The GPR1/FUN34/YaaH(/SatP) members in Chlamydomonas reinhardtii. are they novel peroxisomal transporters?

Lorenzo Durante¹, Kyle J. Lauersen³, Wolfgang Hübner⁴, Marc Hanikenne² and Claire Remacle¹

¹Genetics and Physiology of Microalgae, University of Liège, Belgium ²Functional Genomics and Plant Molecular Imaging. University of Liège, Belgium. ³Algae Biotechnology & Bioenergy, CeBiTec, University of Bielefeld, Germany ⁴Biomolecular Photonics, Dept. of Physics. University of Bielefeld, Germany

Abstract

The green microalga C. reinhardtii can grow heterotrophically in presence of acetate in the dark as sole carbon source, due to the anaplerotic pathway of glyoxylate cycle¹ almost completely localised in the peroxisomal microbodies². Despite the significant advances gained on carbon metabolism, the genes involved in acetate transport are not yet identified. Recently, five functionally uncharacterized members predicted to have transporter-like structure were classified within the protein family GPR1/FUN34/YaaH(/SatP) (GFY)^{3,} which comprises genes coding for putative carboxylic acids transporters in other microorganisms, including acetate as substrate⁴. In C. reinhardtii, GFY1-5 as we shown by YFP fusion protein, localise to peroxisomal membranes. In addition, we also showed that these genes present distinct expression patterns in different cultivation conditions, which correlates with associated co-expressed genes found in the databases. Therefore, although these proteins share between 78 and 97% similarity between their amino acid sequences, this might suggest non-redundant roles. To gain insight on their role, we are currently analysing insertional and knock-down mutants. Mutants for the genes GFY1, GFY2 and GFY3 were obtained from the Chlamydomonas Library Project 5. Mutants for GFY4, GFY5 and all GFY genes are presently under generation via artificial micro RNA. In conclusion, GFY members could represent different protagonists in transporting substrates in/out of peroxisomal microbodies, as putative transporters/permeases function.

In silico analysis

- -GFY proteins have been described as organic acids permease in yeast, fungi and bacteria.
- Amino acid signature doesn't correspond to any functional domain
- Secondary structure predictions reveal 6 transmembrane helix proteins
- Putative PEX19 binding site and weak Peroxisomal Target Signal type 1 (PTS1)

Durante L. is recipient of FRIA (Fonds pour la Recherche Industrielle et Appliquée) fellowship PHYTO Work supported by FRS-FNRS (CDR J.0265.17)

				P	rotein I	localisa	tion	
	pOpt_YFP_GFY			} =			Paro	
	pOpt_GFY_YFP			-			Paro	
		_		des.			-Paro	
	cytosolic CEP			-)=			Hvg	
	nerox YEP			þ			Paro ····	
	perox CFP			-)-			-Paro	
	PS (ER CFP)	_		-)=			-Hyg - POpt	
							na 🖌 🖌	
		VED	CED	abl	Overlay	DIC	Lauersen et al., 2015	
		166	CFF	CIII	Overlay	DIC		
	W/T			0	0	(PA)		
	•••			61	63	5 µm	To address protein localisation, GFY	
		0		13	6	B.	genomic sequences were cloned into	
	YFP	10		1		3	pOpt backbone vector in both up-	
			0		-	and the	mVenus.	
	CEP		(Second		6	1	→ <u></u>	
			1			1000		
				6	Ch.	63	SN 6	
	Perox YFP				~	2623		
				~		"en		
	Perox CFP		1	8.00				
						9	←	
			Sal.	10	8	1	UVM4 parental strain (PS) used for	
	FS (LIX GIF)		12		20	Carl Carl	transformation expresses soluble CFP in	
-			100		-	-	the ER as an evidence that peroxisomes	
	GFY1	6.1	-		0		are ER-derived organelles.	
	CEV2	1	8	3		63	Anti EB roccanizoo - 40 kDo protoino	
RGI	GIIZ		1				localised in total membrane fraction	
RG	PGPFGL PGPFGL	1	0	1.0	100	1Ste	and ~28 kDa protein in the soluble part,	
RG	PGPFGL GFY3	160		24	22	ALL .	demonstrating that chimeric proteins	
GVI	ELIKGN					-	are membrane bound.	
GAI	ELIKGN GFY4	Sec	(1 10)	143			₩T PS 1 2 3 4 5	
GVI	ELIKGN				100		37	
CG	MAVLTE GFY5		600	A	0	· Pa	25	
CG	MAVLTF MAVLTF MAVLTF	The second	82	1	1 100	1000	20 soluble fractions	
CG	WAVL TF				_		WT PS YFP 1 2 3 4 5	
nw mw	FFCGSS						50	
YFO	FFCGSS						37	
YFO	iFFCGSS						25 total membranes extracts	
	Conclusions							

Our present data suggest that GFY likely participate to the metabolites exchange between cytosol and peroxisomal microbodies due to the their transporter-like structure.

Despite their high similarity in sequence, the differential N-terminal part and expression levels as well, suggest non-identical roles in the carbon metabolism at peroxisomal level.

GFY1 and -2, which are up-regulated in absence of oxygen, could play a not yet understood function regarding metabolites transport in anaerobiosis at the peroxisomal level.

GFY3 and -4 are constitutive expressed both in present or absence of acetate meanwhile GFY5 is strongly up-regulated with acetate especially in the dark. Thus, GFY1-3 could participate to glyoxylate cycle during acetate assimilation pathway and more

- Lauersen et al. (2016) Algal Research, 16:266-274
- 3. Goodenough et al. (2014) Eukaryotic Cell, 13: 591-613
- Li et al. (2016) The Plant Cell, 28: 367–387 6.
 - Lauersen et al. (2015) DOI: 10.1007/s00253-014-6354-7