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ABSTRACT

Context. Asteroseismology has been impressively boosted during the last decade mainly thanks to space missions
such as Kepler/K2 and CoRoT. This has a large impact, in particular, in exoplanetary sciences since the accurate
characterization of the exoplanets is convoluted in most cases with the characterization of their hosting star. Until
the expected launch of the ESA mission PLATO 2.0, there is almost a decade where only two important missions will
provide short-cadence high-precision photometric time-series: NASA–TESS and ESA–CHEOPS missions, both having
high capabilities for exoplanetary sciences.
Aims. In this work we want to explore the asteroseismic potential of CHEOPS time-series.
Methods. Following the works done for estimating the asteroseismic potential of Kepler and TESS, we have analyzed
the probability of detecting solar-like pulsations using CHEOPS light-curves. Since CHEOPS will collect runs with
observational times from hours up to a few days, we have analyzed the accuracy and precision we can obtain for the
estimation of νmax, the only asteroseismic observable we can recover using CHEOPS observations. Finally, we have
analyzed the impact of knowing νmax in the characterization of exoplanet host stars.
Results. Using CHEOPS light-curves with the expected observational times we can determine νmax for massive G and F-
type stars from late Main Sequence on, and for F, G, and K-type stars from post-Main Sequence on with an uncertainty
lower than a 5%. For magnitudes V<12 and observational times from eight hours up to two days, the HR zone of potential
detectability changes. The determination of νmax leads to an internal age uncertainty reduction in the characterization
of exoplanet host stars from 52% to 38%; mass uncertainty reduction from 2.1% to 1.8%; radius uncertainty reduction
from 1.8% to 1.6%; density uncertainty reduction from 5.6% to 4.7%, in our best scenarios.

Key words. stars: fundamental parameters – stars: solar-type – asteroseismology

1. Introduction

CHEOPS (Fortier et al., 2014) is the first small European
Space Agency mission (ESA S-mission). Its launch is ex-
pected at the end of 2018 and its main scientific goal is the
accurate characterization of transiting exoplanetary sys-
tems.

CHEOPS will collect high precision photometry, of the
order of parts-per-million (ppm), depending on the stel-
lar magnitude, in short cadence (1 minute). These preci-
sion and cadence are similar to those reached by Kepler
(Gilliland et al., 2010) and CoRoT (Baglin et al., 2006),
but in the case of CHEOPS for brighter stars than with
Kepler since its telescope aperture is significantly smaller
(see Table 1).

With this work, we aim to explore the potential of
CHEOPS for asteroseismic studies of exoplanet host stars.
There are a number of studies in the literature show-
ing the benefit of obtaining asteroseismic observables of
exoplanet host stars (Bazot et al., 2005; Vauclair et al.,
2008; Escobar et al., 2012; Moya, 2013; Huber et al.,

2013; Lillo-Box et al., 2014; Silva Aguirre et al., 2015;
Davies et al., 2016; Huber, 2018). These additional observ-
ables allow a more precise determination of stellar mass,
radius, and age, having a direct impact on the understand-
ing of the exoplanetary system. Although in recent years
the number of techniques for characterizing exoplanets in-
dependently of the stellar generic physical values has in-
creased, in general the exoplanet observations are convo-
luted with the star, and characterizing the planets means to
deconvolute the stellar contribution from the observables.
On the other hand, the age of the system is critical from an
astrobiological point of view and to model and explain the
dynamical evolution of exoplanetary systems. Evaluating
whether an exoplanet has had enough time for developing
detectable biomarkers can only be done by knowing the
age of the planet. Nowadays, the only way of dating an ex-
oplanet is dating its hosting star (see Barrado, 2016, for a
review). An additional benefit of the asteroseismic studies
of photometric time-series is the proper removal of these
oscillations from the light-curve, allowing a more accurate
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Table 1: Comparison among different past, current, and future space missions with asteroseismic capabilities.

MOST CoRoT Kepler BRITE TESS CHEOPS
Kepler K2

Mission years ≥13 6.5 4 ≥4 ≥4 ≥2 ≥3.5
Telescope aperture (cm) 15 27 95 5 × 3 4 × 10.5 32

Orbit
Geocentric Geocentric Earth-trailing Geocentric High Earth Geocentric

polar polar heliocentric Low Earth elliptical sun-synchronous
Duty cycle (in %) Variable >90 >95 Variable > 95 [60, 100]

Cadence <1 min 32/512 s 59 s/29 min 1 s 20s/2/30 min 60 s
Pointing freedom Free Several fixed FOVs Fixed FOV Free Ecliptic plane All sky monitoring Free

Sky coverage (in square degrees) PITb
<600 100 ≈ 80% ecliptic plane PITb Almost fulla PITb

(a) Weak coverage for Dec in the range [-6◦,6◦]. (b) PIT = Pointing Individual Targets
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modeling of the observing transits, mainly their ingress and
egress.

Among the more than 20 known pulsational types along
the HR-diagram (Aerts et al., 2010), solar-like pulsations
are one of the most well-known. These oscillations are pro-
duced by the convective zone near the surface, exciting
stochastically high-order pressure modes in a broad fre-
quency range. In principle, these solar-like oscillations are
expected for all stars that posses a convective envelope, as
FGK-type stars. Due to the special nature of solar-like oscil-
lations (they pulsate in the frequency asymptotic regime),
they provide in first approximation important information
about general physical characteristics of the star, such as its
mean density and/or its surface gravity. Another important
pulsational type for characterizing exoplanet host stars are
the so-called δ Scuti pulsations. δ Scuti stars are A-F clas-
sical pulsators excited by κ-mechanism (Chevalier, 1971)
with frequencies around the fundamental radial mode, that
is, at the middle of the stellar frequency spectrum range.

Following the works of Chaplin et al. (2011) and
Campante et al. (2016) done in the context of Kepler and
TESS (Ricker et al., 2015) space missions respectively, we
have estimated the potential of CHEOPS for detecting
solar-like pulsations. We have also studied the impact of
different observational times and duty cycles in the accu-
racy1 reached for the asteroseismic observables.

One of the main characteristics of CHEOPS is its short
observational time per run, ranging from hours up to a few
days in some cases. This makes it impossible to obtain indi-
vidual frequencies. On the other hand, the frequency with
the largest spectrum power (the so-called νmax) is easier
to obtain since its determination only needs the estima-
tion of the Gaussian-like frequency power excess envelope.
Therefore, we have focused on the potential observation
of νmax using CHEOPS time series, which is a proxy for
the stellar log g (Brown et al., 1991; Kjeldsen & Bedding,
1995). We have also studied the potential of CHEOPS for
observing νmax in the case of δ Scuti stars. This is the first
time, up to our knowledge, that such a short time series
from space are analyzed in an asteroseismic context and
the reached precision studied.

The proper CHEOPS characteristics makes it a per-
fect space mission for the precise characterization of ex-
oplanetary systems not covered by other past and current
missions. In table 1 we present a summary of the main
characteristics of these past and current space missions
with asteroseismic capabilities. The coverage of the ecliptic
plane, its telescope aperture, and its pointing facilities make
CHEOPS an unique opportunity for studying certain sys-
tems, thus complementing TESS, the other space mission
with asteroseismic capabilities during the next decade, be-
sides nano-satellite missions such as BRITE (Weiss et al.,
2014). In particular, the zone of the sky not covered by
TESS is the ecliptic plane, roughly in the range Dec = [-6◦,
6◦], where CHEOPS can do its best. In addition, CHEOPS
can properly observe fainter stars than TESS due to its
larger telescope aperture. For example, besides CHEOPS
and TESS magnitudes are not fully equivalent, we can un-
derstand the difference comparing the shot noises reached

1 In this work we use the term ”accuracy” when we can com-
pare our predictions with reliable observations, such as νmax ob-
tained using Kepler light curves, and ”precision” when we show
the internal dispersion of our estimations.

by both missions for a V=12 and Ic=12 star respectively. In
the case of CHEOPS, a V=12 star can be observed with a
shot noise of 623 ppm (see table 2), and TESS can ob-
serve a Ic=12 star with a shot noise around 1100 ppm
(Campante et al., 2016). Therefore, TESS and CHEOPS
are complementary missions from an asteroseismic point of
view.

In section 2 we describe the procedure for estimating
the solar-like pulsation-detection potential of CHEOPS and
show the results obtained, the region in the HR-diagram
where these stars are located, and the dependences of the
boundaries of this region. In section 3 we study the accu-
racy we can reach in the determination of νmax for different
observational times and duty cycles. Section 4 is devoted
to the analysis of the stellar parameters precision we can
obtain when the observable νmax is observed with the ac-
curacy estimated in the previous section. Finally, section 5
is devoted to summarize the conclusions of this study. In
the Appendix A we analyze the potential of CHEOPS for
observing δ Scuti’s νmax and the accuracy we can reach.

2. Estimation of the detectability potential of

solar-like oscillations using CHEOPS

Solar-like pulsations are reflected in the frequency power
spectrum as a group of peaks with power amplitudes
following a Gaussian-like profile. Following Chaplin et al.
(2011) and Campante et al. (2016), the estimation of the
detectability potential of solar-like pulsations is, therefore,
obtained by analyzing in the frequency power spectrum the
probability of a Gaussian-like power excess to be statisti-
cally different from noise.

This analysis is done in three steps: First, using semi-
empirical relations and stellar models, we estimate the ex-
pected strength in the power spectrum of the stellar pulsa-
tions (Ptot). Second, we estimate the background power den-
sity coming from different sources (Btot). Finally, we evalu-
ate the probability of the estimated power amplitudes to be
statistically different from noise, using the expected signal
to noise ratio (S/Ntot = Ptot/Btot).

2.1. Expected power spectrum amplitudes, Ptot

The expected contribution of the pulsational modes to the
power spectrum may be approximated by

Ptot ≈ 0.5cA2
maxη

2(νmax)D−2 W

∆ν
ppm2 (1)

where Amax is the expected maximum amplitude of the ra-
dial modes (l = 0) in parts per million (ppm). The factor c
measures the mean number of modes per ∆ν segment and
depends on the observed wavelength. Since CHEOPS band-
pass is similar to that of Kepler (Gaidos et al., 2017), we
have used the same c calculated by Chaplin et al. (2011)
following Bedding et al. (1996) (c = 3.1). The attenuation

factor η2(ν) = sinc2
[

π
2
ν
νNyq

]

takes into account the apodiza-

tion of the oscillation signal due to the non-zero integration
time in the case of an integration duty cycle of 100%, where
νNyq is the Nyqvist frequency. νmax is the frequency of the
maximum power spectrum in the stellar pulsation regime.
D is a dilution factor defined as D = 1 for an isolated ob-
ject. In this study we will focus in this isolated star case.
∆ν is the so-called large separation or the distance between
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neighboring overtones with the same spherical degree l. On
average, the power of each νmax/∆ν segment will be ∼0.5
times that of the central segment, thus explaining the extra
0.5 factor. Finally, W is the range where the power of the
pulsational mode is contained. Mosser et al. (2012, 2010)
and Stello et al. (2007) estimated that

W(νmax) =

{

1.32ν0.88
max, if νmax ≤ 100µHz

νmax, if νmax > 100µHz
(2)

The expected Amax can be estimated using stellar models
from the following semi-empirical relation

Amax = 2.5β

(

R

R⊙

)2 (

Teff

Teff,⊙

)0.5

ppm (3)

This estimation was first derived by Chaplin et al.
(2011) for the case of the observations of Kepler and it
depends on stellar parameters and the instrument response
filter. In our case, we can use the same expression without
any correction, where R and Teff are the stellar radius and
effective temperature, respectively, and R⊙ and Teff,⊙ the so-
lar values. On the other hand, β is a factor introduced to
correct the overestimation that this expression does of the
amplitudes for the hottest stars. That is,

β = 1 − exp

(

−
Tred − Teff

1550 K

)

(4)

where Tred is the blue boundary of solar-like oscillations (or
the red boundary of δ Scuti pulsations) and its empirical
estimation is

Tred = 8907

(

L

L⊙

)−0.093

K (5)

where L is the stellar luminosity and L⊙ is the corresponding
solar value.

For a detailed explanation of the origin and assumptions
of these expressions, we refer to the papers of Chaplin et al.
(2011) and Campante et al. (2016).

Although these estimations have been done under the
assumption of an integration duty cycle of 100%, duty cy-
cles larger than 60%, as it is the case of CHEOPS light-
curves, have a negligible impact in the estimated power
excess and in the obtaining of νmax (Stahn & Gizon, 2008)

2.2. Estimation of the total background power, Btot

The background power spectral density in the zone of νmax

can be approximated as

Btot ≈ bmax W(νmax) ppm2 (6)

The main contributions to bmax are assumed to be the
instrumental/astronomical noises (jitter, flat field, timing
error, etc., on the one hand, photon noise, zodiacal light,
etc., on the other), and the stellar granulation. This second
contribution has a significant impact when the observations
of the oscillations are made using photometry. That is:

bmax = binstr + Pgran ppm2µHz−1 (7)

Table 2: Different instrument/astronomical noises of
CHEOPS (∆t = 60 s).

Magnitude Texp σNom

(in V) (in s) (in ppm)
6 1 44
9 10 165
12 60 623

2.2.1. Instrumental/astronomical noise, binstr

Following Chaplin et al. (2011),

binstr = 2 × 10−6σ2
∆t ppm2µHz−1 (8)

where σ is the CHEOPS predicted RMS noise per
a given exposure time (Texp) and ∆t the integration
time. Following the CHEOPS Red Book noise budget
(CHEOPS Red Book, , 2013), the RMS noise is the addi-
tion of several contributions, but the final value mainly de-
pends on the stellar magnitude, the exposure time (linked to
the stellar magnitude), and the integration time. Regardless
of the exposure time, CHEOPS adds and downloads images
every 60 seconds. This will be our integration time. Taking
a look to Equation 8, we see that binstr is almost independent
of ∆t, since σ2 ∼ 1/∆t. Therefore, we will work only with
one integration time: 60 sec. In Table 2 we show the instru-
mental RMS for three different stellar magnitudes (V=6, 9,
and 12), with three corresponding exposure times (1, 10,
and 60 sec., respectively). These values are our reference
values.

2.2.2. Granulation power spectrum density, Pgran

Following Campante et al. (2016), we use the model F
of Kallinger et al. (2014) (with no mass dependence).
Evaluating this model at νmax we have

Pgran,real(νmax) = η2(νmax)D−2

2
∑

i=1

(

2
√

2
π

)

a2
i

bi

1 +
(

νmax

bi

)4
ppm2µHz−1 (9)

where

a1,2 = 3382 ν−0.609
max (10a)

b1 = 0.317 ν0.970
max (10b)

b2 = 0.948 ν0.992
max (10c)

The parameters of these models have been fitted using
the power spectra of a large set ofKepler targets. Therefore,
we can use these estimations without any correction for
CHEOPS thanks to their similar response filters.

Another effect to take into account when modeling gran-
ulation is aliasing.When the observed signal has frequencies
above the Nyqvist frequency, they can appear in the power
spectrum at sub-Nyqvist frequencies since these frequencies
are undersampled, contributing to the background noise.
With a cadence of 60 sec and its associated large νNyq, the
impact of this aliased granulation power in the final back-
ground noise is small, but we have included it for complete-
ness. Following Campante et al. (2016), the aliased granu-
lation power at νmax can be modeled as Pgran,aliased(νmax) ≡
Pgran,real(ν

′
max), where
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ν′max =

{

νNyq + (νNyq − νmax), if νmax ≤ νNyq

νNyq − (νmax − νNyq), if νNyq < νmax ≤ 2νNyq

and then Pgran = Pgran,real(νmax) + Pgran,aliased(νmax).

2.3. Asteroseismic scaling relations

In Sections 2.1 and 2.2 we have seen that for the esti-
mation of the expected spectrum power excess and back-
ground, the asteroseismic parameters ∆ν and νmax must be
known. The most efficient way of doing so is by means
of the so-called scaling relations. These relations explode
the fact that ∆ν and νmax are a function of the stellar
mean density and surface gravity respectively. Therefore,
they can be approximately estimated when stellar mass,
radius, and effective temperature have reasonable esti-
mates. In our study these stellar parameters, using solar
metallicity, are provided by stellar models obtained using
the evolutionary code CLES (Code Liégeois d’Evolution
Stellaire, Scuflaire et al., 2008). Then, using the scaling re-
lations shown in Kallinger & Matthews (2010), and refer-
ences therein, we estimate ∆ν and νmax. That is:

νmax ≈ νmax,⊙

(

M

M⊙

) (

R

R⊙

)−2 (

Teff

Teff,⊙

)−0.5

(11)

∆ν ≈ ∆ν⊙

(

M

M⊙

)0.5 (

R

R⊙

)−1.5

(12)

where the solar reference values are νmax,⊙ = 3090µHz and
∆ν⊙ = 135.1µHz.

2.4. Estimation of the detection probability

From stellar models, together with some instrument pre-
scriptions, we can estimate the expected signal to noise ra-
tion as S/Ntot = Ptot/Btot, where Ptot and Btot are known.

Estimating the detection probability, in this context, is
to test whether a given S/Ntot can be randomly produced
from noise or whether it is a signal of a statistic significant
power excess in the original data.

As we mentioned in the introduction of this section, the
solar-like pulsational power excess in the frequency spec-
trum has a Gaussian-like profile. On the other hand, if T
is the length of the time series, the information in the fre-
quency domain comes in bins of 1/T (s−1), and the number
of bins contained in the potential zone of solar-like pul-
sation power excess is N = W × T . The N we use in this
work has been obtained assuming a duty cycle of a 100%.
Nevertheless, following Appourchaux (2014); Campante
(2012), the impact of duty cycles in the range [60 - 100]%, as
it is the case of CHEOPS, is small. Therefore, the statistical
test we must perform is to disentangle whether a Gaussian-
like profile described using N bins can be produced by a
random distribution or not.

This problem is faced using a χ2 test with 2N degrees
of freedom following Appourchaux (2004). The first step
in this test is to fix a minimum threshold avoiding a false
alarm positive (S/Nthres). This limit is fixed at a 5% of a
chance of false positive (p-value< 0.05). That is, if we define
x = 1 + S/N, the p-value of this test is
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500060007000

Teff
L
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o

Evol. Stage
Giant

Sub−Giant

MS

V=6

V=9

V=12

νmax=69µHz

Solar−like detectability. Obs. time = 8 hours

Fig. 1: HR Diagram showing the region where νmax can
be determined using eight hours of CHEOPS observations.
Black points are the models used aligned in different evo-
lutionary tracks. The evolutionary stage of these models
are represented in different point transparency: MS stars in
black, Sub-Giant dark gray, and Giant in light gray. The
orange line is the bottom limit for a potential detection of
a star with Magnitude V=6. The same bottom limit for the
case of a star with V=9 is shown with a red line. The blue
line is the bottom limit for a V=12 star. The green line rep-
resents the top limit for a correct coverage of the variability
with eight hours of observational time.

p =

∫ ∞

x

exp(−x′)

Γ(N)
x′(N−1)dx′ (13)

where Γ is the Gamma function. S/Nthres is the one making
p = 0.05. Since N is a function of νmax, every model has its
own threshold.

Once S/Nthres is obtained, the probability of a given ex-
cess to be statistically different from random noise is

pexcess =

∫ ∞

y

exp(−y′)

Γ(N)
y′(N−1)dy′ (14)

where y = (1 + S/Nthres)/(1 + S/Ntot).
Therefore, for a given stellar model (M, R, Teff, ∆ν, and

νmax), an observational time range (T ), and a stellar mag-
nitude, we can calculate the probability of the solar-like
pulsations to be observed.

In Fig. 1 we show a HR diagram with the evolutionary
tracks used for the simulations and the bottom limit for
a pexcess = 50% of detection probability for three different
stellar magnitudes (orange, red and blue lines for V = 6,
9, and 12 stars respectively). Every star above these lines
has a νmax potentially detectable by CHEOPS. On the other
hand, integration and total observing times may put some
constraints to our observational capabilities:
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Solar−like detectability. V=6

Fig. 2: HR Diagram showing the region where νmax can be
determined, for a star with magnitude V=6, using differ-
ent observational times. Black points are the models used
aligned in different evolutionary tracks. The evolutionary
stage of these models are represented in different point
transparency: MS stars in black, Sub-Giant dark gray, and
Giant in light gray. The orange lines are the bottom and
top limits of the potentially νmax detection region for eight
hours of observational time (respectively red lines - two
days of observational time, blue lines - ten days of observa-
tional time). The upper detectability limit for an observa-
tional time of 10 days is outside the plotted range. The po-
sition of the current known stars with planets in the ecliptic
plane with V<6 is shown using green triangles. The small
and more transparent green triangles are those known stars
with planets in the ecliptic plane with 6<V<9.

– Integration time: As we have already explained, chang-
ing the integration time is not efficient in our context
and we have fixed it to 60 sec, imposing limits to the νmax

that can be properly monitored. Each stellar model has
its own νmax, depending on stellar parameters following
Eq. 11. The largest νmax is located at the orange line
of Fig. 1 with a value of 1765 µHz, that is, around 9.5
min. Therefore, the integration time of 1 min is enough
for covering properly every potentially detectable νmax

(νNyq=8333 µHZ, covering all the frequency range).
– Total observing time: One of the most conservative goals

of our time series is to monitor at least one complete
period for all the solar-like modes at the expected fre-
quency range. For a given νmax, eq. 2 shows that the
shortest expected frequency (largest expected period)
is, roughly, 0.5νmax. That is, for a given total observa-
tional time (T ), we can ensure to monitor at least one
complete period for all the expected solar-like modes of
stars with νmax = 2/T . The green line in Fig. 1 represent
the limit of νmax = 69 µHz. Every star below this limit
can be correctly monitored with eight hours of observing
time.

0.1
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1
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100

300

1000

4000500060007000

Teff
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/L
o

Evol. Stage
Giant

Sub−Giant

MS

Obs. Time=8h

Obs. Time=2d

Obs. Time=10d

Solar−like detectability. V=9

Fig. 3: Same as Fig. 2 for a star with magnitude V=9. The
position of the current known stars with planets in the eclip-
tic plane with V<9 is shown using green triangles. The small
and more transparent green triangles are those known stars
with planets in the ecliptic plane with 9<V<12.

Therefore, with the most conservative election of the
different degrees of freedom, every star with characteristics
in the region limited by the orange/red/blue lines and the
green line of Fig. 1 has a νmax potentially detectable with
CHEOPS with eight hours of observational time.

In any case, the total observing time can be modified.
In Figs. 2 to 4 we show the impact of changing the observa-
tional time up to ten days in the definition of the potentially
detectable region.

Although the general observational strategy of
CHEOPS is to spend several hours per target, in some
special cases a larger observational time will be accessible,
as it is the case of orbiting phase studies. In Fig. 2 we
show the impact of increasing this observational time.
The three lines represent the theoretical limits, for a 6th
magnitude star, as a function of the total observational
time. This observational time impacts in two ways: on one
hand, increasing the accuracy of the signal mapping in
the frequency domain (reducing the size of the bins), and
on the other hand, allowing the study of larger periods.
That is, it pushes down the bottom limit for potential
detectability and pushes up the top limit in the Red Giant
Branch. The impact of having eight hours of observing
time (orange lines), two days (red lines), or ten days (blue
lines) is what we show in Figs. 2, 3, and 4 for a V = 6,
9, and 12 star respectively. The increasing of the area
enabling a potential νmax characterization is remarkable.

In the Introduction we mentioned that CHEOPS and
TESS are complementary in terms of their asteroseismic
capabilities. We have identified that, nowadays, there are
169 stars harbouring planets located at the ecliptic plane
(Dec. = [-6,6]◦). In table 3 we show a summary of the main
characteristics of this sampling. In Figs. 2, 3, and 4 we have
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Table 3: Summary of the sampling of stars with planets in the region Dec. = [-6,6]◦.

Charact. Min Max
Teff (◦K) 940 33000

logLbol (dex) -6.5 2.5
[Fe/H] (dex) -0.71 0.56
Detecting Number
Method
Imaging 5
Transit 97
Pulsar 3
RV 64

References. Taken from www.exoplanet.org (Han et al., 2014). Lbol have been obtained using VOSA (Bayo et al., 2008).
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Fig. 4: Same as Fig. 2 for a star with magnitude V=12.
The position of the current known stars with planets in the
ecliptic plane with V<12 is shown using green triangles.

also shown the position in the HR-Diagram of a subsample
of these 169 stars, those within the magnitude constraints of
each figure and their Teff and L/L⊙ limits. We have shown
in big green triangles those stars of this sample brighter
than the limit displayed at the plot. In smaller and more
transparent green triangles we show those stars with ap-
parent magnitudes between that presented in the plot and
that of the following plot. That is, in Fig. 2 the big triangles
are stars with V<6, and the small triangles are stars with
6<V<9.

Therefore, as a summary, we can conclude that
CHEOPS can potentially observe the solar-like pulsation
characteristic νmax for FGK stars using its planned stan-
dard observational strategy in the following cases: Massive
stars (1.4M⊙ < M < 1.2M⊙) from late MS on, and post-MS
for all the masses. Depending on the observational time,
tens of stars with planets located at the ecliptic plane can
be characterized with a larger precision (see sections 3 and
4).

Increasing the observational time within CHEOPS ac-
cepted observational strategy has a large impact on the HR
diagram zone of potential detectability. The larger the ob-
servational time, the larger the MS region potentially cov-
ered.

3. Impact of observational time and duty cycle in

the accuracy of the determination of νmax

In the previous section, we have analyzed whether solar-
like pulsations can be potentially detectable with CHEOPS
depending on the different instrumental and observational
constraints, but we have not described which observables
can be obtained from these observations and the accuracy
of this characterization.

As we have already mentioned, the total observational
time per target will be of the order of hours or a few days.
This is not enough for disentangling individual frequencies
(discarding ∆ν as a possible observable), but it is enough for
obtaining the frequency with the maximum power ampli-
tude. Therefore, we will focus our studies on how accurately
we can determine νmax and the impact of this additional ob-
servable in the characterization of the targets.

The total observational time (T ) has an impact in the
HR diagram zone where νmax can be potentially detected,
but it has also an impact on the accuracy of the determi-
nation of its value from observations. T has a major impact
on the definition of the numbers of bins we will have in the
frequency domain (N = W ×T ). The larger the T , the larger
the number of bins and, therefore, the better the mapping of
this frequency space. Since νmax is the frequency of the max-
imum of the Gaussian-like envelope the solar-like pulsations
describe in the power spectrum, a better mapping of this
zone implies a more accurate determination of this maxi-
mum. On the other hand, solar-like oscillations are forced
oscillations of stable pulsational modes. Therefore, every in-
dividual mode has a certain lifetime. With the time, modes
appear and disappear. A small T will act as a picture of the
living modes at this moment. They don’t ensure a perfect
definition of νmax. The larger the T , the larger the number of
observed modes, contributing to a more precise estimation
of the global envelope.

Therefore, we expect a dependence of the accuracy in
the determination of νmax with T .

In addition, the duty cycle produces a spurious sig-
nal in the frequency domain (Mosser et al., 2009), with a
potential impact on the determination of νmax. Following
Stahn & Gizon (2008), the impact of duty cycles larger
than 60 % in the determination of the position and/or

7
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Table 4: Testing stars.

KIC Teff ∆Teff logg ∆logg [Fe/H] ∆[Fe/H] νmax ∆νmax Reference S/N
in K in dex in dex in µHz

1435467 6326 77 4.100 0.1 0.01 0.1 1406.7 8.4 a 60
3456181 6384 77 3.950 0.1 -0.15 0.1 970.0 8.3 a 60
5701829 4920 100 3.19 0.22 -0.2 0.2 148.3 2.0 b 200
6933899 5832 77 4.079 0.1 -0.01 0.1 1389.9 3.9 a 200
7771282 6248 77 4.112 0.1 -0.02 0.1 1465.1 27.0 a 70
9145955 4925 91 3.04 0.11 -0.32 0.03 131.7 0.2 c 200
9414417 6253 77 4.016 0.1 -0.13 0.1 1155.3 6.1 a 80
9812850 6321 77 4.053 0.1 -0.07 0.1 1255.2 9.1 a 60
10162436 6146 77 3.981 0.1 -0.16 0.1 1052.0 4.2 a 100
12069127 6276 77 3.912 0.1 0.08 0.1 884.7 10.1 a 60

References. (a) Lund et al. (2017); (b) Fox-Machado & Deras (2016); (c) Pérez Hernández et al. (2016).

(a) (b) (c)

Fig. 5: Relative error of νmax,w calculated with an 1-day run, a 80% duty cycle, and taking into account the case 1. Only
those significant and inside the detection range values are shown. From left to right, we show the results of a Main
Sequence star (a), a subgiant (b), and a RGB star (c). The black/green asterisks points to all non-/significant
points inside the detection range (purple line). The red line is the relative error of the mean νmax,w.

Table 5: Tested duty cycles.

Simulation Duty Cycle (%)
SAA & EO Complete

1 100.0 90.4
2 90.6 86.7
3 80.4 79.9
4 72.5 72.1
5 72.1 71.7
6 68.0 67.6
7 65.0 64.6
8 62.9 62.6
9 61.5 61.1
10 60.4 60.0
11 59.5 59.2

power of a frequency in the Fourier domain is negligible.
Nevertheless, we have studied this impact using Kepler
data.

To measure the extent of these dependencies, we have
simulated different realistic cases and tested the potential
accuracy we can reach with CHEOPS data. To do so, we
have used ten real cases as reference, displayed in Table 4.
We have analyzed a group of Short-Cadence (SC) Kepler
light-curves of eight well-known Main Sequence stars and
two giants. The choosing of SC is due to its similarity with
CHEOPS integration time. In that way, we can compare the
value of νmax taking into account shorter light curves and
lower duty cycles with the reference ones obtained with

the complete light-curves. The duty cycle of CHEOPS is
strongly determined by the SAA (South Atlantic Anomaly)
and also by the Earth occultation (EO). These effects de-
pend on the orbital parameters and the position of the star
during the run. We used the CHEOPSim tool (see Sect. 5)
in order to simulate several effective times of observation
and the timing of the gaps at different sky positions, that
is, we simulate different duty cycle values (see Table 5, col-
umn ”SAA & EO”). These simulations are superimposed on
the Kepler light-curves (column ”Complete”). In that way,
the duty cycle of the light curves we used is lower due to the
own duty cycle of the original Kepler light-curves. Finally,
we interpolate these gaps with a linear fit.

We use the weighted mean frequency to calculate the
frequency at maximum power (Kallinger et al., 2010)

νmax,w =

∑

Aiνi
∑

Ai

(15)

where Ai and νi are the amplitude and frequency of each
peak of the power spectra, respectively. We also define the
efficiency of detection as

Eff(%) = 100 ·
Ndetections

Nall

(16)

where Nall is the number of runs for a fixed length and duty
cycle, taking into account all tested stars, and Ndetections is
the number of significant detections inside the detection
range νmax,w ∈ νmax,est ± 5∆νest, where νmax,est and ∆νest are
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Fig. 6: Mean relative error within the range ±5∆νest (C1) according to the duty cycle for different observational times.
Dashed lines are ± their standard deviation
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Fig. 7: Maximum relative error within the range ±5∆νest (C1) according to the duty cycle for different observational times.
Dashed lines are ± their standard deviation

the estimated νmax and ∆ν using scaling relations and the
position of the star in the HR Diagram. A clear example
is shown in Fig. 5 where the relative error, defined as the
relative difference between the measured and the reference
νmax values, is calculated for several 1-day runs for one of our
testing stars. We obtained values within the detection range
for most of the runs (purple line). However, one single run
can introduce a considerably high relative error (∼ 34%).
For that reason, we studied two different cases: The first
case (C1) taking into account the νmax,est±5∆νest range, and
the second one with a shorter range (C2; νmax,est±2∆νest). We
can use these ranges because the distribution of p-modes
of the solar-oscillator power spectra around its νmax is ap-

proximately symmetric (they have an asymmetry of ∼ 3%,
Kallinger & Matthews 2010). We noted that a high accu-
racy of νmax,est and ∆νest are not required since we only need
them to roughly estimate the range where νmax is searched.

To study the influence of the duty cycle in the deter-
mination of νmax, we have analyzed the ten stars of Table
4. Since for solar-like pulsations the S/N level achieved by
Kepler for a particular magnitude star will be achieved by
CHEOPS for a brighter star, in Table 4 we show the S/N
of these testing Kepler stars and not their magnitudes. Our
study is valid, therefore, when these S/N are reached. We
have divided again their light-curves in runs of a fixed ob-
servational time. We have then imposed the CHEOPS duty
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Fig. 8: Efficiency of detection within the range ±5∆νest (C1) according to the duty cycle for different observational times.
Dashed lines are ± their standard deviation

cycle and obtained the νmax of every run. Finally we have
obtained the mean values of the relative error in the de-
termination of νmax compared with the reference value per
duty cycle for all the stars and runs, the mean maximum
relative error, the detection efficiency, and their standard
deviations.

In the case C1, the mean relative error for observational
times of one day (top left panel of Fig. 6) is in the range [3.8,
4.5]%, depending on the duty cycle. In general, the larger
the duty cycle, the lower the mean relative error. The mean
maximum relative error ranges between [12.5, 15]% for an
observational time of one day (top left panel of Fig. 7).
Again, the larger the duty cycle, the lower the mean maxi-
mum relative error. In terms of the detection efficiency, in
the case of observational times of one day (top left panel of
Fig. 8), this efficiency is almost stable at a value of 99.6%
for every duty cycle. In the rest of the panels of Figs. 6 to
8 we can see the effect of increasing the observational time
to 2, 4, 8 and 30 days. We noted that the length of the ob-
servations for CHEOPS will be relatively short. We include
all these lengths to understand the evolution of these values
with T up to an observational time similar to that of TESS.
In general, the larger the observational time, the lower the
mean relative error, the lower the mean maximum relative
error and the larger the detection efficiency. If we go into
the details, the mean relative error present similar results
from 4 days of observational time, on. That is, in terms of
a mean relative error, when we use different measurements,
the benefit of increasing the observational time is clear up
to an observational time of 4 days. For larger observational
times this benefit is not so justified. In terms of the mean
maximum relative error, that is, the maximum error we
achieve in a single run, the increasing of the observational
time become in a decreasing of this mean maximum error
for every observational time studied, from a range of [12.5,
15]% for one day down to a range of [2.5,4]% for 30 days
of observational time. The detection efficiency is of 100%
from 4 days of observational time, on.

On the other hand, in the case C2 the situation is similar
to the case C1 with the following differences:

– The mean relative error have slightly lower values in
general ([3.5, 4]% in the case of one day of observational
time, for example)

– The mean maximum error is even better, with a range
of [8, 11]% in the case of one day of observational time.

– The detection efficiency is a little worse, since C2 is more
restrictive, with values always larger than 96% and with
a 100% from 4 days of observational time, on.

In conclusion, although there is no large variations of
the mean relative error with the duty cycle produced by
the SAA or the Earth occultation, we have to take into ac-
count the possible high error of an individual measurement.
Therefore, several runs are advised to discard those values
of νmax out of range. Moreover, the highest accuracy we ob-
tain for νmax, the highest accuracy of ∆ν will be achieved.
Then, a proper detection range could be used, improving
iteratively our results. In addition, it is not worth to pro-
pose observational ranges lager than 4 days if several runs
are planned, since the impact of a maximum relative error
in a single run is mitigated and no significant improvements
in the mean relative error are achieved.

4. Expected stellar uncertainties

The basic idea for determining stellar parameters is entering
observational quantities such as stellar metallicity [Fe/H],
effective temperature Teff and surface gravity log g (usually
available from spectroscopy) in a grid of theoretical models
and perform a proper interpolation scheme to retrieve those
quantities that best match observations. Asteroseismic νmax

is a proxy for log g and its knowledge enables to better con-
strain the input log g so that to have a refinement of the
output stellar parameters. In fact, once the asteroseismic
log g is recovered through Eq. 11, spectroscopic and astero-
seismic log g can be combined in a weighted mean to obtain
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a better estimation of the stellar surface gravity and to de-
crease its uncertainty.

If νmax is added among the input parameters, in this
section we want to:

1. give a reasonable estimate of the precision we gain in
the input log g;

2. test the precision we would gain in the output parame-
ters.

Given several measurements gi of an observable g, whose
uncertainties are σi, the weighted mean is computed as

ḡ =

∑

i giwi
∑

i wi

(17)

where the weight wi = σ
−2
i
, and its uncertainty is

σḡ =
1

√

∑

i wi

(18)

Error propagation from Eq. 11 suggests that the relative
uncertainty on the derived surface gravity is

∆g

g
=
∆νmax

νmax

+
1

2

∆Teff

Teff

(19)

Re-writing Eqs. 17 and 18 in terms of relative uncer-
tainties δi = σi/gi, the relative uncertainty on the weighted
mean δḡ results to be

δḡ =
σḡ

ḡ
=

√

n
∑

i=1

1

g2
i
δ2

i

n
∑

i=1

1

giδ
2
i

(20)

where n is the number of available measurements. If n = 2
(as in our case), Eq. 20 becomes

δḡ = δ1δ2

√

g2
1
δ2

1
+ g2

2
δ2

2

g1δ
2
1
+ g2δ

2
2

= δ1δ2

√

δ2
1
+ k2δ2

2

δ2
1
+ kδ2

2

(21)

where k = g2/g1. Studying δḡ as a function of k, it turns
out that it has an absolute minimum for k = 1 i.e. when
g1 = g2 and that limk→0 δḡ(k) = δ2 (i.e. when g1 ≫ g2),
limk→+∞ δḡ(k) = δ1 (i.e. when g2 ≫ g1).

Identifying spectroscopic data with the subscript 1 and
asteroseismic data with the subscript 2, it turns out that
the median relative uncertainty of the spectroscopic surface
gravity of the ensemble of CHEOPS reference targets (it’s
made of 152 stars and their main properties are listed in
Table 6) is δ̄1 ≈ 0.21, while, instead, δ̄2 ≈ 0.055 ≈ ∆νmax

νmax
, as-

suming 5% as a conservative estimation of the uncertainty
on νmax as it comes out from Sect. 3 and considering the
weak dependency of Eq. 19 on the relative uncertainty on
Teff. Thus, as a median value of reference, δ̄1 ≈ 4δ̄2. If this
relation holds and if we consider a possible difference of
up to a factor of 2 between the two surface gravity de-
terminations g1 and g2, we obtain δḡ(k = 1

2
) ≈ 0.98δ2 and

δḡ(k = 2) ≈ 0.99δ2 (the minimum is δḡ(k = 1) ≈ 0.97δ2). This
statistical overview suggests that, for a star by star analysis,
the maximum value between δḡ(k = 1

2
) and δḡ(k = 2)

δ∗g = max(δḡ(k = 1/2), δḡ(k = 2)) (22)

is a reasonably conservative estimate of the relative uncer-
tainty of the weighted mean and this estimate is likely lower
than δ2.

To achieve the second goal, we considered the
CHEOPS sample specified in Table 6. The estimate
of stellar output parameters has been done thanks
to the Isochrone Placement algorithm described in
Bonfanti et al. (2015, 2016). Interpolation in theoreti-
cal grids of tracks and isochrones have been made
considering PARSEC2evolutionary models, version 1.2S
(see Bressan et al. 2012; Chen et al. 2014; and references
therein).

The code has been run four times. The first time, the
input parameters were [Fe/H], Teff , log g coming from spec-
troscopy, v sin i and/or log R′

HK
where available to improve

convergence during interpolation, and parallax π and mean
G magnitude coming from Gaia DR2 archive3 so that to
have a measure of the stellar luminosity L. If data from
Gaia were not available (in 4 cases), parallaxes have been
taken from Hipparcos (van Leeuwen, 2007). We will refer
to this set of input data as standard input parameters. At
the end of all the cross-matches to retrieve the input pa-
rameters, our reference testing sample coming from Cheops
is made of 143 stars. The second time, we also wanted to
take the contribution from asteroseismology into account.
No νmax values are available for the CHEOPS targets so far,
therefore, for each star of the sample, we generated a set of
possible νmax values. According to the scaling relation (Eq.
11), we computed νmax,input and its uncertainty considering
the input values of Teff and log g, so that to establish the
maximum range [νmax,input − ∆νmax,input, νmax,input + ∆νmax,input]
of plausible variation of νmax, consistently with the other
input parameters. Starting from the left-most side value of
the interval, we generated a sequence of νmax,i such that
they belong to the interval and whose relative uncertainty
was 5%. Each value of the sequence has been obtained by
adding to the previous one half of its error bar. This second
run of the algorithm involves lots of ’fake’ stars because
of the arbitrary choice of the νmax,i. Therefore, among all
the results, for each star we considered that set of output
parameters that match the theoretical models best, which
derive from a specific νmax,best value. So, the results we will
consider in this case derive from the standard input pa-
rameters and the νmax,best. These results represent the best
theoretical improvement that is expected for stars located
in that region of the HRD once that νmax is added in input.
Finally, the third and fourth case consider the standard in-
put parameters plus a value of νmax that has been obtained
by decreasing and increasing νmax,best by 10%. In fact, we
want also to test whether adding an additional input pa-
rameter always determine an improvement in the output
uncertainties, regardless of its nominal value.

After that, we compared the relative uncertainties af-
fecting the output age, mass, radius and mean stellar den-
sity in the four runs. The results are synthesized in Tab.
7. In this table we show the median relative uncertainties,
a robust indicator against outliers. In general, the inclu-
sion of νmax as an additional observable improves the preci-
sion in the determination of the stellar mass, radius, den-
sity and age. The amount of this improvement depends on

2 Padova and Trieste Stellar Evolutionary Code.
http://stev.oapd.inaf.it/cgi-bin/cmd

3 https://gea.esac.esa.int/archive/
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Table 6: Summary of the sampling of CHEOPS stars.

Charact. Min Max
Teff (◦K) 3030 10200
logL (dex) -2.38 1.72
logg (dex) 3.47 5.05
Mass (M⊙) 0.2 2.71

Table 7: Relative uncertainties expressed in % on the age
t, the mass M, the radius R and the mean stellar density ρ
for the different runs. See text for details.

Input param. CHEOPS sample

∆t
t

standard 52
with νmax,best 38

with 0.9νmax,best 47
with 1.1νmax,best 48

∆M
M

standard 2.1
with νmax,best 1.8

with 0.9νmax,best 2.2
with 1.1νmax,best 2.1

∆R

R

standard 1.8
with νmax,best 1.6

with 0.9νmax,best 1.9
with 1.1νmax,best 1.9

∆ρ

ρ

standard 5.6
with νmax,best 4.7

with 0.9νmax,best 5.7
with 1.1νmax,best 5.6

the sampling used and the output analyzed. On the one
hand, when the used νmax is fully consistent with the selec-
tion obtained using the standard inputs (as it is the case
νmax,best), then age uncertainties are reduced from 52% to
38%; mass uncertainties from 2.1% to 1.8%; radius uncer-
tainties from 1.8% to 1.6%; density uncertainties from 5.6%
to 4.7%. Repeating this entire analysis without the input
Gaia luminosity (which already gives a strong and straight-
forward constraint on the radius), it turned out that the
benefit of adding νmax is even more sensible in reducing
the output uncertainties of R and M. On the other hand,
when the consistency between the standard selection and
νmax is deteriorated, the improvement is also deteriorated.
This simulation shows that both the input precision and
the consistency among the input parameters play a role in
reducing the median output uncertainties.

It is worth to add that also the star location on the
HRD influences the improvement level in the output uncer-
tainties if we add further input parameter. For instance, if
the evolutionary stage of a star is around and soon after
the turn-off (TO), there theoretical models are very well
spaced, a star can be easily characterized and adding fur-
ther input parameters don’t make change things that much.
Instead, if a star is still on the main sequence (MS) or it is
well evolved after the TO, there theoretical models are very
close and the reduction in the output uncertainties when
an input parameter is added may be remarkable. To prove
these considerations, we have analyzed the Kepler stars of
Table 4, that are almost all around the TO region. We have
used the standard constraints Teff , logg, [Fe/H], L (and v sin i
where available) on the one hand, and we have added the
observed νmax with an uncertainty of a 5% as a conserva-

tive maximum uncertainty derived from Sect. 3. We have
artificially homogenized all the logg uncertainties to a min-
imum value of 0.1 dex. to reproduce what we usually obtain
from spectroscopy. In a median sense, no relevant variations
in the output uncertainties is seen adding νmax among the
input. Besides the fact that here the consistency between
the subgroup fitting the standard observations and the ob-
served νmax is not ensured, the majority of these stars are
located around the TO where isochrones are well spaced
and Gaia luminosity already provides a precise location for
the stars. But if we move on a star-by-star analysis, this
Kepler sample contains two stars that are well evolved (i.e.
located strongly beyond the TO), namely KIC 5701829 and
KIC 9145955. Adding νmax as a further input provokes a re-
duction in the output parameters of these stars as reported
in the following:

– KIC 5701829. ∆t
t
from 45% to 18%; ∆M

M
from 12% to 7%;

∆R
R

from 3.3% to 2.8%; ∆ρ
ρ

from 18% to 11%.

– KIC 9145955. ∆t
t

from 46% to 38%; ∆M
M

from 13% to

10%; ∆R
R

from 4.1% to 3.2%; ∆ρ
ρ

from 23% to 18%.

We can conclude that the reductions can be sensible; the
improvement in the R precision is less evident just because
we already have a precise knowledge of R thanks to Gaia.

As an important final remark, we stress that all the
relative uncertainties we have provided are internal at 1-σ
level originating from the interpolation scheme in theoret-
ical models. The statistical treatment, the density of the
model grids in use, how the uncertainty on [Fe/H] has been
addressed, the treatment of the element diffusion enter a
complicated picture and have all a role in affecting the out-
put uncertainties. What is relevant here is judging the level
of improvement on the output depending on the input set.
Moreover let us note that all these results are for a given
input physics (e.g. opacities, equation of state, nuclear re-
action rates) and a given initial He abundance (that can-
not be determined from spectroscopy) in stellar theoretical
models. Constraining input physics and/or initial He abun-
dance from asteroseismology requires very high quality in-
dividual oscillation frequencies of the star considered, such
as those provided by CoRoT or Kepler space missions (e.g.
Lebreton & Goupil 2014; Buldgen et al. 2016b,a).

5. Conclusions

In this work, we have studied the asteroseismic potential
of CHEOPS. We have found that, with the current instru-
mental performance and observational times between eight
hours and two days, the asteroseismic observable νmax can
be determined for massive F and G-type stars from late
MS on, and for all F, G, and K-type stars from post-MS
on. This observational times perfectly fit the observational
strategy of CHEOPS.

The estimated νmax accuracy, obtained using ten Kepler
light-curves as reference, is of the order of 5% or better
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when the star is observed several times, independently of
the expected duty cycles of the CHEOPS targets. In addi-
tion, the larger the observational time, the larger the HR
Diagram zone where the νmax can be detected and the better
the accuracy.

This accuracy in the determination of νmax is translated
into a similar precision in the determination of log g, which
is around four times smaller than the precision obtained
from spectroscopy, in median values. This new precision
and the inclusion of an additional observable for fitting the
theoretical models reduce the uncertainty in the determi-
nation of the stellar mass, radius, and age depending on
the stellar location on the HRD and on the degree of con-
sistency between the expected νmax obtained using stan-
dard inputs and the observed one. Having a complete set of
spectroscopic input parameters plus the stellar luminosity
from Gaia, our theoretical simulation on a testing sample of
CHEOPS stars shows that, once a consistent νmax is avail-
able in input, in median sense age uncertainty decreases
from 52% to 38%, mass uncertainty from 2.1% to 1.8%,
radius uncertainty from 1.8% to 1.6% and density uncer-
tainty from 5.6% to 4.7%. All these provided uncertainties
are meant to be internal.

In addition, we have also found that the CHEOPS light
curves can provide an accurate estimation of the δ Scuti
νmax (see Appendix), leading to a measurement of the stellar
rotational rate, its inclination with respect the line of sight,
and its mean effective temperature.

This work open an opportunity for complementing
TESS asteroseismic observations since CHEOPS has its
technical strengths where TESS has some weaknesses: stars
in the ecliptic plane and/or fainter than TESS limit thanks
to its larger telescope aperture.
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Software

The CHEOPS instrument and science simulator, CHEOPSim,
is developed under the responsibility of the CHEOPS
Mission Consortium. CHEOPSim is implemented by
D. Futyan as part of the Science Operation Centre
located at the University of Geneva. Analysis was
performed with R version 3.3.1 (R Core Team, 2016),
RStudio Version 1.0.143, and the R libraries dplyr 0.5.0
(Wickham & Francois, 2016), parallel (R Core Team,
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R. A. 2017, A&A, 601, A57
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Appendix A: Influence of the duty cycle in νmax

determination for δ Scuti stars

CHEOPS will not observe only solar-like pulsators look-
ing for exoplanets. δ Scuti stars are interesting stellar
bodies that can also present transiting exoplanets (e.g.,
Christian et al., 2006). δ Scuti stars are classical pul-
sators excited by κ-mechanism (Chevalier, 1971). Althought
their pulsation frequency range is not in the solar-like
regime, we can define always νmax using Equation 15 (see
Barceló Forteza et al., 2018).

A significant rotation can produce the oblateness of the
star and a gradient of temperature from the poles to the
equator known as the gravity-darkening effect (von Zeipel,
1924). Barceló Forteza et al. (2018) suggest a direct rela-
tion between the νmax for δ Scuti stars and their mean
effective temperature (T̄eff) due to its oblateness. Then,
once measured the temperature with Strömgren photom-
etry (Teff), we can compare it with the mean effective tem-
perature. The relative difference will constrain the rotation
rate (Ω/ΩK) and the inclination with respect to the line of
sight (Barceló Forteza et al., 2018).

Since κ-mechanism produces waves with higher lifetime
than stochastic mechanism, their pulsations are easier to
observe in short light curves. In fact, 1.6-days WIRE ob-
servations of Caph (β Cas) prove that it is possible to de-
tect the main oscillation frequencies from such a short light
curves (ν0 = 115 µHz, Cuypers et al., 2002). Our own 10
hours of ground-based observations using SONG-OT al-
lowed us to detect its highest amplitude oscillation with
only a 2% of relative error in frequency (ν0 = 117 µHz).

We repeated the study of the duty cycle effect on νmax

determination for δ Scuti stars analyzing 6 Short-Cadence
(SC) Kepler light curves of A/F stars with δ Scuti pul-
sations (see Table A.1). We obtained their ”true” frequen-
cies at maximum power taking into account their entire

Table A.1: Frequency at maximum power of the 6 δ Scuti
stars.

KIC νamax

in µHz
4374812 126 ± 7
4847371 300 ± 19
4847411 296 ± 14
6844024 177 ± 8
9072011 90 ± 3
11285767 241 ± 15

Notes. These values have been calculated as indicated in
Barceló Forteza et al. (2018).

light curve. In addition, we interpolated the gaps of each
shortened light curve using a non-linear fitting method
(Barceló Forteza et al., 2015). The mean relative error ob-
tained is around 5% for only 6 hours of run time and duty
cycles higher than 70% (see Fig. A.1). For lower duty cy-
cles the mean relative error increases up to 9%. However,
in some shortened light curves, we can obtain a higher de-
parture from the νmax value (from ∼20% to ∼60% depend-
ing on duty cycle). Then, like in the solar-like oscillators,
it is important to make several revisits to the same star.
For all the other lengths, the mean relative error does not
significantly change with the duty cycle thanks to the in-
terpolation method. Moreover, the higher the length, the
lower maximum relative error (Fig. A.2). Therefore, we can
obtain a high accuracy in νmax for a δ Scuti star with light
curves that contain only a few periods of the oscillation. In
addition, it is guaranteed a relative error lower than 10% for
1-day light curves and 5% for 2-day or longer light curves.

In conclusion, observing δ Scuti stars with CHEOPS will
allow us to obtain one of its seismic indices, νmax, with high
accuracy and only investing a few hours. This detection
can provide a determination of the stellar rotation rate,
its inclination with respect the line of sight, and its mean
effective temperature.
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Fig.A.1: Mean relative error of νmax with duty cycle for the tested δ Scuti stars. The different colours point to a different
length of the run 6 and 12 hours, 1, 2, 4 and 8 days. Dashed lines are ± their standard deviation
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Fig.A.2: Mean maximum relative error of νmax with duty cycle for the tested δ Scuti stars. The different colours point to
a different length of the run 6 and 12 hours, 1, 2, 4 and 8 days. Dashed lines are ± their standard deviation
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