

The 48th Liege Colloquium: Submesoscale Processes: Mechanisms, Implications and new Frontiers

Alexander Barth⁽¹⁾, Amala Mahadevan⁽²⁾, Ananda Pascual⁽³⁾,
Simon Ruiz⁽³⁾, Charles Troupin⁽¹⁾

⁽¹⁾ GeoHydrodynamics and Environmental Research (GHER),
University of Liège, Liège, Belgium

⁽²⁾ WHOI, USA

⁽³⁾ IMEDEA (CSIC-UIB), Spain

May 22, 2018

1 The 48th International Liège Colloquium on Ocean Dynamics took place from the 23
2 to the 27 May, 2016, in the Academic Room of the University of Liège (Belgium). Every
3 year the Colloquium addresses a cutting-edge topic in Ocean Science with the goal to
4 foster discussions and collaborations amongst scientists from all around the world.

5 This edition aimed to advance our collective understanding of submesoscale processes,
6 their mechanistic functioning, relevance, and implications across a range of oceanic dis-
7 ciplines. Discussions included observational, modeling and theoretical approaches for
8 elucidating submesoscale phenomena.

9 This 48th edition was a success with 199 participants (Figure 1) from 25 countries,
10 72 oral presentations, 8 keynote talks and 143 posters, distributed over 7 topical sessions.
11 All sessions are represented in the present topical collection of Ocean Dynamics.

12
13 **Multiscale interactions - energy cascade, impact of submesoscales on other**
14 **scales.** The topical collection includes 4 papers from this session. [Lozovatsky et al.](#)
15 [\(2017\)](#) present microstructure measurements on the North Carolina shelf and across the
16 Gulf Stream front. The vertical eddy diffusivity is described from these measurements
17 and parameterization of the diffusivity for various mesoscale dynamical conditions was
18 proposed.

19 [Nagai and Clayton \(2017\)](#) study nitrate interleaving structures in oligotrophic surface
20 waters south of the Kuroshio Extension Front. These structures are produced by a
21 realistic, high-resolution (2 km) numerical simulation and their formation mechanism is
22 discussed.

23 [Sasaki et al. \(2017\)](#) describe the seasonality of the kinetic energy studied by comparing
24 model results of different resolutions. In particular, the contribution of the submesoscales
25 variability to the kinetic energy is discussed. The authors found that in regions with high
26 kinetic energy, frontal mixed-layer instabilities is the dominant process for the generation
27 of submesoscales flow structures in winter.

28 A similar approach is also used by Pérez and Calil (2017) to study the Caribbean
29 Upwelling System. A system of models at different spatial resolutions is implemented to
30 highlight the impact of submesoscale processes on the regional kinetic energy cascade.
31 The authors conclude among others that submesoscale dynamics play a key role in mod-
32 ulating the eddy kinetic energy and the energy cascade within the Caribbean Sea.

33
34 **Mixed layer and frontal instabilities - dynamical understanding, Lagrangian**
35 **view, lateral mixing.** Three papers from this session are presented here including
36 both theoretical and observational studies. Stamper and Taylor (2017) provide a linear
37 stability analysis of the Eady model with a focus on three-dimensional mixed
38 modes. They explore the transition from symmetric to baroclinic instability using a high-
39 resolution numerical simulation showing the highly variable vertical velocities in frontal
40 areas and significant transfer of energy to small scales.

41 In Sentchev et al. (2017), velocity observations from various platforms (high-frequency
42 radars, surface drifting buoys and a drifting acoustic Doppler current profiler) are used to
43 study the 3D flow field and the velocity variability due to wind forcing in the Northwestern
44 Mediterranean Sea.

45 Another study from the Northwestern Mediterranean Sea presents the results of the
46 LAgrangian Transport EXperiment (LATEX) aiming to better understand the impact
47 of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-
48 shelf exchanges, and biogeochemistry in the Gulf of Lion. Nested numerical model simu-
49 lations and multi-platform field experiments are used to study the generation processes of
50 eddies and quantification of horizontal mixing and cross-shelf exchanges (Petrenko et al.,
51 2017).

52
53 **Internal waves, and wave-front/eddy interactions.** For this session, the topi-
54 cal collection includes a review paper of Thomas (2017) discussing the impact of lateral
55 density gradients on internal waves based on theoretical calculations and numerical sim-
56 ulations. In particular the paper shows the energy dissipation due to the interactions
57 between balanced currents and near-inertial waves.

58
59 **Remote sensing of submesoscale dynamics - surface topography, ocean tem-
60 perature and color.** In preparation for the high-resolution altimetry mission SWOT
61 (Surface Water and Ocean Topography), Durán Moro et al. (2017) proposes a Kalman
62 Filter scheme tailored for the assimilation of the high-resolution observations of the sea
63 surface height to reconstruct mesoscale features simulated by numerical models. This
64 scheme is tested in a twin experiment in the Solomon Sea region.

65
66 **Impact of atmospheric surface forcing, sea ice, river plumes and waves on**
67 **mixed layer and submesoscale turbulence.** Jensen et al. (2018) shows the results
68 of a high-resolution coupled atmosphere-ocean-wave model in the Bay of Bengal where
69 different cases of oceanic submesoscale features are studied (heavy rainfall and intense
70 downdrafts, solitary-like waves and strong salinity gradients at river outflows).

71
72 **Physical-biological interactions - implications for biogeochemistry, produc-
73 tivity, export, diversity and transport.** In this session, Olita et al. (2017) present

Figure 1: Participants of the 48th International Liège Colloquium.

74 bio-physical glider measurements in the Eastern Alboran Sea studying mesoscale and
75 submesoscale upwelling carrying phytoplankton patches and shows the relevance of fronts
76 in triggering primary production at the deep chlorophyll maximum level.

77 Another high-resolution observational study addresses the transport of phytoplankton
78 through baroclinic instability (Allen, 2017) and the importance of the conservation
79 of potential vorticity in producing long, thin filaments of phytoplankton populations is
80 highlighted.

81 High resolution nested model simulations are used in Calil (2017) to simulate the
82 impact of submesoscale processes in the subduction along the South Atlantic Subtropical
83 Front. Only the high-resolution model was able to represent the intense vertical velocities
84 and the wind-driven subduction process.

85
86 **Coastal submesoscale dynamics - interaction with topography and bottom**
87 **boundary.** Delandmeter et al. (2017) present the results of an unstructured-mesh, finite
88 element model for geophysical and environmental flows, to simulate a rich submesoscale
89 field of tidal jets, eddies and shear layers. The results are validated using a pair of 2-meter
90 resolution, visible-band images that were acquired by the WorldView-3 satellite.

91 Potential vorticity is also a key concept in the study of Rogé et al. (2017) who pro-
92 pose a dynamical interpolation scheme for SSH based on the use of synthetic data from
93 an ocean model. It is intended to interpolate the SSH signal in the time between two
94 satellite revisits in preparation for the SWOT mission.

95
96 The Jacques Nihoul Poster Award (chosen by the scientific committee) was given to
97 Jacob M. Steinberg for his work entitled "The Evolution of a California Undercurrent
98 Submesoscale Eddy (Cuddy)". The public poster award was given to Marina Duran Moro
99 (LGGE, Grenoble, France) for her work on "3D reconstruction of mesoscale flows using
100 observations of satellite high resolution data: twin experiments with a numerical model of
101 the Solomon Sea". As mentioned before, her work is also present in this topical collection.
102 Most of the talks were followed by particularly lively discussions and special attention
103 was given to foster the interaction between young and senior scientists (by organizing
104 joint lunch breaks) which made the colloquium for many a memorable event.

105 **Acknowledgments**

106 In the name of the scientific committee and of the organizing committee, we want to thank
107 the sponsors of this event for their valuable support: Intergovernmental Oceanographic
108 Commission of UNESCO, SOCIB (Spain), Région Wallonne (Belgium), University of
109 Liège (Belgium), ESA, CNES (France), NASA (USA), F.R.S.-FNRS (Belgium), IUGG,
110 EUMETSAT, SCOR and the Copernicus Marine Environment Monitoring Service.

111 **References**

112 Allen JT (2017) Marine algae are ‘taught’ the basics of angular momentum. *Ocean Dynamics* 67(11):1429–1442, DOI 10.1007/s10236-017-1094-8, URL <https://doi.org/10.1007/s10236-017-1094-8>

113 Calil PHR (2017) Wind-induced subduction at the south atlantic subtropical front.
114 *Ocean Dynamics* 67(10):1351–1365, DOI 10.1007/s10236-017-1090-z, URL <https://doi.org/10.1007/s10236-017-1090-z>

115 Delandmeter P, Lambrechts J, Marmorino GO, Legat V, Wolanski E, Remacle JF, Chen
116 W, Deleersnijder E (2017) Submesoscale tidal eddies in the wake of coral islands and
117 reefs: satellite data and numerical modelling. *Ocean Dynamics* 67(7):897–913, DOI
118 10.1007/s10236-017-1066-z, URL <https://doi.org/10.1007/s10236-017-1066-z>

119 Durán Moro M, Brankart JM, Brasseur P, Verron J (2017) Exploring image data assimila-
120 tion in the prospect of high-resolution satellite oceanic observations. *Ocean Dynamics*
121 67(7):875–895, DOI 10.1007/s10236-017-1062-3, URL <https://doi.org/10.1007/s10236-017-1062-3>

122 Jensen TG, Shulman I, Wijesekera HW, Anderson S, Ladner S (2018) Subme-
123 soscale features and their interaction with fronts and internal tides in a high-
124 resolution coupled atmosphere-ocean-wave model of the bay of bengal. *Ocean Dynamics*
125 68(3):391–410, DOI 10.1007/s10236-018-1136-x, URL <https://doi.org/10.1007/s10236-018-1136-x>

126 Lozovatsky I, Planella-Morato J, Shearman K, Wang Q, Fernando HJS (2017) Vertical
127 mixing and elements of mesoscale dynamics over north carolina shelf and contiguous
128 gulf stream waters. *Ocean Dynamics* 67(6):783–798, DOI 10.1007/s10236-017-1059-y,
129 URL <https://doi.org/10.1007/s10236-017-1059-y>

130 Nagai T, Clayton S (2017) Nutrient interleaving below the mixed layer of the kuroshio
131 extension front. *Ocean Dynamics* 67(8):1027–1046, DOI 10.1007/s10236-017-1070-3,
132 URL <https://doi.org/10.1007/s10236-017-1070-3>

133 Olita A, Capet A, Claret M, Mahadevan A, Poulain PM, Ribotti A, Ruiz S, Tintoré
134 J, Tovar-Sánchez A, Pascual A (2017) Frontal dynamics boost primary production
135 in the summer stratified mediterranean sea. *Ocean Dynamics* 67(6):767–782, DOI
136 10.1007/s10236-017-1058-z, URL <https://doi.org/10.1007/s10236-017-1058-z>

¹⁴² Pérez JGC, Calil PHR (2017) Regional turbulence patterns driven by meso- and sub-
¹⁴³ mesoscale processes in the caribbean sea. *Ocean Dynamics* 67(9):1217–1230, DOI
¹⁴⁴ 10.1007/s10236-017-1079-7, URL <https://doi.org/10.1007/s10236-017-1079-7>

¹⁴⁵ Petrenko AA, Doglioli AM, Nencioli F, Kersalé M, Hu Z, d'Ovidio F (2017) A review
¹⁴⁶ of the latex project: mesoscale to submesoscale processes in a coastal environment.
¹⁴⁷ *Ocean Dynamics* 67(3):513–533, DOI 10.1007/s10236-017-1040-9, URL <https://doi.org/10.1007/s10236-017-1040-9>

¹⁴⁹ Rogé M, Morrow R, Ubelmann C, Dibarboore G (2017) Using a dynamical advection to
¹⁵⁰ reconstruct a part of the ssh evolution in the context of swot, application to the mediter-
¹⁵¹ ranean sea. *Ocean Dynamics* 67(8):1047–1066, DOI 10.1007/s10236-017-1073-0, URL
¹⁵² <https://doi.org/10.1007/s10236-017-1073-0>

¹⁵³ Sasaki H, Klein P, Sasai Y, Qiu B (2017) Regionality and seasonality of subme-
¹⁵⁴ soscale and mesoscale turbulence in the north pacific ocean. *Ocean Dynamics*
¹⁵⁵ 67(9):1195–1216, DOI 10.1007/s10236-017-1083-y, URL <https://doi.org/10.1007/s10236-017-1083-y>

¹⁵⁷ Sentchev A, Forget P, Fraunié P (2017) Surface current dynamics under sea breeze con-
¹⁵⁸ ditions observed by simultaneous hf radar, adcp and drifter measurements. *Ocean Dy-
¹⁵⁹ namics* 67(3):499–512, DOI 10.1007/s10236-017-1035-6, URL <https://doi.org/10.1007/s10236-017-1035-6>

¹⁶¹ Stamper MA, Taylor JR (2017) The transition from symmetric to baroclinic instability in
¹⁶² the eady model. *Ocean Dynamics* 67(1):65–80, DOI 10.1007/s10236-016-1011-6, URL
¹⁶³ <https://doi.org/10.1007/s10236-016-1011-6>

¹⁶⁴ Thomas LN (2017) On the modifications of near-inertial waves at fronts: implications
¹⁶⁵ for energy transfer across scales. *Ocean Dynamics* 67(10):1335–1350, DOI 10.1007/
¹⁶⁶ s10236-017-1088-6, URL <https://doi.org/10.1007/s10236-017-1088-6>