv *.var *.nc *.cdf *.gr	d)	✓ Cancel

Dimension and variables : Next

Net	CDF Setup Wizard
Select Dimensions (Step 1 of 4)	
NetCDF dimensions	Corresponding netCDF variables
LATITUDE[36552] LONGITUDE[36552] POSITION[36552]	Latitude of each location [degrees_north]; var=LATITUDE Longitude of each location [degrees_east]; var=LONGITUDE quality flag; var=POSITION_QC
DEPTH(6)	GPS Latitude of each location [degrees_north]; var=GPS_LAI GPS Longitude of each location [degrees_east]; var=GPS_LC quality flag; var=GPS_POSITION_QC Depth of each measurement [meter]; var=DEPH sea pressure [decibar]; var=PRES
All 5 dimensions selected	sea temperature [degree_Celsius]; var=TEMP practical salinity [psu]; var=PSAL horizontal current speed [meter/second]; var=HCSP current to direction relative true north [degree]; var=HCDT
View NetCDF Header	atmospheric pressure at sea level [hectopascal]; var=ATMS air temperature in dry bulb [degree_Celsius]; var=DRYT 4
Help	< Back Next > Finish Cancel

Variable association : Next

Associate Meta Variables (Step 2 of 4) NetCDF variables 1: time (days since 1950-01-01700:00:002]; var=TIMI+ 3: Latitude of each location [degrees_east]; var=L0 G: GPS Latitude of each location [degrees_east]; var=L0 G: GPS Latitude of each location [degrees_east]; var=L0 B: quality flag; var=POSTION_QC 9: Depth of each measurement [meter]; var=DEPH 12: sea pressure [deciDer]; var=PRS 15: sea temperature [degree_celsius]; var=HCP 18: practical salinity [Bus]; var=PSAL 21: horizontal current speed [meter/second]; var=HCS 24: current to direction relative true north [degree]; var 27: atmospheric pressure at sea level [hectonascal]; v 3 of 24 variables used	Associate Meta variables Convert Set Default Undo * Year * Month > Day * Hour * Month • Second > > >> 8 of 11 variables associated
Help	< Back Next > Finish Cancel

R Quality Control variables not visible at this stage

Primary variables : Next

NetCDF Setu	up Wizard
Select Primary Variable (Step 3 of 4)	
Available netCDF dimensions Itme (days since 1950-01-01T00:00:002) quality flag quality flag POSITION DEPTH	Use selected variable Use decimal date/time (header) Use dummy variable
Help	< Back Next > Finish Cancel

Subset dimensions : Finish

	NetCDF Setup Wizard
Subset Dimensions (Step 4 of 4)	
36552 stations. You can reduce the number one or more dimensions or by zooming into	r of stations by subsetting the map.
NetCDF dimensions	
TIME[36552] use[0:1:36551] LATTUDE[36552] use[0:1:36551] LONGTUDE[36552] use[0:1:36551] POSITION[36552] use[0:1:36551] DEPTH[6] use[0:1:5]	
4	
	Zoom into Map Full Domain
Help	< Back Next > Finish Cancel

Plot the time series

$View \rightarrow Layout \ template \rightarrow Scatter \ window$

Right-click on plot:Change X and Y variable (temperature vs. time)

☆ Right-click on plot:Change X and Y variable (temperature vs. time)

Select Variable	×
Y-Axis Variable: Window 1	٩
DEFTH DEFTH Depth D	
Keverse range	ncel

[™] Right-click on plot: Change X and Y variable (temperature vs. time)

Bad values: will be treated later

Plot the time series

\cong Right-click on plot: Sample Select Criteria \rightarrow depth range

Plot the time series

\square Right-click on plot: Sample Select Criteria \rightarrow depth range

	Sample Selection Criteria
Range Quality	
Variable	
DEPTH	•
Acceptable Rang	e - [2]
	Relax this range filter
0 of 24 variables rang 0 of 24 variables qua	ge filtering lity filtering
Apply these samp	e selection criteria globally
Help	OK Cancel

\cong Right-click on plot: Sample Select Criteria \rightarrow depth range

Now we have the series at 2 depth

n Right-click on plot: Properties

Display Style: modify Symbols Size

	Properties Window 1										
General	Data	Display Style	Contours	Color Mapping	DI <u>V</u> A Settings						
Data Disp	lay Style										
	riginal da	ta									
Colo	red Dots	-									
	Sym <u>b</u> ol 8 Symbol	size	✓ Au2020	tomatic scale leng X so X so	ths cale-length (permille) cale-length (permille)						
	Line wid	ith									
thin *		•	V Hic		Quality limit 3.0						
Data Mari	c Style										
		Draw marks	Size	Color	7 👻						
Apply	to all win	dows			Default Settings						
Help					OK Cancel						

$View \rightarrow Window \ Layout$

Adapt size of the Scatter window

Accept the change (Enter →)

\square Right-click on plot: Properties \rightarrow Domain

Enlarge the map domain

		Map Pr	operties		
<u>G</u> eneral	Display Style	Projection	Layers	Domain	Annotations
Map Dom	uest 23.5	<u>№</u> 59	orth 41 puth 39.	E 2;	151 15]
Help]		Full Dor	nain	Global Map

Enlarge the map domain

Apply quality flags

\cong Right-click on plot: Sample Select Criteria \rightarrow depth range Select good data only

Sample Selection Criteria
Range Quality
Variable
sea temperature [degree_Celsius]
Acceptable Quality Flags
0: no QC was performed
2. probably good data 3: bad data that are potentially correctable 4: bad data 5: value changed 7: nominal value 8: interpolated value 9: missing value
Relax this quality filter
1 of 24 variables range filtering
0 of 24 variables quality filtering
✓ Apply these sample selection criteria globally
Help OK Cancel

Apply quality flags

$\ensuremath{\,\cong\,} Right\ensuremath{-} click$ on plot: Sample Select Criteria \rightarrow depth range Select good data only

Configure Window Layout to have the 2 time series (with and without QC

																											Cruise	MO TS N	40 ATHOS.
																											Station	26552 18	
																											Position	24.724%	728.9741
				-	-					-	-	-	-	-		-	-	-	-	-		-			-		Cape	30 Noves	nber 2013
				Mi	ab 🕴																		win	dox			Time	21:00:00	.000
																							50				DEPTH Range	12 - 51	
																									-		Sample: 5 / 6		
																											1 DEPTH	4	
Â								- 6																			2. Depth of e	a 25.00	3 1
و								2																			3. GPS Lacku	4	
3								1.5																			4 GPS Langit	a a a a a a a a a a a a a a a a a a a	
5		1	over#	Nesize		CD14	•																				5: Latitude of	e., 39.93	r e
3		0																									6 Longitude	of. 24.73	2 0
		0	reate b	ien Wre	dow																						7: atmospher	×	,
		0																									8 air temper	at	,
																											9.246728701	х	,
																											10: current to	d.,	,
			-	tien .		Alt a						De	oth	of	each	me	asu	reme	ont fr	nete	NI >:	2					11: gust wind	s	,
	Logottur											101		T	TT I			111									12 horeortal	6	,
	Longiton	1 0																									13: horecetal		,
																											14 practical s	a 33.08	1 1
										-		-	-	-		-	-	-	-	-	-		1417.				15: sea press	×	,
			iyout 1	lemplate	9		-																50	177	FR		16: sea temps	H 17/83	
		- ^	ccept.			Crós	r -																				D Squara		
			ancel			ESC.	_																				Te: one page	A 23.54	4.8750 1
																											19. we do repea		
								2																			The wave spec	a	
								- 5																			11. 858/504		
								- 5																			The sector for		
								- 5																			25 quarty to		
)	1																		Te doed to		
																											Isosurface Val	985	
									1																-		Langitude		24.724
																											Latitude		39.974
																											Time byd		2013-90
									1	-	-		-	-		-	-	-	-	-	-	-	-	-			Day of Year		334
											GP	S La	titu	de i	of ea	ich /	ocal	tion	(degr	ees.	nort	h] :	>>				Depth of each	T009,F0T	0.00
																											atmospheric pr	th proces	1022.24
																											air temperatan	r in dry be	14.63
																											over zero cross	ing move .	3.52
2 2 4 5	6 7	8	2	10										2.8	19		0							26					

Configure Window Layout to have the 2 time series (with and without QC

Extreme values are removed

Compare histograms:

Working with ODV on CORA data set
Objective: process CORA dataset

Salinity (S78 - PSS) (interpolated on Z_levels) [none] @ depth [m]=0

$File \rightarrow Open \rightarrow Select$ the netCDF file

	Open				×
Look in:	/home/ctroupin/CMEMS_INSTAC		- 0	00	
Desktop Docum ODV 2015101	Name OA_CORA4.0_20120115 dat PSAL	 Size c 137.5 MB ic 148.2 MB 	Type nc File nc File	Date Mod 10/29/: 10/29/:	ified 54 PM 55 PM
File <u>n</u> ame:	OA_CORA4.0_20120115_dat_PSAL.nc				<u>O</u> pen
Files of type:	ODV Files (*.odv *.var *.nc *.cdf *.grd)			•	Cancel

Dimension and variables : Next

Net	CDF Setup Wizard
Select Dimensions (Step 1 of 4)	
NetCDF dimensions	Corresponding netCDF variables
N PROF[36038] N_LEVELS[152]	Cycle number; var=CYCLE_NUMBER Julian day (UTC) relative to REFERENCE_DATE_TIME [days since Latitude of the station, best estimate [degree_north]: var=LAT Longitude of the station, best estimate [degree_east]; var=LOI depth [m]: var=DEPH profile processing level: var=PSAL_PROC Quality flag on interpolated variable; var=PSAL_OC Salinity (S78 - PSS) (interpolated on Z_levels) [none]; var=PSA Climatology mean for profile [none]; var=PSAL_CLMN Climatology standard deviation for profile [none]; var=PSAL_CLMN Climatology standard deviation for profile [none]; var=PSAL_CLMN Error from unresolved scales [none]; var=PSAL_ENRE
All 2 dimensions selected	Residual [none]; var=PSAL_RESI N_PROF: var=N_PROF
View NetCDF Header	N_LEVELS; var=N_LEVELS
Help	< Back Next > Finish Cancel

Variable association : Next

NetCDF Setu	ıp Wizard
Associate Meta Variables (Step 2 of 4) NetCDF variables 3: Cycle number: var=CYCLE_NUMBER * 11: julia day (UTC) relative to REFERENCE_DATE_TIM * 12: Latitude of the station, best estimate (degree_nor) * 13: longitu	Meta variables Associate Convert Convert type
14: depth [m]: var=DEPH 15: profile processing level; var=PSAL_PROC 16: Quality flag on interpolated variable; var=PSAL_Q 17: Salinity (S78 - PSS) (interpolated on Z_levels) (Inor 18: Climatology standard deviation for profile [none]; 20: Measurement error (Inone); var=PSAL_ERME 21: Error from unresolved scales [none]; var=PSAL_ERME 22: Residual [none]; var=PSAL_REME	Set Default Undo Undo Set Content Hour Hour Second
3 of 15 variables used	8 of 11 variables associated

Primary variables : Next

NetCDF Setu	ip Wizard
Select Primary Variable (Step 3 of 4)	
Available netCDF dimensions Cycle number Julian day (UTC) relative to REFERENCE_DATE_TIME [days Latitude of the station, best estimate [degree_orth] Longitude of the station, best estimate [degree_east] depth [m] profile processing level N_PROF N_LEVELS	 Use selected variable Use decimal date/time (header) Use dummy variable
Help	< Back Next > Finish Cancel

Subset dimensions : Finish

	NetCDF Setup Wizard					
Subset Dimensions (Step 4 of 4)						
NetCDF dimensions N_PROF[36038] use[0:1:36037] N_LEVELS[152] use[0:1:151]						
	Zoom into Map Full Domain					
Help	< Back Next > Finish Cancel					

We get this window

$\ensuremath{^{\ensuremath{\scriptstyle\frown}}}$ Right-click on image \rightarrow Station Selection Criteria \rightarrow Domain

		Stati	on Selectio	n Criteria		
Name / <u>R</u> ange	Date / <u>T</u> ime	<u>D</u> omain *	Meta Data	<u>A</u> vailability	In <u>v</u> ert	
	West -10	North 45 South 30		East 35		Zoom Define Polygon Load Polygon Map Domain
Help						OK Cancel

Region selection and basic statistics

\square Right-click on image \rightarrow Properties \rightarrow Domain

		Map Pr	operties		
<u>G</u> eneral	Display Style	Projection	<u>L</u> ayers	Domain	Annotations
Map Dom	west	<u>N</u>	orth 45 puth		ast IS
Help			50 Full Dor	nain	Global Map OK Cancel

Region selection and basic statistics

		Map Statistics	
Summary			
		Visible sta	ations
	Mean	Stand. Dev. # Points	Minimum Maximum
Longitude	: 8.3463	+- 11.8378 1093	[-9.992 34.2175]
Latitude	: 41.5833	+- 4.717 1093	[32.096 47.8219]
Distributions			
X Histogram Y Time Histogram Seas	Histogram son Histogram		X/Y Distribution
Help			Clipboard Copy Close

Figure \rightarrow X/Y Distribution

Data scarcity and inhomogeneous distribution

$rac{}{}$ Right-click on map \rightarrow **Properties**

General: palette, colors etc

		Map Pr	operties			
General	Display <u>S</u> tyle	Projection	<u>L</u> ayers	<u>D</u> omain	Annotations	
General						
General						
		Pal <u>e</u> tte:	Odv			-
	Back	ground color:	(none)			-
Font						
	Font	base size [pt]:	(automat	tic)		
	Fg	nt size factor:	100 %			*
Axis Style						
		Axis color:	0			-
		-	✓ Draw (grid		
				_		
					Default Settir	gs
Holp					or ca	ncol
нер					Ca	ncei

$rac{}{}$ Right-click on map \rightarrow **Properties**

Display style: increase dot size, change color

		Map Pr	operties		
<u>G</u> eneral	Display Style	Projection	<u>L</u> ayers	<u>D</u> omain	Annotations
Station D	ots				
		Det size:			
		Dot size:	0	-	
			U		
					Default Settings
Help					OK Cancel

right-click on map \rightarrow **Properties**

Projection: modify according to preference

		Map F	roperties		
<u>G</u> eneral	Display Style	Projection	Layers	<u>D</u> omain	Annotations
Map Proje	ection				
	Proje	ction: Merc	ator		•
	Pole longi	tude: 8.8			'E
	, ole ide	auer (+512			
					Default Settings
Help					OK Cancel

\mathbb{T} Right-click on map \rightarrow **Properties**

Layers: bathymetry + coastlines

	Map Pi	operties		
General Display Sty	le <u>P</u> rojection	Layers	<u>D</u> omain	Annotations
✓ Automatic selection				
Series				
Layer selection				
 Ocean bathymetri 	У	✓ Fill co	astlines	
✓ Coastlines				
Land topography				
Lakes and rivers				
V Borders				
Draw color bar				Default Settings
Help				OK Cancel

\mathbb{T} Right-click on map \rightarrow **Properties**

Domain: adjust limits (already done)

$rac{}{}$ Right-click on map \rightarrow **Properties**

Annotations: not necessary

		Map Pr	operties		
<u>G</u> eneral	Display <u>S</u> tyle	Projection	Layers	<u>D</u> omain	Annotations
Station Ann	otations				
		O Cruise and	station lab	oels	
		 Station lab 	els		
		No annota	tions		
		10.0 pt 🌲	<u>F</u> ont size		
					Default Settings
Help					OK Cancel

 \mathbf{B} Right-click on map \rightarrow **Properties**

$View \rightarrow Layout \ template \rightarrow Full \ Screen \ Map \ F8$

$View \rightarrow Layout \ template \rightarrow Station \ window$

$View \rightarrow Layout \ template \rightarrow Station \ window$

Enter 🗸

Select Variable	×
X-Axis Variable: Window 1	٩
ZAXS Variable: Window I 1: N_LEVELS 2: Cycle number 3: Climatology mean for profile [none] 4: Error from Unresolved scales [none] 6: Julian day (UTC) relative to REFERENCE DATE_TIME [days since 7: Laituide of the station, best estimate [degree_east] 8: Longitude of the station, best estimate [degree_east] 9: Measurement error [none] 10: N_PROF 11: Quality flag on interpolated variable 12: Residual [none] 13: Salinity (S78 - PSS) [interpolated on Z_levels) [none] 14: profile processing level 15: depth [m]	REF
▼ Reverse range	
OK Cance	1

Double click on the map (left) to get profiles at different locations

☑ Very different properties according to the basin ▲ Maybe needed to adjust range, otherwise not visible

Compare profiles in different sub-regions

 \swarrow To remove stations: Manage Pick List \rightarrow Remove all Stations

What happens with this profile south of Cyprus?

What happens with this profile south of Cyprus?

Mixed-layer depth

Define new isosurface variables:

View \rightarrow Isosurface Variables \rightarrow salinity at depth = 0 Click on "Add"

	Isosurface Variables	
New		
Salinity (S78 - PSS) (interpolated on Z_levels) [none]	* 🛛 @ depth (m)	• = 0 • • • • • • • • • • • • • • • • •
Already Defined		
Longbude Latitude Time (yr) Day of War Climatology mean for profile (none) @ N LEVELS=first Climatology standard deviation for profile (none) @ N LEVELS=first Error from unresolved scalas (none) @ N LEVELS=first Beror from unresolved scalas (none) @ N LEVELS=first Measurement entrol (none) @ N LEVELS=first		
Help		OK Cancel

Define new isosurface variables: Same at depth = 200

	Isosurface Variables	
New		
Salinity (S78 - PSS) (interpolated on Z_levels) [none]	* @ depth [m]	• 0 • •
Already Defined		
Longbude Laktinde Time (yr) Day of Nart Climatology mean for profile (none) @ N LEVELS—first Climatology standard deviation for profile (none) @ N, LEVELS—first Climatology standard deviation for profile (none) @ N, LEVELS—first Measurement error (none) @ N, LEVELS—first		
Help		OK Cancel

$View \rightarrow Layout \ Template \rightarrow SURFACE \ Window$

Surface window

$\$ Right-click Z-variable \rightarrow select newly created variable

 \boxtimes higher salinity values in the Eastern Basin

Adapt the range for the selected variable

Also possible to have several Surface Windows

Surface window: quality flag

View \rightarrow Isosurface Variables \rightarrow Quality flag on interpolated variable at depth = 0

	Isosurface Variables	
New		
Quality flag on interpolated variable	* 🔘 depth [m]	• = 0 •
Already Defined		
Time fund Obys of Natr Clinatology and for profile (none) [# N, LEVELS-first Clinatology and the statistic for profile (none) [# N, LEVELS-first firm from unreadouted scale (none) [# N, LEVELS-first firm from a statistic (Strategy) (strategy) (strategy) (strategy) Salinity (ST8 - YS3) (interpolated on 2, jevel) (none) [# depth (m)=00 Salinity (ST8 - YS3) (interpolated on 2, jevel) (none) [# depth (m)=00 Outly flag on interpolated variable (speth (m)=00		•
		V-Sync S-Sync
нер		OK Cancel

Surface window: quality flag

Quality flag: integer value reflecting the confidence in the observations

CORA Quality flags:

- 1 good
- 2 rather good
- 3 quite good
- 4 acceptable
- 5 bad quality interpolation
- 6, 7, 8 not used
 - 9 not interpolated

ODV definitions for the flags are different!

ange	Quality	
<u>V</u> ariab	le	
* Sali	nity (S78 -	PSS) (interpolated on Z_levels) [none]
<u>A</u> ccep	table Quali	ity Flags
0: go	od quality	
2. 011		
4: qu 8: ba	estionable d quality	quality
4: qu 8: ba	estionable d quality	Relax this quality filter
4: qu 8: ba	estionable d quality	Relax this quality filter Apply to all variables
4: quo 8: bao	estionable d quality riables rang	Relax this quality filter Apply to all variables
4: qu 8: ba 15 vari	estionable d quality riables rang ables quali	quality Relax this quality filter Apply to all variables ge filtering ty filtering

$\ensuremath{^{\circ}\text{B}}$ Right-click Sample Selection Criteria \rightarrow Quality \rightarrow Accepted quality flags = 1

in the Eastern Basin

$View \rightarrow Layout \ Template \rightarrow SURFACE \ Window \ (\times \ 2)$

Set Z variable to be Salinity at 0 m

Surface window: gridding

$\$ Right-click Properties \rightarrow Display style \rightarrow Gridded \rightarrow Weighted-Average gridding (default parameters 20 X 20)

Properties Window 1							
General	Data	Display Style	Contours	Color Mapping	DI <u>V</u> A Settings		
Data Disp	lay Style						
0 0	riginal da	ta) Gr	idded field			
			Weig	Weighted-average gridding +			
	Symbol size Symbol color Line width Thin		 ✓ Au 20 20 150 150 150 150 	 ✓ Automatic scale lengths 20 ♀ X scale-length (permille) 20 ♀ Y scale-length (permille) isopycnic gridding Quality limit ✓ Hide bad estimates 3.0 ♀ 			
Data Mari	c Style		V Do	color shading	Exclude outliers		
		Draw marks	Size	Color	•		
Apply 1	to all wine	dows			Default Settings		
Help					OK Cancel		

Gridded field of salinity

Normal interpolation does not consider boundaries!

Change Griddin method to DIVA Gridding

	Pr	operties W	/indow 2			
General Data Disp	lay <u>S</u> tyle	Contours	Color Mapping	DIVA Settings		
Data Display Style						
Original data		• Gr	idded field			
	DIVA	DIVA gridding 👻				
Sym <u>b</u> ol size		✓ Au	tomatic scale ler	gths		
18 Symbol color		21	21 🌲 🗴 scale-length		[permille]	
		36	‡ <u>Y</u> :	Y scale-length [permille]		
Line width						
thin						
				Quality limit		
		✓ Hic	le bad estimates	3.0	\$	
		✓ Do	color shading	Exclude outliers		
Data Mark Style						
		Size	Colo			
Draw i	narks	2		.7 👻		
Apply to all windows				Default	: Settings	
Help				ОК	Cancel	

DIVA gridded field of salinity

✓ Field with error above threshold is masked☑ Interpolation technique is crucial with in situ data

$View \rightarrow Layout \ Template \rightarrow SECTION \ Window$

Edit Section Properties

Change X, Y and Z variables \rightarrow Distance, Depth and Salinity

Set Z range between 0 and 500 m

Grid using DIVA interpolation

$View \rightarrow Layout \ Template \rightarrow SECTION \ Window$

Scatter window

Change X, Y and Z variables

⊠ Usually: Salinity vs. Temperature (*T-S diagram*)

Scatter plot: Salinity, Depth and Longitude

🖂 Lower salinity near Atlantic

Working on data using Python

Python: high-level programming language https://www.python.org/

Python: high-level programming language https://www.python.org/

IPython: command shell for interactive computing http://ipython.org/

Python: high-level programming language https://www.python.org/

IPython: command shell for interactive computing http://ipython.org/

IPython notebook: web-based interactive computational environment combining code, text, figures, ... http://ipython.org/notebook.html

The code is made available through github:

https://github.com/ctroupin/OceanData_NoteBooks

How to get the code?

The code is made available through github: https://github.com/ctroupin/OceanData_NoteBooks

ctroupin / OceanData_N	oteBooks		O Unwatch ▼ 1	★ Star ≎ ¥ Fo	rk 1	
Examples of data processing in Pyt	hon using netCDF fil	es. — Edit				
T 12 commits	1 branch	🛇 O releases	2 contributors	<> Code		
Branch: master - OceanDa	ata_NoteBooks / -	F	=	() Issues	0	
🛊 ctroupin Modified text			Latest commit d01b7de on Sep 22	[] Pull requests	0	
	Initial or	mmit	3 months ago			
Plot_TimeSeries1.ipynb	Various	small changes	3 months ago	- Pulse		
README.md	modified	l readme	3 months ago	IL Grante		
Read_CORA_dataset.ipynb	Modified	I text	2 months ago	an orderio		
Read_TimeSeries_1.ipynb	First cor	nmit	2 months ago	Settings		
Read_TimeSeries_2.ipynb	First cor	mmit	2 months ago			
Read_TimeSeries_3.lpynb	First cor	nmit	2 months ago	SSH clone URL	-	
Read_drifter_data_1.lpynb	Text cor	rections	2 months ago	You can close with HT	TDO	
Read_drifter_data_2.ipynb	First cor	nmit	2 months ago	SSH, or Subversion. @	oversion. @	
Read_drifter_data_3.ipynb	First cor	nmit	2 months ago	C Download Z	.IP	

III README.md

OceanData_NoteBooks

Examples of data processing with python notebooks using netCDF files.

1. Download the zipped archive on your computer (in ~/CMEMS_INSTAC_Training)

- Download the zipped archive on your computer (in ~/CMEMS_INSTAC_Training)
- 2. Extract the archive

- 1. Download the zipped archive on your computer (in ~/CMEMS_INSTAC_Training)
- 2. Extract the archive

3. Go in the main directory

cd ~/ CMEMS_INSTAC_Training / OceanData_NoteBooks-master /

- Download the zipped archive on your computer (in ~/CMEMS_INSTAC_Training)
- 2. Extract the archive

3. Go in the main directory

cd ~/ CMEMS_INSTAC_Training / OceanData_NoteBooks-master /

4. In a terminal, type

ipython notebook Read_TimeSeries_1.ipynb

- Download the zipped archive on your computer (in ~/CMEMS_INSTAC_Training)
- 2. Extract the archive

3. Go in the main directory

cd ~/ CMEMS_INSTAC_Training / OceanData_NoteBooks-master /

4. In a terminal, type

ipython notebook Read_TimeSeries_1.ipynb

You should obtain something like that:

Okt[]: ctype 'netCOF4.utcGF4.utcset'>
 red group (MECTOF4.utcset')
 red group (MECTOF4.utcset) (data sodd, 'fle format UADEFINED):
 format version: 1.2
 platform code: 0130
 data version: 1.2
 late version: 1.2
 data version: 1.2

Run current cell > Add a new cell

upyter	f Read_TimeSeries_1 (sutosaved)	۵
Edit V	vlew Insert Cell Kernel Help	Python 2 O
+ * 9	E + + E C Maridown	
	The goal is to see how we can read the data contained in a netCDF He. Several possibilities will be examined.	
	1. Reading a local file Let's assume we have downlowded a file hom CULEAS. We define the directory and the file name. datafile have to be adapted according to	your case.
In [1]:	datafile = */home/ctroupin/DataOceano/MyOcean/INSITU_MED_NRT_OBSERVATIONS_013_035/history/mooring/IR_TS_M0_6114	98.nc"
	To read the file we need the <u>netCDF4 interface</u> for python.	
In [2]:	<pre>import netCDF4 ds = netCDF4.Dataset(datafile, 'r')</pre>	
	where the first argument of the files and Y indicates that it's open for reading ('w' would be used for writing), ne contains all the information dataset:	about the
	Metadata (global attributes) Ormensions Variables	
	1.1 Metadata	
In [3]:	ds	
Out[3]:	<type 'netcdf4.="" netcdf4.dataset'=""> root group (NETCDF2.CLASSIC data model, file format UNDEFINED):</type>	

roid group DRICOP2 CLASSIC data model, file format UNDEFIN dat type: committee inter-series data format version: 1.2 data group committee inter-series data format version: 1.2 data cupdiet: 2015-00-0711.02-042 institution: Partos del Estado (Spain) institution endo, code: 2315 won platform code: 6180 source: Robring deservation history: 2015-00-0711120-0422 (rotion mealing control Indicator: 6 Run current cell Add a new cell > Select type of cell

data mode: R quality control indicator: 6

Run current cell Add a new cell Select type of cell Code cell

Run current cell Add a new cell Select type of cell Code cell > Text cell

In the directory containing the notebooks, type:

ipython notebook

Structure of a repository

In the directory containing the notebooks, type:

ipython notebook

Read_TimeSeries_1.ipynb: reading a local netCDF file

Read_TimeSeries_1.ipynb: reading a local netCDF file Read_TimeSeries_2.ipynb: reading a remote netCDF using OPeNDAP protocol

Read_drifter_data_1.ipynb: basic plot of a drifter trajectory

Read_drifter_data_1.ipynb: basic plot of a drifter trajectory Read_drifter_data_2.ipynb: plotting temperature observations from drifters

Read_drifter_data_1.ipynb: basic plot of a drifter trajectory Read_drifter_data_2.ipynb: plotting temperature observations from drifters Read_drifter_data_3.ipynb: gridding temperature observations from drifters

Read_drifter_data_1.ipynb: basic plot of a drifter trajectory Read_drifter_data_2.ipynb: plotting temperature observations from drifters Read_drifter_data_3.ipynb: gridding temperature observations from drifters

Plot_TimeSeries1.ipynb: plotting temperature from a mooring

Read_drifter_data_1.ipynb: basic plot of a drifter trajectory Read_drifter_data_2.ipynb: plotting temperature observations from drifters Read_drifter_data_3.ipynb: gridding temperature observations from drifters

Plot_TimeSeries1.ipynb: plotting temperature from a mooring Read_CORA_dataset.ipynb: reading and plotting data from CORA dataset

Example: plotting a time series

Notebook file: Plot_TimeSeries1.ipynb

Product: Mediterranean Sea near real-time observations (INSITU_MED_NRT_OBSERVATIONS_013_035)

Data file: IR_TS_MO_61198.nc Mooring managed by Puertos del Estado (Spain)

Example: plotting a time series

Notebook file: Plot_TimeSeries1.ipynb

- Product: Mediterranean Sea near real-time observations (INSITU_MED_NRT_OBSERVATIONS_013_035)
- Data file: IR_TS_MO_61198.nc Mooring managed by Puertos del Estado (Spain)
- Objectives: 1. Read a netCDF file
 - 2. Apply the quality flags to the observations
 - 3. Generate high-quality plot

Example: plotting a time series

Notebook file: Plot_TimeSeries1.ipynb

- Product: Mediterranean Sea near real-time observations (INSITU_MED_NRT_OBSERVATIONS_013_035)
- Data file: IR_TS_MO_61198.nc Mooring managed by Puertos del Estado (Spain)
- Objectives: 1. Read a netCDF file
 - 2. Apply the quality flags to the observations
 - 3. Generate high-quality plot

