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Abstract: The purpose of the present study is to investigate the changes in extraction yield,
physicochemical properties, micronutrients content, oxidative stability and flavor quality of cold
pressed peanut oil extracted from microwave (MW) treated seeds (0, 1, 2, 3, 4, 5 min, 700 W). The acid
value and peroxide value of extracted oil from MW-treated peanuts were slightly increased but far
below the limit in the Codex standard. Compared with the untreated sample, a significant (p < 0.05)
increase in extraction yield (by 33.75%), free phytosterols content (by 32.83%), free tocopherols content
(by 51.36%) and induction period (by 168.93%) of oil extracted from 5 min MW-treated peanut were
observed. MW pretreatment formed pyrazines which contribute to improving the nutty and roasty
flavor of oil. In conclusion, MW pretreatment is a feasible method to improve the oil extraction yield
and obtain the cold pressed peanut oil with longer shelf life and better flavor.

Keywords: peanut; cold press; microwave pretreatment; Phytosterol; Tocopherol; oxidative stability;
Pyrazines

1. Introduction

Peanut is one of the most important oil crops in the world and is also an important source of
protein. The worldwide production of peanuts reached 43.98 million tons [1]. Oil and food production
are the two main uses of peanuts [2]. In 2017/18, the worldwide production of peanut oil was
5.92 million tons, among which approximately 50% were produced in China [3].

Peanuts are a nutrient-dense food that is rich in unsaturated fatty acids, fiber, vitamins, minerals,
and many other bioactive substances. Clinical trials have suggested that compared with participants
who did not eat nuts, those who consumed peanuts seven or more times per week had a 20% lower
death rate [4]. The total amount of unsaturated fatty acid is over 85% in peanut oil. The fatty acid
profile of peanut oil resembles that of olive oil, which could reduce the risk of cardiovascular disease [2].
Peanut oil is also rich in sterols (900–4344 mg/kg) and tocopherols (137–934 mg/kg) which have effects
in enhancing immunity, reducing the incidence of car-diovascular diseases, lowing serum cholesterol,
preventing cancer, and improving the oxidative stability of oil [5–7].

There are two main types of industrial peanut oil-processing methods: high-temperature pressing
and cold pressing. More than 90% of peanut oil production in China is performed by the traditional
technique of high-temperature pressing [2]. The aromatic roasted peanut oil obtained by this method
is more popular with consumers because of the strong typical flavor. However, the pretreatment
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of roasting and high-temperature pressing leads to the loss of micronutrients and poor oil stability.
The peanut oil produced by cold pressing maintains the original quality of the peanut, and a peanut
protein meal with low denaturation level could be further produced for food use. However, when
compared with hot-temperature pressing, lower oil extraction yield and weaker roasted flavors of
the oils were the main differences with cold-pressing. In order to reduce this, a new pretreatment is
required to replace the traditional treatment before cold pressing.

In the last two decades, new technologies for improving oil recovery have attracted research
attention. The feasibility of using microwaves (MW) before or during oil processing has been
widely studied and has confirmed its efficiency on improving the extraction yield, nutritional value,
physicochemical and sensorial properties of oil [8]. Higher oil extraction yield was observed with
MW pretreatment on rapeseed, palm, soybean, rice bran, cottonseed, Moringa oleifera seeds, black
seed, chia seed, and Chilean hazelnuts [9–16]. Three minutes of MW pretreatment on rapeseed with
9% moisture content increased oil extraction yield by 16-19%, and the damage to the lipoprotein
membrane was distinctly seen in scanning electron micrographs, which improved the oil extraction
efficiency [17]. The effect of MW treatment on the physicochemical quality of oil has been investigated
in recent years. After 10 min MW pretreatment, the peroxide value (PV) of rapeseed increased
from 0.99–1.14 meq O2/kg to 2.23–2.27 meq O2/kg, which is within the Codex Alimentarius
limits (PV < 15 meq O2/kg) [18]. The acid value (AV) of extracted oil from MW-treated hazelnuts
increased from 1.56 mg KOH/g oil to 1.83 mg KOH/g, which was attributed to triacylglycerols
hydrolysis [9]. As a contrary result, MW pretreatment caused a significant decrease in the AV of black
seed oil (4.85–3.03 mg KOH/g), which can be attributed to lipase inactivation due to the thermal
pretreatment [15]. The effect of MW on micronutrients content and oxidative stability of oil has been
reported in other research [17,19]. Rapeseed with moisture levels of 9–15% had individual and total
tocopherols in the extracted oils which first increased, then decreased according to the period of
microwave radiation. With 7 min MW treatment of rapeseed with 9% moisture, the phytosterols
and polyphenols in extracted oil reached maximum values (922.48 mg/100 g and 96.91 TA.100 g),
which were 18.04% and 176.88% higher, respectively, than the untreated sample. On the contrary, the
reduction of tocopherol contents compared with the control group was observed in oil extracted from
MW-treated chia seed [16]. The induction period of extracted oil increased from 7.46 h to 22.80 h due
to the increased micronutrients with antioxidant activity [20]. The effect of MW treatment on the flavor
quality of oil has been investigated. The pyrazine compounds in the rapeseed oil appeared after 6 min
of microwave pretreatment, this may be the main reason for giving a pleasant roasting flavor when
compared to crude oils [21].

Studies on the microwave treatment effect on the quality of peanut oil are still lacking.
The object of this study was to investigate the changes in extraction yield, physicochemical properties,
micronutrients content, oxidative stability, and flavor quality of peanut oil extracted by cold pressing
after microwave pretreatment. The results of this study will be used to evaluate the feasibility of using
microwaves pretreatment as an improvement method for cold-pressed peanut oil processing.

2. Results and Discussion

2.1. Effect of Microwave Pretreatment on Oil Extraction Yield

Oil extraction yield is one of the key indexes to evaluate the production efficiency of oil from
oilseeds. MW treated and untreated peanut samples were cold-pressed to study the effect of MW
pretreatment on oil extraction yield. The initial oil content of peanut was 48.90 ± 0.30%. The oil
extraction yield of untreated peanut was 57.21 ± 1.51%. As can be seen from Figure 1, the increasing
microwave pretreatment time significantly (p < 0.05) increased the oil extraction yield. For the 1, 2,
3 min MW-treated peanut, the oil extraction yield increased to 64.93 ± 0.58%, 68.16 ± 0.59% and
73.93 ± 0.21%, respectively. Five minutes of MW treatment reached the maximum oil extraction
yield (76.52 ± 0.10%), which was 33.75% greater compared to the control. The results are consistent
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with previous studies of the MW pretreatment effect on the extraction yield of rapeseed oil, palm oil,
soybean oil, rice bran oil, cottonseed oil, and Chilean hazelnuts oil [9–14,20,22,23]. With 2–10 min
MW pretreatment on 10.5% moisture rapeseed, the oil extraction efficiency by cold pressing gradually
increased from 39.21% to 53.73% [23]. The oil extraction efficiency by solvent extraction increased
with longer irradiation time (up to 3.5 min), and the optimum extraction conditions resulted in a
cottonseed oil extraction efficiency of 32.6% [13]. MW pretreatment to oilseeds improved the oil yield
of both extraction methods (mechanical pressing and solvent extraction). Microscopic studies on the
MW-treated oilseed structure changes showed the MW resulted in protein denaturation which could
cause damages in the lipoprotein membrane surrounding individual lipid bodies. These changes
promote the passage of oil from the cell membrane, which leads to improving the oil release efficiency
during the extraction procedure [9,14,22].
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Figure 1. Effect of microwave pretreatment on the oil extraction yield. Different characters (a–e) on top
of the line indicate significant (p < 0.05) differences among samples with different treatment times.

2.2. Effect of Microwave Pretreatment on Physicochemical Properties of Oil

Color plays a very important role in the sensory properties of oil. As shown in Table 1, the MW
treatment significantly (p < 0.05) affected the Lovibond color of extracted peanut oils. With the
increasing MW treatment time, the color of extracted oil gradually changed from light yellow
(R 0.00/Y 1.20, Control) to light brown (R 0.40/Y 3.47, 5 min MW treatment). Darkening of oils
produced from roasted seeds was also reported by other researchers [18,24,25]. The changes in color
may be due to the formation of phospholipid non-enzymatic browning products. MW pretreatment
not only resulted in the darkening of oil but also led to an increased browning index [19], which was
consistent with the result of oil extracted from roasted pine nut [26]. High correlation between the
browning reaction markers (absorbance, fluorescence, and pyrrolyzed phospholipid content) could
indicate that the brown compounds in the roasted seed oil are due to the occurrence of a Maillard type
browning reaction of phospholipids [27].

Acid Value (AV) is a measure of the free fatty acids concentration in oil, which could be used
to evaluate the freshness of oilseed, crude oil and product oil. As can be seen from Table 1, the AV
of extracted oil from untreated peanut was 0.31 ± 0.02 mg KOH/g oil. As the peanuts were being
MW treated, the AV of extracted oil was significantly (p < 0.05) increased. With 5 min MW treatment,
the extracted oil reached the maximum AV (0.47 ± 0.00 mg KOH/g oil). Although it was 0.16 mg
KOH/g higher than the control, it was still far below the limit in the Codex standard which allows for
the presence of AV up to 4 mg KOH/g in cold-pressed and virgin oils. With the MW pretreatment,
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the decreased triacylglycerols (TAG) and increased free fatty acids were observed [24]. It is indicated
that the increasing AV of extracted oil from MW-treated peanut may be due to the hydrolysis of TAG,
as reported by other researchers [9,25,28].

Peroxide value (PV) measures the quantity of peroxides in the oil, which serves as an indicator
index of the primary oxidation product formation. Very low PV (0.54 ± 0.08 meq O2/kg oil) was
determined in the oil extracted from the control sample (Table 1). The PV of the oil significantly
(p < 0.05) increased with the increasing MW treatment time. The peanuts were MW treated for 5 min
and the extracted oil reached the maximum PV (5.30 ± 0.08 meq O2/kg oil), which was also within the
Codex standard of cold-pressed and virgin oils (PV < 15 meq O2/kg oil). Similar results were observed
in the MW pretreatment of rapeseed, Chilean hazelnuts and sunflower seed [9,18,25]. The effect of
MW pretreatment on PV changes of extracted oil during the storage has also been studied. Even the
initial PV of extracted oil from MW-treated rapeseed (0.85 mmol/kg) was higher than the initial PV
of oil from untreated rapeseed (0.70 mmol/kg), but when stored for 32d, the PV of MW-treated oil
(12.83 mmol/kg) was lower than the PV of untreated oil (20.22 mmol/kg) [29]. It can be inferred that
MW pretreatment samples produced lower secondary oxidation products than the untreated samples.
This result was consistent with previous research [27,28].

Table 1. Effect of microwave pretreatment on physicochemical properties of oil.

MW Time
(min)

Color
(Red Units)

Color
(Yellow Units)

Acid Value
(mg KOH/g Oil)

Peroxide Value
(meq O2/kg Oil)

0 0.00 ± 0.00 f 1.20 ± 0.10 c 0.31 ± 0.02 d 0.54 ± 0.08 e

1 0.10 ± 0.00 e 1.40 ± 0.00 c 0.41 ± 0.01 c 0.64 ± 0.00 e

2 0.20 ± 0.00 d 2.37 ± 0.44 b 0.43 ± 0.03 bc 2.58 ± 0.08 d

3 0.23 ± 0.03 c 2.67 ± 0.24 b 0.45 ± 0.01 ab 3.86 ± 0.16 c

4 0.30 ± 0.00 b 2.67 ± 0.24 b 0.46 ± 0.02 ab 5.10 ± 0.00 b

5 0.40 ± 0.00 a 3.47 ± 0.38 a 0.47 ± 0.00 a 5.30 ± 0.08 a

Values represent means ± standard deviation of triplicate tests. Values in the columns with different superscripts
a–f are significantly different from each other according to least significant difference tests (p < 0.05).

2.3. Effect of Microwave Pretreatment on the Free Phytosterols and Tocopherols Content of Oil

Phytosterols are not only generally recognized as providing significant lowering of serum
low-density lipoprotein (LDL) cholesterol in humans, but has also shown protection against various
chronic ailments like cardiovascular disease, hepatoprotective, diabetes, and cancer [6,7]. The main
phytosterol sources are vegetable oils. The free-form sterols have higher efficacies (in human
subjects) than sterol esters [6]. The effect of MW pretreatment on free phytosterols content in
extracted oil is shown in Table 2. The free phytosterols content of oil from untreated peanut was
273.55 ± 2.51 mg/100 g. The content of free phytosterols significantly (p < 0.05) increased with
increasing MW treatment time. With 5 min of MW treatment, the free phytosterols in the extracted oil
reached the maximum content (363.35 ± 4.22 mg/100 g), which was 32.83% higher than the control.
Previous research reported that 4–8 min of MW treatment of rapeseed could increase phytosterols by
57.73–140.96 mg/100 g in the oil extracted by cold pressing, which was 10.18–18.36% higher than the
control [10,19,20]. Comparing with the MW effect on rapeseed, MW pretreatment on peanuts has more
obvious improvement in the percentage of free phytosterols content enhancement in extracted oil to
the initial content in the control sample.

Tocopherols are natural antioxidants that inhibit lipid oxidation in oil. There are significant
differences within the tocopherols profile among different peanut cultivars. The content of four
types of tocopherols (α-, γ-, δ- and β-) in peanut oils are 18–57%, 36–78%, ND-6% and ND-2%,
respectively [5]. The free form of tocopherols has higher bioaccessibility than the esterified form,
because it is easier to incorporate into mixed micelles [30]. The free tocopherols profile of extracted oil
is shown in Table 2. β-tocopherol was not detected in the oil samples in this study. The extracted oil
from untreated peanuts has 18.42 ± 0.29 mg/100 g free tocopherols including 13.87 ± 0.27 mg/100 g
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α-tocopherol, 3.97 γ-tocopherol and 0.58 ± 0.02 mg/100 g δ-tocopherol. MW pretreatment of peanut
significantly (p < 0.05) increased the concentration of all types of free tocopherols in oils. With 5 min
of MW treatment, the α-, γ- and δ-tocopherol in extracted oil all reached the maximum content
(21.36 ± 0.24 mg/100 g, 5.66 ± 0.04 mg/100 g and 0.86 ± 0.02 mg/100 g, respectively). The total free
tocopherols content in extracted oil from 5 min of MW-treated peanut was 27.88 ± 0.27 mg/100 g, which
was 51.36% higher than the control. The damages in the lipoprotein membrane surrounding individual
lipid bodies and the promoting passage of oil from cell membrane may contribute to the release of
tocopherols and improving their content in the extracted oil. Contrary to our results, decreasing
tocopherols content of oil from 6–30 min MW roasted peanut was reported [24]. The tocopherols
content in extracted oil from MW-treated rapeseed increased to maximum at 6 min radiation for
dehulled seeds and 4 min radiation for whole seeds, and then decreased with longer treatment time.
Total tocopherols in oil from MW treated rapeseed was increased to 1.08–2.61 mg/100 g, which was
1.5–4% higher than control [19]. Similar results were reported [20]. With an initial moisture level of
13–15%, the tocopherols content in oil from treated rapeseed increased to maximum at 4–5 min MW
exposure period. Total tocopherols in oil from MW treated rapeseed increased to 3.09–6.06 mg/100 g,
which was 6.50–14.02% higher than the control. The lipoprotein membrane damages may contribute to
the release of tocopherols and improving their content in the extracted oil. However, it can be inferred
from the reported results [18,20,24] that the tocopherols could probably decompose with relatively
long microwave pretreatments. It can be inferred that the tocopherols content in extracted oil from
treated peanut possibly decreased with MW pretreatment longer than 5 min.

Table 2. Effect of microwave pretreatment on free phytosterols and tocopherols content (mg/100 g)
in oil.

MH Time
(min)

Phytosterols Tocopherols

Total α-Tocopherol γ-Tocopherol δ-Tocopherol Total

0 273.55 ± 2.51 f 13.87 ± 0.27 e 3.97 ± 0.06 e 0.58 ± 0.02 c 18.42 ± 0.29 e

1 298.49 ± 3.26 e 13.93 ± 0.17 e 4.00 ± 0.07 e 0.60 ± 0.04 c 18.53 ± 0.22 e

2 310.33 ± 5.21 d 15.82 ± 0.06 d 4.37 ± 0.03 d 0.60 ± 0.04 c 20.79 ± 0.08 d

3 325.13 ± 6.76 c 16.79 ± 0.22 c 4.58 ± 0.08 c 0.66 ± 0.01 b 22.03 ± 0.25 c

4 339.16 ± 3.73 b 20.38 ± 0.03 b 5.05 ± 0.11 b 0.69 ± 0.03 b 26.12 ± 0.12 b

5 363.35 ± 4.22 a 21.36 ± 0.24 a 5.66 ± 0.04 a 0.86 ± 0.02 a 27.88 ± 0.27 a

Values represent means ± standard deviation of triplicate tests. Values in the columns with different superscripts
a–f are significantly different (p < 0.05).

2.4. Effect Of Microwave Pretreatment on Oxidative Stability of Oil

The oxidative stability of vegetable oil is defined as the resistance to oxidation during processing
and storage [31]. The induction period (IP) is an important parameter in identifying the oxidative
stability of oil. As shown in Figure 2, MW pretreatment on peanut significantly (p < 0.05) increases the
IP of extracted oil. Oil extracted from untreated peanut has the lowest IP (6.34 ± 0.10 h). With 1, 2, 3, 4,
5 min MW pretreatment on peanut, the IP of extracted oil increased to 11.24 ± 0.08 h, 13.96 ± 0.68 h,
15.38 ± 0.59 h, 16.50 ± 0.23 h and 17.05 ± 0.31 h, respectively. These results concur with previous
research [9,10,17,18,20]. The oxidative stability of vegetable oils is influenced by many factors, mainly
fatty acid composition, antioxidants and minor compounds [10]. As mentioned before, the darkening
of extracted oil from MW-treated peanut may be due to the formation of phospholipid non-enzymatic
browning products, which are known to have strong antioxidant activity [27]. Tocopherols and
phytosterols have also been reported to contribute to the increased oxidative and shelf life of vegetable
oils [32,33]. Five minutes of MW treatment on peanut could inactivate 65% lipoxygenase activity
and 78% lipase activity [34]. The inactivation of oxidative enzymes may possibly contribute to the
higher oxidative stability of oil. With MW pretreatment on peanuts, increased tocopherols and
phytosterols content, possible phospholipid non-enzymatic browning products and inactivation of
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oxidative enzymes are responsible for the improvement of the oxidative stability of extracted oil.
Longer shelf life will provide stronger market competitiveness for oil products.Molecules 2018, 23, x FOR PEER REVIEW  6 of 13 
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Figure 2. Effect of microwave pretreatment on the oxidative stability of oil. Different characters (a–e) on
top of the line indicate significant (p < 0.05) differences among samples with different treatment times.

2.5. Effect of Microwave Pretreatment on Volatile Compounds of Oil

Flavor is the most important sensory quality of oil. Because of the strong nutty and roasty
flavor, aromatic roasted oil is more popular with consumers than cold-pressed peanut oil. Pyrazines
accounting for 50% relative percentage area were the highest contributors to the volatile profile of
aromatic roasted peanut oil [35]. As can be seen from Table 3, most of the pyrazines showed a nutty and
roasty flavor. Their contribution to the whole flavor of oil will be based on their odor threshold values.
2,5-dimethyl-pyrazine is highly correlated to a roasted peanut flavor and aroma [36]. A total of 101
volatile compounds in pretreated and untreated samples were identified by HS-SPME/GC-MS. The key
pyrazine compounds in extracted oil from MW treated and untreated peanut by cold pressing re shown
in Table 3. There were no pyrazines detected in the extracted oil from untreated and 1 min MW-treated
peanut. With 2 min MW treatment on peanuts, 0.47 ± 0.02% trimethyl-pyrazine was detected in the
volatile profile of the extracted oil. The relative content and peak area of pyrazines in extracted oil
significantly (p < 0.05) increased in the period of 3–5 min of MW treatment. This observation was
consistent with the previous research results, which found pyrazines in extracted oil significantly
increased after 6 min of MW treatment on rapeseed [21]. With 4, 5 min MW treatment on peanuts,
the relative content and peak area of pyrazines in extracted oil reached the maximum (33.37 ± 0.24%
and 31.56 ± 0.31 × 107, respectively). The relative content and peak area of 2,5-dimethyl-pyrazine
in extracted oil reached the maximum (5.56 ± 0.12%, 4.34 ± 0.06 × 107, respectively) with 4, 5 min
MW treatment on peanuts, respectively. Pyrazines are heterocyclic nitrogen-containing compounds
derived from nonenzymatic protein–sugar interactions [37]. The formation of pyrazines in peanuts
required at least 30 min roasting, and could reach a temperature of about 180 ◦C. Forty to 50 min
roasting of peanuts leads to the formation of large amounts of pyrazine compounds [34]. With 5 min
of MW treatment, the peanut temperature could reach 125–130 ◦C [38]. Compared with roasting,
MW could promote the formation of pyrazines by a shorter period of thermal treatment under a
relatively low temperature, which could be considered the most suitable way to improve the flavor of
cold-pressed peanut oil. The MW pretreatment solved the bottleneck of cold-pressed peanut oil in
industrial application and promotion. As a high-quality vegetable oil, flavored cold-pressed peanut oil
provided a new choice for consumers.
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Table 3. Key pyrazine compounds identified using HS-SPME and GC-MS in extracted oil from MW treated and untreated peanut by cold pressing.

Compounds Odor Description

Microwave Pretreatment Time

0 min 1 min 2 min 3 min 4 min 5 min

Peak Area
(×107)

Relative
Content (%)

Peak Area
(×107)

Relative
Content (%)

Peak Area
(×107)

Relative
Content (%)

Peak Area
(×107)

Relative
Content (%)

Peak Area
(×107)

Relative
Content (%)

2-methyl-pyrazine Nutty, roasted ND ND ND 1.07 ± 0.01 2.27 ± 0.02 2.92 ± 0.03 3.84 ± 0.03 3.56 ± 0.02 3.47 ± 0.01
2,5-dimethyl-pyrazine Roasted ND ND ND 2.33 ± 0.01 4.97 ± 0.03 4.23 ± 0.10 5.56 ± 0.12 4.34 ± 0.06 4.23 ± 0.07
2,6-dimethyl-pyrazine Nutty, roasted, sweet ND ND ND 0.77 ± 0.01 1.64 ± 0.03 2.07 ± 0.09 2.72 ± 0.10 2.43 ± 0.02 2.36 ± 0.03

2-ethyl-pyrazine Peanut-butter, nutty, woody, buttery ND ND ND 0.42 ± 0.01 0.90 ± 0.02 0.95 ± 0.03 1.25 ± 0.04 1.05 ± 0.04 1.02 ± 0.03
2,3-dimethyl-pyrazine Nutty, green ND ND ND ND ND 1.02 ± 0.01 1.35 ± 0.01 1.05 ± 0.01 1.02 ± 0.01

2-ethyl-6-methyl-pyrazine Nutty ND ND ND ND ND 1.18 ± 0.02 1.55 ± 0.03 1.48 ± 0.04 1.44 ± 0.03
2-ethyl-5-methyl-pyrazine Nutty, roasted, grassy ND ND ND ND ND 2.30 ± 0.04 3.03 ± 0.05 2.60 ± 0.02 2.53 ± 0.01

trimethyl-pyrazine Nutty, roasted, grassy ND ND 0.47 ± 0.02 1.31 ± 0.06 1.44 ± 0.04 3.06 ± 0.07 2.93 ± 0.02 3.86 ± 0.03 3.34 ± 0.18 3.25 ± 0.11
2,5-dimethyl-3-ethyl-pyrazine Nutty, roasted, earthy ND ND ND 1.68 ± 0.02 3.59 ± 0.04 3.51 ± 0.11 4.61 ± 0.13 3.82 ± 0.13 3.72 ± 0.07
2,3-Dimethyl-5-ethyl-pyrazine Nutty, roasted ND ND ND 0.29 ± 0.01 0.63 ± 0.01 0.81 ± 0.04 1.07 ± 0.05 1.02 ± 0.02 0.99 ± 0.01
2-ethenyl-6-methyl-pyrazine ND ND ND 0.22 ± 0.01 0.46 ± 0.02 0.33 ± 0.02 0.43 ± 0.02 0.44 ± 0.01 0.43 ± 0.01

3,5-diethyl-2-methyl-pyrazine ND ND ND ND ND 0.81 ± 0.04 1.07 ± 0.06 1.00 ± 0.07 0.97 ± 0.04
2-methyl-6-(1-propenyl)-, (E)- pyrazine ND ND ND 0.48 ± 0.02 1.02 ± 0.04 0.79 ± 0.09 1.04 ± 0.10 1.06 ± 0.05 1.04 ± 0.04

acetyl-pyrazine ND ND ND ND ND ND ND 1.88 ± 0.07 1.83 ± 0.08
2-acetyl-3-methyl-pyrazine Nutty, vegetable ND ND ND ND ND 1.52 ± 0.08 1.99 ± 0.10 2.50 ± 0.12 2.44 ± 0.06

Total 0.47 ± 0.02 1.31 ± 0.06 8.70 ± 0.06 18.54 ± 0.13 25.37 ±0.20 33.37 ± 0.24 31.56 ± 0.31 30.74 ± 0.20

Compounds have been identified by comparison with commercial standards. Odor threshold and description in oil provided from Ref. [35]. Values represent means ± SD (n = 3). ND,
not detected.
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3. Materials and Methods

3.1. Materials

Peanut samples (LUHUA11, Shandong Province) were purchased from the local market (Beijing,
China). Tocopherols, Sterol and Pyrazines standards were purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA). C6-C23 n-alkanes standards were purchased from Shanghai Chemical Reagent Co.
(Shanghai, China). Chromatographic-grade methanol and acetonitrile were purchased from Thermo
Fisher Scientific Inc. (Waltham, MA, USA). Other chemicals and reagents used in this study were of
analytical or chromatographic grade and were purchased from Sinopharm Chemical Reagent Co., Ltd
(Shanghai, China).

3.2. Microwave Pretreatment

For each microwave (MW) pretreatment of peanuts, 500 g of shelled peanuts were placed in a
18 cm diameter petri dish inside the microwave oven (Model: MG720KG3-NA1). The samples were
pretreated at a frequency of 2450 MHz (med-high setting, 700 W) for 1–5 min with 1 min intervals.
The peanut sample without MW pretreatment (0 min irradiation time) was used as the control sample.
The MW-pretreated samples were cooled to room temperature for the following cold-pressing.

3.3. Cold Pressing

Peanut oil was obtained by hydraulic press (Model QYZ-230, Taian, China). The cold-pressing
parameters were between 22–25 MPa and 60 ◦C inside the press temperature for 30 min. There was no
further oil obtained by longer pressing time. Residue particles in the oil were removed by 4300 r/min
centrifugation for 10 min. The collected oil samples were stored at 4 ◦C for the following experiments.

Determination of oil content in peanut and peanut meal was according to the ISO method 659 [39].
Oil extraction yield was calculated on the basis of the following formula [40]:

Y = 100 × RS

Rc
(1)

where, Y = oil yield, RS = the ratio of non-lipid components in seed to oil content in seeds, RC = the
ratio of non-lipid components in cake to the residual oil content in cake.

3.4. Physicochemical Properties and Oxidative Stability

Determination of acid value and peroxide value were according to AOCS Official Method Cd
3a-63 and Cd 8b-90, respectively [41,42]. The color measurements were using Lovibond PFXi-880/AT
in a 1-in (25.4 mm) cell. The oxidative stability index (OSI) of the oil samples was determined using
Rancimat (Metrohm model 743, Metrohm KEBO Lab AB, Herisau, Switzerland) according to the
method described by Azadmard-Damirchi et al. (2010). Oil samples were respectively weighed (2.5 g)
into the reaction vessel and heated to 110 ◦C with an air flow of 20 l/h. The induction period (IP) was
expressed in hours (h).

3.5. Determination of Free Tocopherols and Phytosterols by High-Performance Liquid Chromatography (HPLC)

3.5.1. Saponification of Extracted Oil Samples

The weighed oil sample (5 g) was mixed with 50 mL of 1M potassium hydroxide in 95% ethanol
in a flask. Then the 5 mL 0.57 M ascorbic acid solution was added. The flasks were shaken in a
water bath at 80 ◦C for 30 min and cooled to room temperature. Then the solution was transferred
to a separating funnel. Fifty milliliters of purified water and 100 mL hexane were added into the
system. The separating funnel was vigorously shaken to ensure the unsaponifiables (tocopherols and
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phytosterols) were fully extracted by the hexane phase. The hexane was removed at 50 ◦C using a
vacuum rotary evaporator. The obtained residual was re-dissolved in 2 mL ethanol for HPLC analysis.

3.5.2. HPLC Analysis of Free Tocopherols and Phytosterols

Quantification of free tocopherols and phytosterols was done using a 1250 Series HPLC system
(Waters, Milford, CT, USA) equipped with a UV detector (2487, Waters, Milford, CT, USA) and a C18
reversed-phase column (250 × 4.6 mm; 5 µm). The injection volume and column temperature were
20 µL and 30 ◦C, respectively. Tocopherols were detected at 300 nm wavelength. The mobile phase
was a mixture of methanol and high-purity water (98:2, v/v). The flow rate of the mobile phase was
set at 1 mL·min−1. Phytosterols were detected at the 210 nm wavelength. The isocratic mobile phase
(acetonitrile: high-purity water = 98:2, v/v) was set at a flow rate of 1.5 mL·min−1. Each component
was quantified using an external standard method with pure standards of tocopherols and phytosterols.
Waters Breeze software (Waters, Milford, CT, USA) was used to calculate the peak areas.

3.6. Volatile Compounds Analysis

3.6.1. Headspace-Solid Phase Micro-Extraction

SPME fibre (65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, Supelco, Bellefonte,
PA, USA) was used for flavor extraction. The fiber was previously conditioned at 250 ◦C for 1 h before
each use. Five grams of the weighed oil sample was placed into a 20 mL glass vial which was sealed
with an aluminum cover and a Teflon septum. The samples were heated at 50 ◦C for 20 min in
a thermostatic bath with a magnetic stirrer and extracted for 40 min using an auto SPME holder
containing fiber. Subsequently, the fiber was injected into the gas chromatography-mass spectrometry
(GC-MS) system (Shimazu QP2010 SE, Kyoto, Japan). The volatiles absorbed by the fiber were
thermally desorbed in the hot injection port of the GC for 2 min at 250 ◦C.

3.6.2. Gas Chromatography Mass Spectrometry (GC-MS) Analysis

The GC system was equipped with a DB-WAX capillary column (30 m × 0.25 mm ID, 0.25 µm
film thickness) and a trace mass spectrometer (Finnigan, San Jose, CA, US). The splitless injection
mode was used. The helium was used as the carrier gas at flow rate of 1 mL/min. The injector and
detector temperature were set at 250 ◦C and 280 ◦C, respectively. The oven temperature was initially
set at 40 ◦C for 3 min, then raised to 120 ◦C at 5 ◦C/min, subsequently programmed to 200 ◦C at 10
◦C/min, and held for 5 min. Mass spectra were recorded by electron impact ionization mode (70 eV)
scanning within the mass range from 35 to 500 amu. The ion source temperature was maintained at
200 ◦C.

3.6.3. Identification

Volatiles were primarily identified by comparison of the mass spectra with data from the mass
spectra NIST database. In addition, the volatiles were identified by matching the retention indices (RI)
data in the literature [43] and comparing with commercial standards. Based on the series of n-alkanes
(C6-C23), RI were calculated according to the following formula.

RIx = 100n + 100 (tRx − tRn)/(tRn + 1 − tRn) (2)

where, retention time (tR) of tRn < tRx < tRn + 1; n = number of atom carbon.

3.7. Statistical Analysis

The experiments were performed in triplicate. The least significant difference (LSD) method
was used to determine the significant difference between mean values. A confidence level was set at
p < 0.05 and the software SPSS (IBM SPSS 22.0, Chicago, IL, USA) was used for statistical analysis.
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4. Conclusions

Peanut microwave pretreatment prior to cold pressing was effective for improving the extraction
yield, micronutrients content, oxidative stability, and flavor quality of oil. Although the acid value
(AV) and peroxide value (PV) of extracted oil from MW-treated peanuts were increased, the values
were both far below the limit in the Codex standard for cold-pressed and virgin oils. Comparing with
the untreated sample, 5 min MW pretreatment on peanuts significantly increased the oil extraction
yield, phytosterols content, tocopherols content, and the induction period of the oil extracted by cold
pressing. MW pretreatment on the peanut also formed the pyrazine which contributed to improving
the nutty and roasty flavor of the cold-pressed oil. In conclusion, MW pretreatment is a feasible
method to improve the oil extraction yield and to obtain the cold pressed peanut oil with longer shelf
life and better flavor. The economics and energy requirements for the industrial-scale continuous
microwave-assisted system need to be further investigated.
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